
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 00:1–7 Prepared using speauth.cls [Version: 2000/03/16 v2.12]

Access control: principles and

solutions

Sabrina De Capitani di Vimercati1, Stefano Paraboschi2, Pierangela Samarati3,∗

1Università di Brescia – Dipartimento di Elettronica per l’Automazione
2Politecnico di Milano – Dipartimento di Elettronica e Informazione
3Università di Milano – Dipartimento di Tecnologie dell’Informazione

SUMMARY

Access control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be granted or
denied. The variety and complexity of the protection requirements that may need to be
imposed makes access control a far from trivial process. Expressiveness and flexibility
are top requisites for an access control system together with, and usually in conflict with,
simplicity and efficiency. In this paper, we discuss the main desiderata for access control
systems and illustrate the main characteristics of access control solutions in some of the
most popular existing systems.

1. Introduction

An important requirement of any system is to protect its data and resources
against unauthorized disclosure (secrecy or confidentiality) and unauthorized or improper
modifications (integrity), while at the same time ensuring their availability to legitimate users
(no denial-of-service or availability) [10]. The problem of ensuring protection has existed since
information has been managed. However, as technology advances and information management
systems become more and more powerful, the problem of enforcing information security also
becomes more critical. The increasing development of information technology in the past few
years, which has led to the widespread use of computer systems to store and manipulate
information and greatly increased the availability and the processing and storage power of
information systems, has also posed new serious security threats and increased the potential
damage that violations may cause. Organizations more than ever today depend on the
information they manage. A violation to the security of the information may jeopardize the
whole system working and cause serious damages. Hospitals, banks, public administrations,

∗Correspondence to: Pierangela Samarati, Dipartimento di Tecnologie dell’Informazione – Università di Milano.
Via Bramante, 65 – 26013 - Crema, Italy. Email: samarati@dti.unimi.it.

Received received
Copyright c© 2002 John Wiley & Sons, Ltd. Revised revised

2

private organizations, all of them depend on the accuracy, availability, and confidentiality of the
information they manage. Just imagine what could happen, for example, if an organization’s
data were improperly modified, weren’t available to the legitimate users because of a violation
blocking access to the resources, or were disclosed to the public domain.

A fundamental component in enforcing protection is represented by the access control service
whose task is to control every access to a system and its resources and ensure that all and only
authorized accesses can take place.

To this purpose, every management system usually includes an access control service that
establishes the kinds of regulations (policies) that can be stated, through an appropriate
specification language, and then enforced by the access control mechanism enforcing the
service. By using the provided interface, security administrators can specify the access control
policy (or policies) that should be obeyed in controlling access to the managed resources.

The definition of access control policies to be fed into the access control system is far
from being a trivial process. One of the major difficulties lies in the interpretation of, often
complex and sometimes ambiguous, real world security policies and in their translation in well
defined unambiguous rules enforceable by the computer system. Many real world situations
have complex policies, where access decisions depend on the application of different rules
coming, for example, from laws practices, and organizational regulations. A security policy
must capture all the different regulations to be enforced and, in addition, must consider all
possible additional threats due to the use of computer systems. Given the complexity of the
scenario, it is therefore important that the access control service provided by the computer
system be expressive and flexible enough to accommodate all the different requirements that
may need to be expressed, while at the same time be simple both in terms of use (so that
specifications can be kept under control) and implementation (so to allow for its verification).

An access control system should include support for the following concepts/features:

• Accountability and reliable input . Access control must rely on a proper input. This simple
principle is not always obeyed by systems allowing access control rules to evaluate on the
basis of possibly unreliable information. This is, for example, the case of location-based
access control restrictions, where the access decision may depend on the IP from which
a request originates, an information which can be easily faked in a local network, thus
fooling access control (allowing non legitimate users to acquire access despite the proper
rule enforcement). This observation has been traditionally at the basis of requiring proper
user authentication as a prerequisite for access control enforcement [13]. While more
recent approaches may remove the assumptions that every user is authenticated (e.g.,
by allowing credential-based access control), still the assumption that the information
on which access decision is taken must be correct indeed continues to hold.

• Support for fine- and coarse-specifications . The access control system should allow rules
to be referred to specific accesses, providing fine-grained reference to the subjects and
objects in the system. However, fine-grained specifications should be supported, but not
forced. In fact, requiring the specification of access rules with reference to every single
user and object in the system would make the administration task a heavy burden.
Beside, groups of users and collections of objects often share the same access control
requirements. The access control system should then provide support for authorizations

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

3

specified for groups of users, groups of objects, and possibly even groups of actions [9].
Also, in many organizational scenarios, access needs may be naturally associated with
organizational activities ; the access control system should then support authorizations
referred to organizational roles [14].

• Conditional authorizations . Protection requirements may need to depend on the
evaluation of some conditions [10]. Conditions can be in the simple form of system’s
predicates, such as the date or the location of an access (e.g., ‘Employee can access
the system from 9 am to 5 pm’). Conditions can also make access dependent on the
information being accessed (e.g., ‘Managers can read payroll data of the employees they
manage’).

• Least privilege. The least privilege principle mandates that every subject (active entity
operating in the system) should always operate with the least possible set of privileges
needed to perform its task. Obedience of the least privilege requires both static (policy
specification) and dynamic (policy enforcement) support from the access control system.
At a static level, least privilege requires support of fine-grained authorizations , allowing
granting each specific subject only those specific accesses it needs. At a dynamic level,
least privilege requires restricting processes to operate within a confined set of privileges .
Least privilege is partially supported within the context of roles , which are essentially
privileged hats that users can take and leave [14]. Authorizations granted to a role apply
only when the role is active for a user (i.e., when needed to perform the tasks associated
with the role). Hence, users authorized for powerful roles do not need to exercise them
until those privileges are actually needed. This minimizes the danger of damages due
to inadvertent errors, or by intruders masquerading as legitimate users. Least privilege
also requires the access control system to discriminate between different processes, even
if executed by the same user, for example, by supporting authorizations referred to
programs or applicable only within the execution of specific programs .

• Separation of duty . Separation of duty refers to the principle that no user should be
given enough privilege to misuse the system on their own [11]. While separation of duty
is better classified as a policy specification constraint (i.e., a guideline to be followed by
those in charge of specifying access control rules), support of separation of duty requires
the security system to be expressive and flexible enough to enforce the constraints. At
a minimum, fine-grained specifications and least privilege should be supported; history-
based authorizations , making one’s ability to access a system dependent on previously
executed access, are also a convenient means to support separation of duty.

• Multiple policies and exceptions . Traditionally, discretionary policies have been seen
as distinguished into two classes: closed and open [10]. In the most popular closed
policy, only accesses to be authorized are specified; each request is controlled against
the authorizations and allowed only if an authorization exists for it. By contrast, in the
open policy, (negative) authorizations specify the accesses that should not be allowed.
All access requests for which no negative authorization is specified are allowed by default.

• Policy combination and conflict-resolution. If multiple modules (e.g., for different
authorities or different domains) exist for the specification of access control rules, the
access control system should provide a means for users to specify how the different
modules should interact, for example, if their union (maximum privilege) or their

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

4

intersection (minimum privilege) should be considered. Also, when both permissions and
denials can be specified, the problem naturally arises of how to deal with incompleteness ,
that is, existence of accesses for which no rule is specified, and inconsistency , that
is, the existence of accesses for which both a denial and a permission are specified.
Dealing with incompleteness–requiring the authorizations to be complete would be very
impractical–requires support of a default policy either imposed by the system or specified
by the users. Dealing with inconsistencies require support for conflict resolution policies.
Different conflict resolution approaches can be taken, such as the simple denials take
precedence (in the case of doubt access is denied), or most specific criteria that make
the authorization referred to the more specific element (e.g., a user is more specific than
a group, and a file is more specific than a directory) take precedence. While, among
the different conflict resolution policies that can be thought of (see [10] for a deeper
treatment), some solutions may appear more natural than others, none of them represents
“the perfect solution”. Whichever approach we take, we will always find one situation
for which the approach does not fit. Therefore any conflict resolution policy imposed
by the access control mechanism itself will always result limiting. On the other side,
support of negative authorizations does not come for free, and there is a price to pay in
terms of authorization management and less clarity of the specifications. However, the
complications brought by negative authorizations are not due to negative authorizations
themselves, but to the different semantics that the presence of permissions and denials
can have, that is, to the complexity of the different real world scenarios and requirements
that may need to be captured. There is therefore a trade-off between expressiveness and
simplicity. Consequently, current systems try to keep it simple by adopting negative
authorizations for exception support, imposing specific conflict resolution policies, or
supporting a limited form of conflict resolution.

• Administrative policies . As access control systems are based on access rules defining which
accesses are (or are not) to be allowed, an administrative policy is needed to regulate
the specification of such rules, that is, define who can add, delete, or modify them.
Administrative policies are one of the most important, though less understood, aspects in
access control. Indeed, they have usually received little consideration, and, while it is true
that a simple administrative policy would suffice for many applications, it is also true that
new applications (and organizational environments) would benefit from the enrichment
of administrative policies. In theory, discretionary systems can support different kinds
of administrative policies: centralized, where a privileged user or group of them is
reserved the privilege of granting and revoking authorizations; hierarchical/cooperative,
where a set of authorized users is reserved the privilege of granting and revoking
authorizations; ownership, where each object is associated with an owner (generally
the object’s creator) who can grant to and revoke from others the authorizations on
its objects; and decentralized , where, extending the previous approaches, the owner of
an object (or its administrators) can delegate other users the privilege of specifying
authorizations, possibly with the ability of further delegating it. For its simplicity and
large applicability the ownership policy is the most popular choice in today’s systems
(see Section 2). Decentralized administration approaches can be instead found in the
database management system contexts (see Section 3). Decentralized administration is

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

5

convenient since it allows users to delegate administrative privileges to others. Delegation,
however, complicates the authorization management. In particular, it becomes more
difficult for users to keep track of who can access their objects. Furthermore, revocation
of authorizations becomes more complex.

In the remainder of this paper we survey the access control services provided by some of
the most popular operating systems (Section 2), database management systems (Section 3),
and network solutions (Section 4). While clearly their characteristics will vary from one class
to the other as different is their focus (e.g., database management systems focus on the data
and rely on the operating systems for low level support), it will be interesting to see how they
accommodate (or do not accommodate) the features introduced above. Also, it will be noticed
how, while covering a feature in some way, some systems take unclean solutions which may
have side effects in terms of security or applicability, aspects which then should be taken into
account when using the systems.

2. Access control in operating systems

We describe access control services in two of the most popular operating systems:
Linux (e.g., www.redhat.com, www.linux-mandrake.com, www.suse.com) and Microsoft
Windows 2000/XP (www.microsoft.com).

2.1. Access control in Linux

We use Linux as a modern representative of the large family of operating systems deriving
from Unix. We signal the features of Linux that are absent in other operating systems of the
same family.

Apart from specific privileges like access to protected TCP ports, the most significant access
control services in Linux are the ones offered by the file system. The file system has a central
role in all the operating systems of the Unix family, as files are used as an abstraction for most
of the system resources.

2.1.1. User identifiers and group identifiers

Access control is based on a user identifier (UID) and group identifier (GID) associated with
each process. A UID is an integer value unique for each username (login name), where the
association between usernames and UIDs is described in /etc/passwd. A user connecting
to a Linux system is typically authenticated by the login process, invoked by the program
managing the communication line used to connect to the system (getty for serial lines, telnetd
for remote telnet sessions). The login process asks the user for a username and a password
and checks the password with its hash stored in read-protected file /etc/shadow; a less secure
and older alternative stores hashed password in the readable-by-all file /etc/passwd. When
authentication is successful, the login process sets the UID to that of the authenticated
user, before starting an instance of the program described in the user entry in /etc/passwd

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

6

(typically a shell, like /bin/bash). Users in Linux are members of groups. Every time a user
connects to the system, together with the user identifier (UID), a primary group identifier
(GID) is set. The primary GID value to use at login is defined in file /etc/passwd. Group
names and additional memberships in groups are defined in file /etc/group. Command newgrp
allows users to switch to a new primary GID. If a user is listed in /etc/group as belonging
to the new group, the request is immediately executed; otherwise, for groups having a hashed
password in /etc/group, the primary GID can be changed after the password has been
correctly returned. However, group passwords are deprecated, as they easily lead to lapses
in password management.

Processes are usually assigned the UIDs and GIDs of the parent processes, which implies
that processes acquire the UIDs and GIDs associated with the login names with which sessions
have been started. The process UID is the central piece of information for the evaluation of
the permitted actions. There are many operations in the system that are only allowed to a
user which has zero as the value of its UID. By convention, root is associated with value zero,
representing the owner of the system who supervises all the activities. For instance, the TCP
implementation allows only user root to open ports below 1024.

2.1.2. Files and privileges

In the Linux file system, each file is associated with a UID and a GID, which typically represent
the UID and primary GID of the process that created the file. UID and GID associated with
a file can be changed by commands chown and chgrp. Each file has an associated a list of
nine privileges: read , write and execute, each defined three times, at the level of user , group,
and other . The privileges defined at the level of user are the actions that will be permitted
to processes having the same UID as the file; the privileges defined at the level of group are
granted to processes having the same GID as the file; the privileges at the level of other are
for processes that share neither UID nor GID with the file. The privileges are commonly
represented by the ls -l command as a string of nine characters (preceded by a character
representing the file type). Each privilege is characterized by a single letter: r for read ; w

for write; x for execute; the absence of the privilege is represented by character -. The string
presents first the user privileges, then group, and finally other . For instance, rwxr-xr-- means
that a process having as UID the same UID as the file has all the three privileges, a process
with the same GID can read and execute (but not write) the file, and remaining processes
can only read the file. When a user belongs to many groups, all the corresponding GIDs are
stored in a list in the process descriptor beside the primary GID; other operating systems of
the Unix family stored only the primary GID within the process descriptor. All the groups in
the list are then considered: if the GID of the file is the primary GID, or appears anywhere in
the list, group access privileges apply.

The semantics of privileges may be different depending on the type of the file on which
they are specified. In particular, for directories, the execute privilege represents the privilege
to access the directory; read and write privileges permit respectively to read the directory
content and to modify it (adding, removing and renaming files). Privileges associated with a
file can be updated via the chmod command, which is usable by the file owner and by user
root .

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

7

2.1.3. Additional security specifications
The file system offers three other privileges on files: save text image (sticky bit), set user ID
(setuid), and set group ID (setgid). The sticky bit privilege is useful only for directories, where
it allows only the owner of the file, owner of the directory, and root to remove or rename the
files contained in the directory, even if the directory is writable by all. The setuid and setgid
privileges are particularly useful for executable files, where they permit to set the UID or GID
of the process that executes the file to that of the file itself. These privileges are often used
for applications that require a higher level of privileges to accomplish their task (e.g., users
change their passwords with the passwd program, which needs read and write access on file
/etc/shadow). Without the use of these bits, enabling a process started by a normal user to
change the user’s password would require explicitly granting the user the write privilege on
the file /etc/shadow. Such a privilege could, however, be misused by users who could access
the file though different programs and tamper with it. The setuid and setgid bits, by allowing
the passwd program to run with root privilege, avoid such security exposure. It is worth
noticing that, while providing a necessary security feature, the setuid and setgid solutions are
themselves vulnerable as the specified programs run with root privileges – in contrast to the
least privilege principle, they are not confined to the accesses needed to execute their task –
and it is therefore important that these programs be trusted [10].

The ext2 and ext3 file systems, the most common in Linux implementations, offer additional
boolean attributes on files. Among them, there are attributes focused on low-level optimizations
(e.g., a bit requiring a compressed representation of the file on the disk) and two privileges that
extend access control services: immutable and append-only. The immutable bit specifies that no
change is allowed on the file; only the user root can set or clear this attribute. The append-only
bit specifies that the file can be extended only by additions at the end; this attribute can also
be set only by root . Attributes are listed by command lsattr and are modified by command
chattr .

2.1.4. IP-based security
Linux offers several utilities that base authentication on IP addresses. All of these solutions
should be used with care, as IP addresses can be easily spoofed in a local network [3] and
therefore fool the access control system. For this reason, they are not enabled by default. Among
these utilities, rsh executes remote shells on behalf of users; rcp executes copies involving the
file systems of machines in a network; NFS permits to share portions of the file system on
the network. For these applications, access control typically is based on a few relatively simple
textual files, which describe the computers that can use the service and the scope of the service;
patterns can be used to identify ranges of names or addresses, and groups may be defined, but
overall the access control features are basic. Secure solutions of the above applications (like the
ssh application and the scp program offered within the same package) offer a greater degree
of security, at the expense of computational resources, configuration effort and in general less
availability.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

8

���������
	��	���������

��������������� � ��!
"$#&%('*),+�-/.�0�1�2�3

4�5,6 7�89'*),+�-;:�2�<�.�=>3
?�?�?�?�? @�A$B 7�C�D,C�E�F('*),+�-;:�2�<�.�=>3

G F�F('*),+�-H<�IKJ>1�2�3
LM����NPO&Q RTSVU�������O&Q WXR��YO

-[Z]\P^

?�?�?�?�?
)$Z]\P^

Z]\P_

Z]\P_

` E�6$#�a

E�a�a�#�b$8�c
4�5$6 7�8
8�d�8$DXefb,6YC�g$8
c,8&F B

6,8�E�chefb,6YC�g$8

Figure 1. Access control in Windows

2.2. Access control in Windows

We now describe the characteristics of the access control model of the Microsoft Windows
2000/XP operating system (msdn.microsoft.com). Most of the features we present were
already part of the design of Microsoft Windows NT; we will clarify the features which were not
present in Windows NT and were introduced in Windows 2000. We use the term Windows to
refer to this family of operating systems. We do not consider the family of Windows 95/98/ME
operating systems.

2.2.1. Security descriptor

One of the most important characteristics of the Windows operating system is its object-
oriented design. Every component of the system is represented as an object, with attributes
and methods. In this scheme, it is natural to base access control on the notion that objects
can be securable, that is, they can be characterized by a security descriptor which specifies
the security requirements of the object (this corresponds to implementing access control with
an access control list approach [10], equivalent to what the nine-character string is in Unix).
Almost all of the system objects are securable: files, processes, threads, named pipes, shared
memory areas, registry entries, and so on. The same access control mechanism applies to all
of them.

Any subject that can operate on an object (user, group, logon session, etc.) is represented
in Windows by a Security Identifier (SID), with a rich structure that manages the variety of

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

9

active entities. The main components of the security descriptor are the SIDs of the owner and
of the primary group of the object, a Discretionary Access Control List (DACL), and a System
Access Control List (SACL).

2.2.2. Access Control Element

Each access control list consists of a sequence of Access Control Elements (ACEs). An ACE is
an elementary authorization on the object with which it is associated by way of the ACL; the
ACE describes the subject, the action, the type (allow, deny or audit) and several flags (to
specify the propagation and other ACE properties). The subject (called trustee in Windows)
is represented by a SID. The action is specified by an access mask , a 32-bit vector (only part
of the bits are currently used; many bits are left unspecified for future extensions). Half of the
bits are associated with access rights valid for every object type; these access rights can be
divided into three families:

• generic: read , write, execute, and the union of all of them;
• standard : delete, read control (to read the security descriptor), synchronize (to wait

on the object until a signal is generated on it), write dac (to change the DACL), and
write owner (to change the object’s owner);

• SACL: access system security (a single access right to modify the SACL; the right is not
sufficient, as the subject must also have the SE SECURITY NAME privilege). It cannot
appear in a DACL.

The remaining 16 bits are used to represent access rights specific to the object type
(directory, file, process, thread, etc.). For instance, for directories access rights open,
create child , delete child , list , read prop, and write prop apply. Active directory services,
described in Section 2.2.8, are the base for the introduction of object-specific ACEs.

2.2.3. Access Token

Each process or thread executing in the system is associated with an Access Token, an object
that describes the security context. An access token describing the user is created after the
user has been authenticated and it is then associated with every process executing on behalf
of the user. The access token contains: the SID of the user’s account; SIDs of the groups which
have the user as a member; a logon SID identifying the current logon session; a list of the
privileges held by the user or the groups; an owner SID; the SID of the primary group; and
the default DACL, to use when a process creates a new object without specifying a security
descriptor. In addition, there are other components that are used for changing the identifiers
associated with a process (called impersonation in Windows), and to apply restrictions.

2.2.4. Evaluation of ACLs

When a thread makes a request to access an object, its Access Token is compared with the
DACL in the security descriptor. If the DACL is not present in the security descriptor, the
system assumes that the object is accessible without restrictions. Otherwise, the ACEs in the

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

10

DACL are considered one after the other, and for each one the user and group SIDs in the
access token are compared with the SID in the ACE. If there is a match, the ACE is applied.
Order in the DACL is extremely important. The first ACE that matches will apply or deny
the access rights in it. The following matching ACEs will only be able to allow or deny the
remaining access rights. If the analysis of the DACL terminates and no allow/deny has been
obtained for a given access right, the system assumes that the right is denied (closed policy).
As an example, with reference to Figure 1, for user Bob the second ACE will apply (as it
matches the group in the thread’s access token) denying Bob the execute and write accesses
on object1. The approach of applying the first ACE encountered corresponds to the use of
a ‘position-based’ criterion for resolving possible conflicts [10]. While simple, this solution is
quite limiting. First, it gives the users specifying the policy the complete burden of solving
each specific conflict that may arise (not allowing them to specify generic high level rules
for that). Second, it is not suitable if a decentralized administration (where several users can
specify authorizations) should be accommodated. Also, users should have explicit direct write
privilege on the DACL to properly order the ACEs. However, doing so it would be possible
for them to abuse the privilege and set the ACL in an uncontrolled way.

It is worth noting how an empty DACL (which returns no permissions) will deny all users
the access to the object, whereas a null DACL (which returns no restrictions) would grant
them all. Then, attention must be paid to the difference between the two.

The DACL is set by the object creator. When no DACL is specified, the default DACL in the
access token is used by the system. The SACL is a sequence of ACEs like the DACL, but it can
only be modified by a user having the administrative privilege SE SECURITY NAME, and
describes the actions that have to be logged by the system (if the ACE for a given right and
SID is positive, the action must be logged; if it is negative, no trace will be kept); the access
control system records access requests that have been successful, rejected, or both, depending
on the value of the flags in the ACE elements in the SACL. Each monitored access request
produces a new entry in the security event log .

2.2.5. System privileges

A system privilege in Windows is the right to execute privileged operations, such as making
a backup, debugging a process, increasing the priority of a process, increasing the quota, and
creating accounts. All these operations are not directly associated with a specific system object,
and they cannot conveniently be represented by ACEs in an object security descriptor. System
privileges can be considered as authorizations without an explicit object.

System privileges can be associated with users and groups accounts. When a user is
authenticated by the system, the access token is created; the access token contains the system
privileges of the user and of the groups in which the user is a member. Every time a user
tries to execute a system privileged operation, the system checks if the access token contains
the adequate system privilege. System privileges are evaluated locally; a user can then have
different system privileges on different nodes of the network.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

11

2.2.6. Impersonation and restricted tokens

Impersonation is a mechanism that permits threads to acquire the access rights of a different
user. This feature is similar to the setuid and setgid services of Linux, where the change in
user and group identifier permits programs invoked by a user to access protected resources. In
Windows, impersonation is also an important tool for client-server architectures. The server
uses impersonation to acquire the security context of the client when a request arrives. The
advantage is that, in a network environment, a user will be able to consistently access the
resources for which the user is authorized, and the system will be better protected from errors
in the protocol used for service invocation or in the server application.

Each process has an access token (created at logon) built from the profile of the authenticated
user. An impersonating thread has two access tokens, the primary access token that describes
the access token of the parent process, and the impersonation access token that represents
the security context of a different user. Obviously, impersonation requires an adequate system
privilege.

Windows 2000 introduced primitives for the creation of restricted tokens. A restricted token
is an access token where some privileges have been removed, or restricting SIDs have been
added. A restricting SID is used to limit the capabilities of an access token. When an access
request is made and the access token is compared with the ACEs in the ACL, each time there
is a match between the restricting SID in the token and the SID in an ACE, the ACE is
considered only if it denies access rights on the object.

2.2.7. Inheritance

Some important securable objects contain other securable objects. As an example, folders
in the NTFS file system contain files and other folders; registry keys contain subkeys. This
containment hierarchy puts in the same containers objects that are often characterized by
the same security requirements. The hierarchy results then extremely convenient permit an
automatic propagation of security descriptions from an object to all the objects contained
within it (cf. Section 1, support of abstractions). This feature is realized in Windows by access
control inheritance.

A difference exists between Windows NT and Windows 2000 and later with respect to
inheritance. In Windows NT there was no distinction between direct and inherited ACEs; also
ACEs were inherited by an object only when the object was created or when a new ACL was
applied onto an object. The result was that a change in an ACE was not propagated down
the hierarchy to the object that had inherited it. In Windows 2000 and later, propagation
is automatic (as users would probably expect). Also, Windows 2000 gives higher priority to
ACEs directly defined on the specific objects, by putting the inherited ACEs at the end of the
DACL.

In Windows 2000 and later, every ACE is characterized by three flags. The first flag is
active if the ACE has to be propagated to descendant objects. The second and third flag are
active only if the first flag is active. The second flag is active when the ACE is propagated to
children objects without activating the first flag, thus blocking propagation to the first level.
The third flag is active when the ACE is not applied to the object itself. In addition, in the

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

12

security descriptor of a securable object there is a flag that permits to disable the application
of inherited ACEs to the object.

2.2.8. Fine granularity access control

Another innovation of Windows 2000 is the introduction of a fine graines access model, which
supports the Windows object model. There are two different solutions. The first solution is
applicable to directory services objects and uses new ACE types defining access rights on
specific object properties. These ACEs are based on an object structure that extends the
regular ACE with two GUID parameters (a GUID is the general object identifier). The first
GUID represents the specific property, property set, or child object for which the ACE is
defined. The second represents the object that can inherit the ACE.

The second solution is the one offered within Active Directory services by the
controlAccessRight object. The object specifies access rights on object properties or on user-
defined actions. The object is then referenced within an ACE inserted in the DACL of the
object itself.

3. Access control in database management systems

Database management systems (DBMSs) usually provide access control services in addition to
those provided by the underlying operating systems [4]. DBMS access control allows references
to the data model concepts and the consequent specification of authorizations dependent on
the data and on the applications. Most of the existing DBMSs (e.g., Oracle Server, SQL Server,
Postgres) are based on the relational data model and on the use of SQL (Structured Query
Language) as the Data Definition and Manipulation language [2]. The SQL standard provides
commands for the specification of access restrictions on the objects managed by the DBMS.
We here illustrate the main SQL facilities with reference to the latest version of the language,
namely SQL:1999 [6].

3.1. Security features of SQL

SQL access control is based on user and role identifiers. User identifiers correspond to login
names with which users open the DBMS sessions. DBMS users are defined by the DMBS in
an implementation-dependent way and are usually independent of the usernames managed by
the operating system; SQL does not define how OS users are mapped to SQL users. Roles,
introduced in SQL:1999, are “named collections of privileges” [12], that is, named virtual
entities to which privileges are assigned; by activating a role, users are enabled to execute the
privileges associated with the role.
Users and roles can be granted authorizations on any object managed by the DBMS, namely:
tables, views, columns of tables and views, domains, assertions, and user-defined constructs
such as user-defined types, triggers, and SQL-invoked routines. Authorizations can also be
granted to public, meaning that they apply to all the user and role identifiers in the SQL
environment. Apart from the drop and alter statements – which permit to delete and modify

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

13

�
�

�
Ann

�
�

�
Bob

�
�

�
Carol

�
�

�
Admin Supervisor

�
�

�
Secretary

�
�

�
Accountant

-

-

Q
Q

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
�

�
��3

-

Figure 2. An example of role chains in SQL

the schema of an object and whose execution is reserved to the object’s owner – authorizations
can be specified for any of the commands supported by SQL, namely: select , insert , update, and
delete for tables and views (where the first three can refer to specific columns), and execute for
SQL-invoked routines. In addition, other actions allow controlling references to resources; they
are: reference, usage, under , and trigger . The reference privilege, associated with tables or
attributes within, allows referring to tables/attributes in an integrity constraint: a constraint
cannot be checked unless the owner of the schema in which the constraint appears has the
reference privilege on all the objects involved in the constraint. The reason for this is that
constraints may affect the availability of the objects on which they are defined, and therefore
their specification should be reserved to those explicitly authorized. The usage privilege, which
can be applied to domains, user-defined types, character sets, collations, or translations, allows
the use of the object in one’s own declarations. The under privilege can be applied to a user-
defined type and allows subjects to define a subtype of the specified type. The trigger privilege,
referred to a table, allows the definition of a trigger on the table.

Besides authorizations to execute privileges on the different objects of the database
management system, SQL also supports authorizations on roles. In particular, roles can be
granted to other users and roles. Granting a role to a user means allowing the user to activate
the role. Granting a role r

′ to another role r means permitting r to enjoy the privileges granted
to r

′. Intuitively, authorizations on roles granted to roles introduce chains of roles through
which privileges can flow. For instance, consider the case in Figure 2 where the rightmost
three nodes are users, the remaining three nodes are roles and an arc corresponds to an
authorization of the incident node on the role source of the arc (e.g., Ann has an authorization
for the Admin Supervisor role). While each of the users will be allowed to activate the role for
which it has the authorization (directly connected in our graph) it will enjoy the principles of
all the roles rechable through a chain. For instance, when activating role Admin Supervisor,

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

14

Ann will enjoy, besides the privileges granted to this role, also the privileges granted to roles
Secretary and Accountant.

3.1.1. Access control enforcement

The subject making a request is always identified by a pair 〈uid , rid〉, where uid is the
SQL-session user identifier (which can never be null) and rid is a role name, whose value
is initially null. Both the user identifier and the role identifier can be changed via commands
set session authorization and set role, respectively, whose successful execution depends
on the specified authorizations. In particular, enabling a role requires the current user to have
the authorization for the role. The current pair 〈uid , rid〉 can also change upon execution
of an SQL-invoked routine, where it is set to the owner of the routine (cf. Section 3.1.3). An
authorization stack (maintained using a “last-in, first-out” strategy) keeps track of the sequence
of pairs 〈uid , rid〉 for a session. Every request is controlled against the authorizations of the
top element of the stack. Although the subject is a pair, like for authorizations and ownership,
access control always refers to either a user or a role identifier in mutual exclusion: it is
performed against the authorizations for uid if the rid is null; it is performed against the
authorizations for rid , otherwise. In other words, by activating a role a user can enjoy the
privileges of the role while disabling her own. Moreover, at most one role at a time can be
active: the setting to a new role rewrites the rid element to be the new role specified.

3.1.2. Administration

Every object in SQL has an owner, typically its creator (which can be set to either the
current user or current role). The owner of an object can execute all privileges on it,
or a subset of them in case of views and SQL-invoked routines (cf. Section 3.1.3). The owner
is also reserved the privilege to drop the object and to alter (i.e., modify) it. Apart for the
drop and alter privileges, whose execution is reserved to the object’s owner, the owner can
grant authorizations for any privilege on its objects, together with the ability to pass such
authorizations to others (grant option).

A grant command, whose syntax is illustrated in Figure 3, allows granting new
authorizations for roles (enabling their activation) or for privileges on objects. Successful
execution of the command requires the grantor to be the owner of the object on which the
privilege is granted, or to hold the grant option for it. The specification of all privileges,
instead of an explicit privilege list, is equivalent to the specification of all the privileges, on
the object, for which the grantor has the grant option. The with hierarchy option (possible
only for the select privilege on tables) automatically implies granting the grantee the select
privilege on all the (either existing or future) subtables of the table on which the privilege
is granted. The with grant option clause (called with admin option for roles) allows the
grantee to grant others the received authorization (as well as the grant option on it). No cycles
of role grants are allowed.

The revoke statement allows revocation of (administrative or access) privileges previously
granted by the revoker (which can be set to the current user or current role). Due to the
use of the grant option, and the existence of derived objects (see Section 3.1.3), revocation

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

15

grant all privileges | <action>

on [table] | domain | collation | character set | translation | type <object name>
to <grantee> [{<comma> <grantee>}. . .]
[with hierarchy option]
[with grant option]
[granted by <grantor>]
grant <role granted> [{ <comma> <role granted> }. . .]
TO <grantee> [{ <comma> <grantee> }. . .]
[with admin option]
[granted by <grantor>]
revoke [grant option for | hierarchy option for] <action>

on [table] | domain | collation | character set | translation | type <object name>
from <grantee> [{ <comma> <grantee> }. . .]
[granted by <grantor>]
cascade | restrict
revoke [admin option for]
<role revoked> [{ <comma> <role revoked> }. . .]
from <grantee> [{ <comma> <grantee> }. . .]
[granted by <grantor>]
cascade | restrict

Figure 3. Syntax of the grant and revoke SQL statements

of a privilege can possibly have side effects, since there may be other authorizations that
depend on the one being revoked. Options cascade and restrict dictate how the revocation
procedure should behave in such a case: cascade recursively revokes all those authorizations
which should not exist anymore if the requested privilege is revoked; restrict rejects the
execution of the revoke operation if other authorizations depend on it. To illustrate, consider
the case where user Ann creates a table and grants the select privilege, and the grant option
on it, to Bob and Carol. Bob grants it to David, who grants it to Ellen, and to Frank,
who grants it to Gary. Carol also grants the authorization to Frank. Assume for simplicity
that all these grant statements include the grant option. Figure 4(a) illustrates the resulting
authorizations and their dependencies via a graph reporting a node for every user and an
arc from the grantor to the grantee for every authorization. Consider now a request by Ann

to revoke the privilege from Bob. If the revoke is requested with option cascade, also the
authorizations granted by Bob (who would not hold anymore the grant option for the privilege)
will be revoked, causing the revocation of David’s authorization, which will recursively cause
the revocation of the authorization David granted to Ellen. The resulting authorizations (and
their dependencies) are as illustrated in Figure 4(b). Note that no recursive revocation is
activated for Frank as, even if the authorization he received from Bob is deleted, Frank still
holds the privilege with the grant option, (received from Carol). By contrast, if Ann were to
request the revoke operation with the restrict option, the operation would be refused because
of the authorizations dependent on it (those which would be revoked with the cascade option).

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

16

(a)
�
�

�
Ann

�
�

�
Bob

�
�

�
Carol

�
�

�
David

�
�

�
Frank

�
�

�
Ellen

�
�

�
Gary�

�
�

�
�3

-

-
Q

Q
Q

Q
Qs-

-

-

(b)
�
�

�
Ann

�
�

�
Carol

�
�

�
Frank

�
�

�
Gary- - -

Figure 4. A graphical representation of authorizations before (a) and after (b) a cascade revocation

3.1.3. Views and invoked routines

A special consideration must be devoted to authorizations for derived objects (views) and
SQL-invoked routines, where the case can be that the owner creating them does not own the
underlying objects used in their definition.

A view is a virtual table derived from base tables and/or other views. A view definition is
an SQL statement whose result defines the content of the view. The view is virtual since its
content is not explicitly stored but it is derived, at the time the view is accessed, by executing
the corresponding SQL statement on the underlying tables. A user/role can create a view only
if it has the necessary privilege on all the views, or base tables, directly referenced by the view.
The creator receives on the view the privileges that it holds on all the tables directly referenced
by the view. Also, it receives the grant option for a privilege only if it has the grant option for
the privilege on all the tables directly referenced by the view. If it holds a privilege on the view
with the grant option, the creator can grant the privilege (and the grant option) to others.
The grantees of such privileges need not hold the privileges on the underlying tables to access
the view; access to the view only requires the existence of privileges on the view. Intuitively,
the execution of the query computing the view is controlled against the authorizations of the
view’s owner (similarly to what the suid bit does in Unix). Also, views provide a way to enforce
finer-grained access (on specific tuples). For instance, a user can define a view EU Employees

on table Employees containing only those rows for which the value of attribute nationality
is equal to EU. She can then grant other users the select privilege on the view, thus allowing
(and restricting) them access to information on employees within the European Union. Views
are the only means to bypass an all tuples or no tuple access on tables. While convenient, views
are however simply a trick for enforcing content-dependent fine-grained access control (which
is not the main reason why they were developed) and as such result limiting for this purpose:

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

17

a different view should be defined for any possible content-dependent access restriction which
should be enforced.

An SQL-invoked routine is an SQL-invoked procedure, or an SQL-invoked function,
characterized by a header and a body. The header consists of a name and a, possibly empty, list
of parameters. The body may be specified in SQL or, in the case of external routines, written
in a host programming language. At object creation time, a user is designated as the owner of
the routine. Analogously to what is required for views, to create an SQL-invoked routine, the
owner needs to have the necessary privileges for the successful execution of the routine. The
routine is dropped if at any time the owner loses any of the privileges necessary to execute the
body of the routine. When a routine is created, the creator receives the execute privilege on it,
with the grant option if it has the grant option for all the privileges necessary for the routine
to run. If the creator of a routine has the execute privilege with the grant option, she can
grant such a privilege, and the grant option on it, to other users/roles. The execute privilege
on an SQL routine is sufficient for these other users/roles to run the routine (they need not
have the privileges necessary for the routine to run; only the creator does). Intuitively, SQL
routines provide a service similar to the setuid/setgid privileges in Linux and impersonation in
Windows (controlling privileges with respect to the owner instead of the caller of a procedure).

4. Access control for Internet-based solutions

We here survey the most common security features for Internet-based solutions. Again, we
illustrate the most popular representative of the different families. We will therefore look at
TCPD for Internet service access, at Apache for web-based solutions, and Java 2 security
model.

4.1. TCPD

The tcpd program (www.porcupine.org/wietse) is a wrapper program that is normally used
in Unix-like operating systems to monitor incoming requests for Internet services such as
telnet, finger, and ftp, among others. tcpd is activated by the inetd every time a request for
service is received on a port. Upon activation, tcpd logs the request (recording the timestamp,
the client host name, and the name of the requested service) as specified in etc/syslog.conf

and evaluates files /etc/hosts.allow and /etc/hosts.deny (which are the files where access
control rules are specified) to determine whether the request should be granted or denied. Each
of these files include zero or more access rules of the form:

service list : client list [: shell command]

where service list is a list of service daemons (e.g., ftpd, telnetd, and fingerd); client list
is a list of host names, host addresses, or patterns; and shell command is an optional shell
command that must be executed every time the rule is matched. Wildcards can be used in
place of a specific service/client to denote a set of them. For instance, wildcard ALL matches
with any service/client, while LOCAL matches any host whose name does not contain a dot

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

18

character. Patterns are partial host/address specification and are used to refer, in a convenient
way, to groups of hosts or addresses (all those matching with the pattern). Typically a pattern
specifies only the most generic part of a host/address identifier (namely the rightmost elements
for symbolic addresses and the leftmost elements for numeric IPs) thus denoting a whole
subnetwork of machines. In other words, a symbolic pattern begins with a dot character
and matches all host names whose rightmost components equal those specified. For instance,
patterns .it or .acme.com will match all machines in the it domains or within the acme.com

subnetwork, respectively. Conversely, a numeric pattern ends with a dot character and matches
all host addresses whose leftmost fields equal those specified. For instance, pattern 159.155.

will match all machines in the 159.155. subnetwork.

The difference between files hosts.allow and hosts.deny is that hosts.allow expresses
permissions (i.e., which hosts should be allowed access to the mentioned services), while
hosts.deny expresses denials.

The access control process performs first an evaluation of hosts.allow. If a matching rule
is found access is granted (and the shell command executed, if any). Otherwise, hosts.deny is
evaluated and, if a matching rule is found, access is denied (and the shell command executed,
if any). The fact that the evaluation order is established by the mechanism implies that only
this single predefined conflict resolution policy is supported. If no rule is found in either files,
the access is granted (open policy by default). As an example, the following specifications:

#hosts.allow

in.ftpd: ALL: mail -s "remote ftp attempt from %h" admin)

#hosts.deny

ALL: ALL

deny all accesses but ftp. The shell command in the permission, executed in correspondence
of ftp requests, sends an email message to the system administrator signaling the ftp request
from client %h, where the symbolic name %h is expanded to the client host name or IP address.

4.2. Apache access control

The Apache HTTP server (www.apache.org) allows the specification of access control rules
via a per-directory configuration file usually called .htaccess [1]. The .htaccess file is a
text file including access control rules (called directives in Apache) that affect the directory in
which the .htaccess file is placed and, recursively, directories below it (see Section 4.2.4 for
more details). Figure 5 illustrates a simple example of .htaccess file.

Access control directives, whose specification is enabled via module mod access, can
be either host-based (they can refer to the client’s host name and IP address, or other
characteristics of the request) or user-based (they can refer to usernames and groups thereof).
We start by describing such directives and then illustrate how the .htaccess files including
them are evaluated.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

19

SetEnvIf Referer www.mydomain.org internal site
AuthName "user-based restriction"
AuthType Basic
AuthUserFile /home/mylogin/.htpasswd
AuthGroupFile /home/mylogin/.htgroup
Order Deny,Allow
Deny from all
Allow from acme.com
Allow from env=internal site
Require valid-user
Satisfy any
<FilesMatch public access.html>
Allow from all

</FilesMatch>

Figure 5. A simple example of .htaccess file

4.2.1. Host-based access control

Host-based directives resemble and enrich the security specifications of the tcpd solution
examined earlier. Both permissions and denials can be specified, by using the Allow (for
permissions) and Deny (for denials) directives, which can refer to location properties or
environment variables of the request. Location-based specifications have the form:

Allow from host-or-network/all
Deny from host-or-network/all

where host-or-network can be: a domain name (e.g., acme.com); an IP address or IP pattern
(e.g., 155.50.); a network/netmask pair (e.g., 10.0.0.0/255.0.0.0); or a network/n CIDR
mask size, where n is a number between 1 and 32 specifying the number of high-order 1 bits
in the netmask. For instance, 10.0.0.0/8 is the same as 10.0.0.0/255.0.0.0. In alternative
value all denotes all hosts on the network.

Variable-based specifications have the form:

Allow from env = env-variable
Deny from env = env-variable

where env-variable denotes an environment variable. The semantics is that the directive (allow
or deny) applies if env-variable exists. Apache permits to set environment variables based
on different attributes of the HTTP client request using the directives provided by module
mod setenvif. The attributes may correspond to various HTTP request header fields (see
RFC 2616 [7]) or to other aspects of the request. The most commonly used request header
field names include: User-Agent (the user agent originating the request) and Referer (the URI
of the document from which the URI in the request was obtained). For instance, in Figure 5

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

20

directive SetEnvIf sets “internal site” if the referring page was in the www.mydomain.orgWeb
site. The “Allow from env = internal site” directive, then, permits access if the referring page
matches the given URI.

Access control evaluates the content of file .htaccess to determine whether a request should
be granted or denied. The Order directive controls the order in which the Deny and Allow

directives must be evaluated (thus allowing users to dictate the conflict resolution policy to be
applied) and defines the default access state. There are three possible orderings:

• Deny,Allow: the deny directives are evaluated first, and access is allowed by default
(open policy). Any client that does not match a deny directive or matches an allow
directive is granted access.

• Allow,Deny: the allow directives are evaluated first and access is denied by default (closed
policy). Any client that does not match an allow directive or matches a deny directive
is denied access.

• Mutual-failure: only clients that do not match any Deny directive and match an Allow

directive are allowed access.

For instance, the .htaccess file in Figure 5 states that all hosts in the acme.com domain
and requests with a referring page in the www.mydomain.org Web site are allowed access; all
other hosts are denied access.

4.2.2. User-based access control

Besides host-based access control rules, Apache includes a module, called mod auth, that
enables user authentication (based on usernames and passwords) and enforcement of user-
based access control rules. Usernames and associated passwords are stored in a text user file,
reporting pairs of the form “username:MD5-encrypted password”. Command htpasswd is used
to modify the file (i.e., add new users or change passwords) as well as to create/rewrite it (a
-c flag rewrites the file as new). The command has the form:

htpasswd [-c] filename username

where filename is the full path name of the user file and username is the name of the user we
are creating. Upon entering the command, the system will ask to specify the password (as usual
asking its input twice to avoid insertion errors). An alternative to the text user file provided by
module mod auth is given by modules mod auth db and mod auth dbm. With these modules,
the usernames and passwords are stored in Berkeley DB files and DBM type database files,
respectively.

To define user-based restrictions, a name can be given to the portion of the file system access
to which requires authentication. This portion, called realm, corresponds to the subtree rooted
at the directory containing the .htaccess file.

The main directives to create realms are:

• AuthName, to give a name to the realm. The realm name will be communicated to users
when prompted for the login dialog (e.g., as in Figure 6).

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

21

Figure 6. An example of dialog box that prompts for username and password

• AuthType, to specify the type of authentication to be used. The most common method,
implemented by mod auth is Basic, which sends the password from the client to the server
unencrypted (with a base64-encoding). A more secure, but less common alternative is the
Digest authentication method, implemented by module mod auth digest, which sends
the server a one-way hash (MD5 digest) of the username:password pair. This Digest
authentication method is supported only by relatively recent versions of browsers (e.g.,
Opera 4.0, MS Internet Explorer 5.0, and Amaya).

• AuthUserFile, to specify the absolute path of the file that contains usernames and
passwords. Note that the user file containing names and passwords does not need to be
in the same directory as the .htaccess file.

• AuthGroupFile, to specify the location of a group file, and therefore provide support for
access rules specified for groups. The group file is a list of entries of the form

group-name: username1 username2 username3

where group-name is the name associated with the group to which the specified usernames
are declared to belong, and each of the usernames appearing in the list must be in the
user file (i.e., be an existing username).

The four directives above allow the server to know where to find the usernames and passwords
and what authentication protocol has to be used. User-based access rules are specified with a
directive require that can take three forms:

• require user username1 username2 . . . usernameN
only usernames “username1 username2 . . . usernameN ” are allowed access;

• require group group1 group2 . . . groupM
only usernames in groups “group1 group2 . . . groupM ” are allowed access;

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

22

• require valid-user

any username in the user file is allowed access.

4.2.3. Host-based and user-based interactions and finer-grained specifications

Host- and user-based access directives are not mutually exclusive and they can both be used
to control access to the same resources. Directive Satisfy allows the specification of how the
two sets of directives should interact. Satisfy takes one argument whose value can be either
all or any. Value all requires both user-based and host-based directives to be satisfied for
access to be granted, whereas for value any, it is sufficient that either one is satisfied for access
to be granted.

As already said, all the directives specified in .htaccess apply to the file system subtree
rooted at the directory that contains the specific .htaccess file unless overridden. In other
words, a .htaccess file in a directory applies to all the files directly contained in the directory
and recursively propagates to all its subdirectories unless a .htaccess has been specified for
them (most specific takes precedence).

Apache 1.2 and later support finer-grained rules allowing the specification of access directives
on a per-file basis by including FilesMatch section of the form “<FilesMatch reg-exp>

directives </FilesMatch>”, with the semantics that the directives included in the FilesMatch
section apply only to the files with a name matching the regular expression specified. Also,
directives can be specified on a per-method basis, by using a Limit section of the form “<Limit

list of access methods> directives </Limit>”, with the semantics that the directives included
in the Limit section apply only to the accesses listed (again overriding the directives specified
in the .htaccess file). As an example, directive
<Limit get post put>

require valid-user

</Limit>

would allow any authenticated user to execute methods get, post, and put. The directives
does not apply to other operations.

4.2.4. Evaluation of .htaccess files

As mentioned previously, file .htaccess is used to control accesses to the files in a directory.
Therefore, whenever an access request to a file is submitted, the Apache HTTP server starts
checking in the top directory for a .htaccess file, and then checks each subdirectory down
to and including the directory that the requested file is in [5]. All files .htaccess finded
during this process (called directory walk) are processed and merged thus resulting in a
set of directives that apply to the requested file. More precisely, the directives specified
in the .htaccess files have to be processed if they belong to the categories (AuthConfig,
FileInfo, Indexes, Limit, and Options) listed in the AllowOverride list specified in a
server configuration file. These directives are then merged according to the most specific
principle, that is, directives within files .htaccess in subdirectories may change or nullifies the
effects of the directives within files .htaccess of parent directories. As an example, suppose
that the access request for http://acme.com/Department1/welcome.html resolves to the

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

23

file /home/myaccount/www/Department1/welcome.html and that statement AllowOverride

All has been specified. In this case, the Apache HTTP server merges all directives included
in the .htaccess files of directories: /; /home; /home/myaccount; /home/myaccount/www; and
/home/myaccount/www/Department1.

4.3. Java 2 security model

Java is both a modern object-oriented programming language and a complex software
architecture. Java has been developed by Sun Microsystems and is currently one of the most
important solutions for the construction of applications in a network environment. Java offers
sophisticated solutions for the design of distributed and mobile applications, where the software
can be partitioned on distinct nodes and downloaded from one node to be executed on another.

Since its introduction, Java designers have carefully considered the security implications of
an architecture where executable code could be downloaded from the network, possibly from
untrusted hosts. The first security model of Java, the one associated with Java Development
Kit version 1.0 (JDK 1.0), was based on the construction of a sandbox, a restricted environment
for the execution of downloaded code, with rigid restrictions on the set of local resources that
could be used (e.g., with no access to the file system and with limits on network access).

The main problem of JDK 1.0 security model was the limited granularity and the availability
of a single policy for all downloaded code. JDK 1.0 would let programmers revise the access
control services and implement their own version; but the implementation of access control
services is complex, expensive and delicate, making it unfeasible for most applications.

The evolution of Java to version 2 gave the opportunity to revise the security model and
significantly improve it. We describe the Java 2 Security Architecture. A full and authoritative
description of the architecture appears in [8].

We observe that the security services of Java are not related with the access control system
of the host operating system. This design choice derives from the requirement to make Java a
fully portable execution environment, that does not depend on the services of the underlying
system. The Java environment will have to be properly protected on the host system, as write
access to the implementation of the Java Virtual Machine, or to its configuration, would permit
to bypass any security mechanism within the Java environment.

We focus the presentation on the security model that associates permissions with pieces of
Java code. This code-centric model adequately supports the security of mobile code. We do
not describe the Java Authentication and Authorization Service (JAAS, since Java 2 v. 1.4
integrated with the JDK), a set of Java packages that offer services for user authentication
and management of access control rights. JAAS extends the native Java 2 security model,
using all the mechanisms presented here.

4.3.1. Security Policy

The security policy describes the behavior that a Java program should exhibit. Each security
policy is composed of a list of entries (an access control list) that define the permissions
associated with Java classes and applications. There is a standard security policy defined for
the whole Java installation, and each user can personalize it extending the ACL in several

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

24

ways, for example, writing a specific file in the personal home directory. The security policy is
represented by a Policy object.

Each entry in the security policy describes a piece of Java code and the permissions that are
granted to it. Each piece of Java code is described by a URL and a list of signatures (represented
in Java by a CodeSource object). The URL can be used to identify both local and remote
code; with a single URL it is also possible to characterize single classes or complete collections
(packages, JAR files, directory trees). The signatures may be applied on the complete URL
or on a single class within a collection. Since URLs may identify collections, it is important
to support implication among CodeSource objects (e.g., http://www.xmlsec.org/classes/
implies http://www.xmlsec.org/classes/xml.jar).

4.3.2. Permissions

Permissions describe the access rights that are granted to pieces of Java code. Each permission
is represented by an instance of the abstract class Permission. Permissions are typically
represented by a target and an action (e.g., file target /tmp/javaAppl/buffer and action
write). There are permissions that are characterized only by the target, with no action
(e.g., target exitVM for the execution of System.exit). The Permission class is specialized
by many concrete classes, which define a hierarchy. Direct descendants of Permission are
FilePermission (used to represent access rights on files), SocketPermission (used to control
access to network ports), AllPermission (used to represent with a single permission the
collection of all permissions) and BasicPermission (typically used as the base class for
permissions with no action).

The current security model considers only positive permissions. The rationale is that
the evaluation is more efficient and the model is clearer for the programmer. However, no
fundamental restriction has been introduced and the model could evolve to support negative
authorizations (in a future version of Java, or in an ad-hoc security mechanism built for a
specific application).

It is also interesting to note that permissions refer to classes and not to instance objects.
A model granting permissions to objects would have offered finer granularity, but it would
have also been more difficult to manage. Specifically, objects exist only at run-time, whereas
the security policy is static and it is not convenient to specify in it permissions at the level of
objects.

To manage sets of permission, the Java model offers class PermissionCollection, that
groups permissions of the same category (e.g., file permissions). Class Permissions represents
collections of PermissionCollection objects, that is, collections of collections of Permission
objects.

4.3.3. Access control

In the Java 2 architecture, permissions are not directly associated with classes. Class
ProtectionDomain realizes the link between classes and permissions. The security policy
specifies permissions for a URL which may correspond to many classes; all the classes refer to

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

25

the same protection domain. There is a predefined system domain that associates permission
AllPermissions to all the classes in the core of the Java architecture.

In Java 2, access control is realized at two levels: SecurityManager and AccessController.
At the higher level, class SecurityManager is responsible for evaluating access restrictions and
is invoked whenever permissions have to be verified. In JDK 1.0 the class was abstract, forcing
each Java implementation to provide its own realization. In Java 2 the class is concrete and a
standard implementation is part of the run-time environment.

The main method of class SecurityManager is checkPermission. In JDK 1.0 the check on
permissions was realized by ad-hoc methods (e.g., to check for read permission on a file, method
checkRead was used). Java 2 maintains all the previous methods for backward compatibility,
but it uses a single method checkPermission for every permission type. This increases the
flexibility of the security model, as the introduction of novel permissions can be managed with
relative ease, without the need to modify the implementation of the SecurityManager.

Method checkPermission determines whether if the permission that appears as first
parameter of the method is granted. If the check is successful, the method returns the control
to the caller, otherwise it generates a security exception.

Method checkPermission in the standard SecurityManager immediately calls method
checkPermission of class AccessController. Class AccessController is a final (i.e.,
unmodifiable) class that represents the security policy that Java 2 supports by default. This
distinction into two levels is motivated by two conflicting requirements, each managed at a
separate level. On the one hand, there is the need for flexibility, for applications that may need
a different security policy; for these applications it would be possible to realize a specialized
implementation of the SecurityManager class, that would then be automatically invoked for
security checks by Java classes (that call the services of the SecurityManager). On the other
hand, applications may prefer to have a guarantee that the security model used is the default
one for Java 2; in this case, applications may opt to refer directly to the services of the
AccessController class.

Access control is evaluated in the execution environment, which is characterized by an array
of ProtectionDomain objects. There may be more than one ProtectionDomain object as Java
classes may invoke the services of classes that belong to different domains. The problem is then
to decide how to consider the permissions of different domains in the execution environment.
The solution used in Java 2 is to consider as applicable permissions only the permissions that
belong to the intersection of all the domains. Consequently, when checkPermission runs, it
considers all the ProtectionDomain objects and if there is at least one domain that has not
been granted the permission being checked, a security exception is generated. The rationale
for this policy is that this is the safest approach, realizing the minimum privilege principle.

There is an exception to the above behavior, which requires the use of method doPrivileged

of class AccessController. Method doPrivileged creates a separate execution environment,
which considers only the permissions of the ProtectionDomain associated with the code itself.
The goal of this method is analogous to that of the setuid mechanism in Linux, where the
privileges of the owner of the code are granted to the user executing it. For instance, a
changePassword method that requires write permission on a password file can be realized
within a doPrivileged method. The advantage of this mechanism with respect to the setuid
mechanism is that in Java it is possible to restrict with a very fine granularity the Java

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

26

statements that have to be executed in a privileged mode, whereas in Linux the privileges of
the owner are available to the executor for the complete run of the program (in contrast to
the least privilege).

Finally, we consider how the security model integrates with the inheritance mechanism
that characterized the Java object model. Two classes where one is a specialization of the
other may belong to distinct domains. When a method of a subclass is invoked, the effective
ProtectionDomain is the one where the method is implemented; if the method is simply
inherited from the superclass, with no redefinition, the domain of the superclass is considered;
if the method is redefined in the subclass, the domain of the subclass is instead used by the
checkPermission method.

5. Conclusions

In this paper we have discussed the basic concepts of access control and illustrated the main
features of the access control services provided by some of the most popular operating systems,
database management systems, and network-based solutions. Hinting at the principles and how
they are (or are not satisfied) by current approaches, the paper can be useful to both those
interested in access control development, who may get an overview of a wide array of solutions
in many different contexts, and to those end users who need to represent their protection
requirements in their systems and, by knowing their strengths and weaknesses, can make a
more proper and secure use of it.

REFERENCES

1. Apache HTTP server version 1.3. http://httpd.apache.org/docs/.
2. P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems - Concepts, Languages and

Architectures. McGraw-Hill, 1999.
3. S.M. Bellovin. Security problems in the tcp/ip protocol suite.

http://www.citi.umich.edu/u/provos/security/ipext.ps.gz.
4. S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison-Wesley, 1995.
5. K. Coar. Using .htaccess files with apache, 2000. http://apache-server.com/tutorials/ATusing-

htaccess.html.
6. Database Language SQL – Parts 1–5. ISO International Standard, ISO/IEC 9075:1999, 1999.
7. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer

Protocol – HTTP/1.1, June 1999. http://www.rfc-editor.org/rfc/rfc2616.txt.
8. L. Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.
9. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for multiple access control

policies. ACM Transactions on Database Systems, 26(2):18–28, June 2001.
10. P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mechanisms. In

R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, LNCS 2171. Springer-
Verlag, 2001.

11. R. Sandhu. Separation of duties in computerized information systems. In Proc. of the IFIP WG11.3
Workshop on Database Security, Halifax, U.K., September 1990.

12. R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control: Towards a unified
standard. In Proc. of the fifth ACM Workshop on Role-based Access Control, pages 47–63, Berlin Germany,
July 2000.

13. R. Sandhu and P. Samarati. CRC Handbook of Computer Science and Engineering, chapter
Authentication, access control and intrusion detection, pages 1929–1948. CRC Press Inc., 1997.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

27

14. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

Copyright c© 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 00:1–7
Prepared using speauth.cls

