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1. INTRODUCTION

Recent years have witnessed considerable work on access control models
and languages. Many approaches have been proposed to increase expressive-
ness and flexibility of authorization languages by supporting multiple policies
within a single framework [Bertino et al. 1999; Hosmer 1992; Jajodia et al. 2001;
Li et al. 1999; Woo and Lam 1993]. All these proposals, while based on powerful
languages able to express different policies, assume a single monolithic speci-
fication of the entire policy. Such an assumption does not fit many real-world
situations, where access control might need to combine independently stated
restrictions that should be enforced as one. As an example, consider a data ware-
house collecting data from different sources, where each data source may impose
access restrictions on its data; access restrictions can be stated in different lan-
guages and with reference to different paradigms. Consider now a large organi-
zation composed of different departments and divisions, each of which can inde-
pendently specify security policies; the global policy of the organization results
from the combination of all these components. Another example is represented
by “dynamic coalition” scenarios where different parties, coming together for a
common goal for a limited time, need to merge their security requirements in a
controlled way while retaining their autonomy. A further example is provided by
recent laws concerning privacy issues. In a modern information system, the se-
curity policy of the organization should combine internally specified constraints
with externally imposed privacy regulations [Banisar and Davies 1999]. Finally,
as security policies become more sophisticated, even within a single system
ruled by one administrator it may be desirable to formulate the policy incremen-
tally by assembling small, manageable, and independently conceived modules.

Existing frameworks represent these situations by translating and merging
the different component policies into a single “program” in the adopted lan-
guage. Although existing languages are flexible enough to obtain the desired
combined behavior, this method has several drawbacks. First, the translation
process is far from being trivial; it must be done very carefully to avoid unde-
sirable side effects due to interference between the component policies. Inter-
ference may result in the combined specifications not correctly reflecting the
intended restrictions. Second, after translation it is no longer possible to op-
erate on the individual components and maintain them autonomously. Third,
existing approaches cannot take into account incomplete policies, where some
components are not (completely) known a priori (e.g., when somebody else is to
provide that component).

This situation calls for a policy composition framework by which different
component policies can be integrated while retaining their independence. In
this article, we propose an algebra for combining security policies with its for-
mal semantics. Complex policies are formulated as expressions of the algebra.
Our framework is flexible and keeps the composition process simple by orga-
nizing compound specifications into different levels of abstraction. The formal
framework can be used to reason about properties of (possibly incomplete) speci-
fications. We illustrate a translation of algebra expressions into equivalent logic
programs, which provide the basis for the implementation of the language. The
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expressive power of the algebra is analyzed from different points of view: by
applying the algebra to some composition scenarios and to the specification of
individual components, and by evaluating the algebra against a list of desider-
ata for composition languages.

To our knowledge ours is the first proposal addressing composition of autho-
rization specifications. Previous work on composition (e.g., Abadi and Lamport
[1992], and Jaeger [1999]) focused on the secure behavior of program mod-
ules. The closest work lies in proposals targeted to the development of a uni-
form framework to express possibly heterogeneous policies [Bertino et al. 1999;
Jajodia et al. 2001; Li et al. 1999; Woo and Lam 1993]. However, as already
discussed, none of these proposals addressed composition. Our work is comple-
mentary to these proposals, which can be used to specify the individual com-
ponent policies in our framework. A preliminary version of our work appeared
in Bonatti et al. [2000]. In this article we extend the work with the expressive-
ness analysis of the algebra and with formal proofs of the correctness of the
translation of the algebra expressions into logic programs.

2. CHARACTERISTICS OF A COMPOSITION FRAMEWORK

A first step in the definition of a framework for composing policies is the identifi-
cation of the characteristics that it should have. In particular, we have identified
the following.

1. Heterogeneous policy support. The composition framework should be able
to combine policies expressed in arbitrary languages and enforced by dif-
ferent mechanisms. For instance, a data warehouse may collect data from
different data sources where the security restrictions autonomously stated
by the sources and associated with the data may be stated with different
specification languages, or refer to different paradigms (e.g., open vs. closed
policy).

2. Support of unknown policies. It should be possible to account for policies
that may be partially unknown, or be specified and enforced in external sys-
tems. These policies are like black boxes for which no (complete) specification
is provided, but which can be queried at access control time. Think, for exam-
ple, of a situation where accesses are subject to a policy P enforcing “central
administration approval.” Although P can respond yes or no to each specific
request, neither the description of P , nor the complete set of accesses that it
allows might be available. Run-time evaluation is therefore the only possible
option for P . In the context of a more complex and complete policy including
P as a component, the specification could be partially compiled, leaving only
P (and its possible consequences) to be evaluated at run-time.

3. Controlled interference. Policies cannot always be combined by simply
merging their specifications (even if they are formulated in the same lan-
guage), as this could have undesired side effects causing the accesses granted
or denied to not correctly reflect the specifications. As a simple example, con-
sider the combination of two systems Pclosed, which applies a closed policy,
based on rules of the form “grant access if (s, o,+a),” and Popen, which applies
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an open policy, based on rules of the form “grant access if ¬(s, o,−a).” Merg-
ing the two specifications would cause the latter decision rule to derive all
authorizations not blocked by Popen, regardless of the contents of Pclosed. Sim-
ilar problems may arise from uncontrolled interaction of the derivation rules
of the two specifications. In addition, if the adopted language is a logic lan-
guage with negation, the merged program might not be stratified (which
may lead to ambiguous or undefined semantics).

4. Expressiveness. The language should be able to conveniently express a wide
range of combinations (spanning from minimum to maximum privileges, en-
compassing priority levels, overriding, confinement, refinement, etc.) in a
uniform language. The different kinds of combinations must be expressed
without changing the input specifications and without ad hoc extensions to
authorizations (such as those introduced to support priorities). For instance,
consider a department policy P1 regulating access to documents and the
central administration policy P2. Assume that access to administrative doc-
uments can be granted only if authorized by both P1 and P2. This requisite
can be expressed in existing approaches only by explicitly extending all the
rules possibly referred to administrative documents to include the additional
conditions specified by P2. Among the drawbacks of this approach is the rule
explosion that it would cause and the complex structure and loss of control
over the two specifications which, in particular, can no longer be maintained
and managed autonomously.

5. Support of different abstraction levels. The composition language should
highlight the different components and their interplay at different levels of
abstraction. This feature is important to: (i) facilitate specification analy-
sis and design; (ii) facilitate cooperative administration and agreement on
global policies; and (iii) support incremental specification by refinement.

6. Formal semantics. The composition language should be declarative, im-
plementation independent, and based on a solid formal framework. An un-
derlying formal framework is needed to: (i) ensure unambiguous behavior
and (ii) reason about policy specifications and prove properties on them
[Landwehr 1981].

3. AN ALGEBRA OF POLICIES

To make our approach generally applicable we do not make any assumption on
the subjects, objects, or actions with respect to which authorization specifica-
tions should be stated.1 In illustrating our approach, we assume reference to
some arbitrary, but fixed, set of subjects S, objects O, and actions A. Depend-
ing on the application context and the policy to be enforced, subjects could be
users or groups thereof, as well as roles or applications; objects could be files,
relations, XML documents, classes, and so on.

1Note that we use the term subject to denote the authorization subjects with respect to which access
specifications are stated. This is not to be confused with subjects representing principals requesting
access as, for instance, in mandatory-based policies [Sandhu 1993].
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3.1 Preliminary Concepts

We start by defining authorization terms as follows.

Definition: Authorization Term . Authorization terms are triples of the form
(s, o, a), where s is a constant in S or a variable over S, o is a constant in O or
a variable over O, and a is a constant in A or a variable over A.

At a semantic level, a policy is defined as a set of ground (i.e., variable-free)
triples.

Definition: Policy . A policy is a set of ground authorization terms.

The triples in a policy P state the accesses permitted by P . Intuitively, a
policy represents the outcome of an authorization specification, where, for com-
position purposes, it is irrelevant how specifications have been stated and their
outcome computed.

The algebra (among other operations) allows policies to be restricted (by pos-
ing constraints on their authorizations) and closed with respect to inference
rules. The model should be compatible with a variety of languages for con-
straining authorizations and formulating rules (e.g., Jajodia et al. [2001],
Li et al. [1999], and Woo and Lam [1993]). For this purpose, we make our algebra
parametric with respect to the following languages and their semantics.

1. An authorization constraint language Lacon and a semantic relation satisfy ⊆
(S × O × A) × Lacon; the latter specifies for each ground authorization term
(s, o, a) and constraint c ∈ Lacon whether (s, o, a) satisfies c.

2. A rule language Lrule and a semantic function closure : ℘(Lrule)× ℘(S×O×
A)→ ℘(S × O × A);2 the latter specifies for each set of rules R and ground
authorizations P which authorizations are derived from P by R.

For simplicity, we consider a single authorization constraint language Lacon
and a single rule language Lrule. Our model can be straightforwardly extended
to handle many such languages simultaneously, so that compound policies can
be assembled using different tools.

To fix ideas and make concrete examples, in this article we adopt the following
simple languages for constraints and rules.

1. Lacon contains constraints that can be modeled as basic predicates with at
most three arguments taken from distinct basic domains (i.e., S, O, and
A).3 These predicates can evaluate properties associated with subjects, ob-
jects, and actions (e.g., membership of an object in a given constant set),
or relationships between elements of different domains (e.g., ownership re-
lationship between objects and subjects). For instance, ternary predicate
has accessed(s, o, a) can be used to evaluate the history of access, binary

2For all sets X , ℘(X ) denotes the powerset of X .
3The reason for requiring the arguments in the predicates to belong to distinct domains (i.e., no
two arguments in the predicate can belong to the same domain) is to limit Lacon to constraints
that apply to individual triples only.
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predicate is owner(s, o) evaluates to true if subject s is the owner of object
o, and unary predicate blacklisted(s) evaluates whether subject s appears in
the list of users who have committed some infractions. A special case of pred-
icates is those representing hierarchical relationships within elements of a
domain. Given the restrictions of not having two arguments from the same
domain, we require one of the terms to be a constant value. These pred-
icates can then be represented by unary predicates of the form (s op s0),
(o op o0), or (a op a0), where (i) s, o, a are variables ranging over S, O, and
A, respectively; (ii) op can be ≤,≥,<,>,=, where inequalities model hierar-
chical relationships among subjects, objects, and actions (e.g., file/directory;
user/group; role/superrole) [Jajodia et al. 2001]; and (iii) s0, o0, a0 are mem-
bers of S, O, and A, respectively. Note that these predicates are unary since
one element in each simple constraint is always a constant.

2. As a rule language we adopt simple Horn clauses, built from authorization
terms and base predicates, of the form (s, o, a)← L1 ∧ . . . ∧ Ln, where each
Li is either an authorization term or a basic predicate p. Here we regard
authorization terms as logical atoms. For example, if a policy contains an
authorization (s1, o1, a1) and we close the policy under the rule (s2, o2, a2)←
(s1, o1, a1), then the resulting policy will contain the derived authorization
(s2, o2, a2). The semantic function closure(R, P ) is defined accordingly as the
least Herbrand model of the logic program 5 = R ∪ P ∪ B, where R is a set
of rules, P is a policy, and B is the definition of the base predicates. We recall
that the least Herbrand model of 5 can be expressed as T5 ↑ ω, where T5
is the immediate consequence operator associated with 5, and T5 ↑ ω is the
limit of the monotonic infinite sequence ∅, T5(∅), T5(T5(∅)), . . . , Ti

5(∅), . . . ,
with i a natural number (see Lloyd [1984] for more details).

These languages have been chosen with the goal of keeping the presentation
as simple as possible, focusing attention on policy composition, rather than
authorization properties and inference rules.

3.2 Policy Expressions

We are now ready to define our algebra. First, its syntax is introduced, then
the meaning of each operator is illustrated. We assume an infinite set of policy
identifiers is given. The policy expression syntax is given by the BNF grammar:

E ::= id | E + E | E&E | E − E | EˆC | o(E, E, E) | E ∗ R | T (E) | (E)
T ::= τ id.E.

Here id is the token type of policy identifiers, E is the nonterminal describing
policy expressions, T is a construct called template that represents partially
specified policies, and C and R are the constructs describing Lacon and Lrule,
respectively (they are not specified here because the algebra is parametric with
respect to Lacon and Lrule). Note that templates are not policy expressions; only
templates with actual parameters are. The above syntax is clarified by assign-
ing suitable precedence and associativity to each operator, as shown in Table I.

We now discuss the semantics of the algebra. Formally, the seman-
tics is a function that maps each policy expression onto a set of ground
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Table I. Operator Precedence and Associativity

op Precedence Associativity
τ 0 nonassociative
. 1 nonassociative
+, &,− 2 left-associative
∗, ˆ 3 left-associative

authorizations (i.e., a policy), and each template onto a function over poli-
cies. The simplest possible expressions, namely, identifiers, are bound to sets of
triples by environments.4

Definition: Environments. An environment e is a partial mapping from pol-
icy identifiers to sets of ground authorizations.

The binding can either be stated explicitly or generated by some engine. The
policy can be seen in such a case as a black box. In symbols, the semantics of
an identifier X with respect to an environment e is denoted by

[[X ]]e
def= e(X ).

For instance, given a policy identifier P and an environment e such that e(P ) =
{(s1, o1, a1), (s2, o2, a2)}, the semantics [[P ]]e of P with respect to e coincides with
the two ground authorizations (s1, o1, a1) and (s2, o2, a2).

Sometimes it is convenient to use a distinguished policy identifier Pall to
denote the set of all authorization triples. Accordingly, in the following, we
restrict our attention to environments such that e(Pall) = S×O× A.

Note that X might be undefined (not specified) in the environment; in that
case [[X ]]e is undefined. Similarly, the semantics of compound expressions that
use undefined identifiers is undefined.5

Compound policies can be obtained by combining policy identifiers through
the algebra operators. Let the metavariables P and Pi range over policy
expressions.

Addition (+). It merges two policies by returning their union. Formally,

[[P1 + P2]]e
def= [[P1]]e ∪ [[P2]]e.

For instance, in an organization composed of different divisions, access to the
main gate can be authorized by any of the administrators of different divisions
(each of them knows which users need access to reach their divisions). The
totality of the accesses through the main gate to be authorized should then
be the union of the statements of each division. Intuitively, additions can be
applied in any situation where accesses can be authorized if allowed by any of
the component policies.

4Note that the following definition makes policy identifiers behave as the identifiers (or names) of
functional languages.
5Undefined identifiers are needed for the correct translation of unknown policies into logic pro-
grams (cf. Figure 3). For semantic analysis and expressiveness issues, however, we focus only on
environments defined over all free identifiers (see the definition of template operator), as all policies
should be defined at access control time.
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Conjunction (&). It merges two policies by returning their intersection.
Formally,

[[P1&P2]]e
def= [[P1]]e ∩ [[P2]]e.

Addition allows an access if any of the component policies allows it, whereas con-
junction requires all the component policies to agree on the fact that the access
should be granted. Intuitively, although addition enforces maximum privilege,
conjunction enforces minimum privilege. For instance, consider an organization
in which divisions share certain documents (e.g., clinical folders of patients).
An access to a document may be allowed only if all the authorities that have
a say on the document agree on it. That is, if the corresponding authorization
triple belongs to the intersection of their policies.

Subtraction (−). It restricts a policy by eliminating all the accesses in a
second policy. The formal definition is

[[P1 − P2]]e
def= [[P1]]e \ [[P2]]e.

Intuitively, subtraction specifies exceptions to statements made by a policy
and encompasses the functionality of negative authorizations in existing ap-
proaches. The advantages of subtraction over explicit denials include a simpli-
fication of the conflict resolution policies and a clearer semantics. In particular,
the difference operation allows us to clearly and unambiguously express the two
different uses of negative authorizations, namely, exceptions to positive state-
ments (authorizations to be negated are removed only from the specific policy
for which they represent exceptions) and explicit prohibitions (authorizations
to be negated are removed as the last operation to produce the global policy),
which are often confused or require explicit ad hoc extensions to authoriza-
tions [Rabitti et al. 1991]. Subtraction can also be used to express different
overriding/conflict resolution criteria as needed in each specific context, with-
out affecting the form of the authorizations (cf. Section 7).

Closure (∗). It closes a policy under a set of inference (derivation) rules. The
general definition is

[[P ∗ R]]e
def= closure(R, [[P ]]e).

Derivation rules can, for example, enforce propagation of authorizations along
hierarchies in the data system, or enforce more general forms of implication,
related to the presence or absence of other authorizations, or depending on
properties of the authorizations [Jajodia et al. 2001]. Intuitively, derivation
rules can be thought of as logic rules whose head is the authorization to be
derived and whose body is the condition under which the authorization can
be derived. The closure of a policy P under a set of rules R produces a policy
containing all the authorizations that can be derived by evaluating R against
P according to a given semantics. Recall that, in the examples of this article,
we assume rules to be Horn clauses. The general definition is thus specialized
to [[P ∗ R]]e = TR∪[[P ]]e∪B ↑ ω, where, as stated in Section 3, B is the definition
of the base predicates.
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Scoping restriction (ˆ). It restricts the application of a policy to a given set
of subjects, objects, and actions. Formally,

[[P ˆc]]ε
def= {(s, o, a)θ | (s, o, a)θ ∈ [[P ]]e, (s, o, a)θ satisfy cθ},

where c ∈ Lacon and θ is a ground substitution for variables s, o, a. Scoping is
particularly useful to “limit” the statements that can be established by a pol-
icy and to enforce authority confinement. Intuitively, all authorizations in the
policy that do not satisfy the scoping restriction are ignored, and therefore inef-
fective. For instance, an organization can attach to a policy Padm, to be specified
by the administration, a scoping restriction that limits the authorizations that
Padm can state to administrative documents, expressed as “o ≤ adm documents”
or, equivalently, “adm document(o).” Similarly, the organization can attach to pol-
icy Plib, to be specified by the librarian, a scoping restriction “a = read” that
limits statements to read-only actions. Scoping restrictions also can be used to
select a portion of a policy, which may be subject to a different treatment than
the rest of P , for example, being overridden as discussed below.

Overriding (o). It replaces part of a policy with a corresponding fragment
of a second policy. The portion to be replaced is specified by means of a third
policy. Formally,

[[o(P1, P2, P3)]]e
def= [[(P1 − P3)+ (P2&P3)]]e.

For instance, consider the case where users of a library who have passed the
due date for returning a book cannot borrow the same book any more unless
the responsible librarian vouches for (authorizes) the loan. The policy can be
expressed as o(Plib, Pvouch, Pblock), where Plib are the accesses authorized at the
library, Pblock is the “black-list” of accesses, and Pvouch are the accesses autho-
rized by the responsible librarian. In addition to being specified explicitly, the
fragment of P1 to be overridden can be specified by means of scoping restrictions
selecting triples in P1 that satisfy a given condition. For instance, consider a
department where access to laboratories is regulated by policy Plab. Suppose
that to be admitted, non-US citizens also need the chair consent, stated by pol-
icy Pchair. In other words, the portion of Plab referring to non-US citizens should
be overridden by its intersection with Pchair. This policy is then specified as
o(Plab, Pchair, Plabˆnon−UScitizen(s)). Note the importance of substituting in the
fragment the intersection of the two policies, meaning both of them must agree
on the access. Cases in which the fragment should simply be substituted with
the second policy can be achieved via difference (or scoping restriction) and ad-
dition. In the following, we abbreviate expression o(P1, P2, P1ˆc) as o(P1, P2, ˆc).

Template (τ ). It defines a partially specified policy that can be completed by
supplying the parameters. Before giving a formal definition of τ , we introduce
notation e[S/X ] to denote a modification of environment e such that

e[S/X ](Y ) =
{

S if Y = X
e(Y ) otherwise.
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For instance, given a policy S = {(s1, o1, a1)}, two policy identifiers X , Y , and an
environment e with e(X ) = {(s2, o2, a2)} and e(Y ) = {(s3, o3, a3)}, the modification
e[S/X ](X ) produces a new environment e such that e(X ) = {(s1, o1, a1)} and
e(Y ) = {(s3, o3, a3)}. The template is defined as follows. Given a policy identifier
X , and a partially specified policy P , [[τX .P ]]e is a function over policies (ground
authorization sets) such that for all policies S,

[[τX .P ]]e(S) def= [[P ]]e[S/X ].

Templates can be instantiated by applying them to a policy expression. For
all policy expressions P1, [[(τX .P )(P1)]]e

def= [[τX .P ]]e([[P1]]e) = [[P ]]e[[[P1]]e/X ].

We say that all the occurrences of X in an expression τX .P are bound. The
free identifiers of a policy expression P are all the identifiers with nonbound
occurrences in P . Clearly, [[P ]]e is defined if and only if all the free identifiers
in P are defined in e.

Templates are useful for representing partially specified policies, where some
component X is to be specified at a later stage. For instance, X might be the
result of further policy refinement, or it might be specified by a different au-
thority. When a specification P1 for X is available, the corresponding global
policy can be simply expressed as (τX .P )(P1). As an example, consider the case
where hospital physicians can access clinical data of patients only if the central
administration of the hospital authorizes the access and some privacy regu-
lations imposed by an external Data Protection Authority are satisfied. The
policy can be expressed as τX .(Phadm&X ), where Phadm are the accesses au-
thorized by the administration of the hospital and X denotes the (unknown)
policy specified by the Data Protection Authority. The subsequent consider-
ation of a specific privacy regulation policy Ppriv will then produce the global
policy τX .(Phadm&X )(Ppriv).

Templates with multiple parameters can be expressed and applied using the
abbreviation:

(τX 1, . . . , X n.P )(P1, . . . , Pn) = τX 1, (τX 2.(. . . (τX n.P )(Pn) . . .)(P2))(P1).

Figure 1 summarizes the operators of our algebra and their semantics and
illustrates two possible graphical representations of algebraic operations. Ba-
sically, each policy is represented as a box containing the policy expression or
the policy identifier. In the first representation, operators are represented as
circles labeled with the operator. In the second representation, operators are
represented as labels associated with arcs. Moreover, closure of a policy P under
rules R is represented as a flag labeled R attached to P ’s box; the application
of a scoping restriction c to a policy P is represented as a small box attached
to P ’s box; and the overriding o(P1, P2, P3) is represented as an arc from P1
to P2, where the arc has attached P3 (for simplicity, when P3 is P1ˆc only an
oval labeled c is attached to the arc). The two representations can be used in-
terchangeably as they better suit for the clarity of the resulting picture. Note
that a graphical representation for the template operator is not needed. The
template defines a partially specified policy, which therefore is stated in terms
of the other operators, for which a graphical representation is given.
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Fig. 1. Operators of the algebra and their graphical representation.

4. EXAMPLE SCENARIOS

We illustrate some examples of expressions stating protection requirements by
composing policy statements through different operators.

4.1 Example 4.1: Hospital

Consider a hospital composed of three departments, namely, Radiology,
Surgery, and Medicine. Each of the departments is responsible for granting
access to data under their (possibly overlapping) authority domains, where
domains are specified by a scoping restriction. The statements made by the
departments are then unioned, meaning the hospital considers an access as
authorized if any of the department policies so states. For privacy regulations,
however, the hospital will not allow any access (even if authorized by the de-
partments) to lab tests data unless there is patient consent for that, stated by
policy Pconsents. In terms of the algebra, the hospital policy can be represented as
o(Pradˆ[o ≤ rad] + Psurgˆ[o ≤ surg] + Pmedˆ[o ≤ med], Pconsents, ˆ[o ≤ lab tests]),
where o ≤ rad, o ≤ surg, o ≤ med, and o ≤ lab tests are special cases of unary
predicates. Accordingly, lab tests data will be released only if both the hospital
authorizes the release and the interested patient consents to it. As an example
of component policies, let us zoom into Pconsents and Pmed.

Pconsents reports accesses to laboratory tests for which there is patient con-
sent. Authorizations in Pconsents are collected by the hospital administration by
means of forms that patients fill in when admitted. Patients’ consents can refer
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to single individuals (e.g., John Doe can individually point out that his daughter
jane.doe can access his tests) as well as to subject classes (e.g., research labs
and hospitals), and can refer to single documents or to classes of them. Autho-
rizations specified for subject/object classes are propagated to individual users
and documents by classical hierarchy-based derivation rules (see Section 7).
Denoting such rules with RH , we can express Pconsents as Pforms ∗ RH .

Policy Pmed of the medical department is composed of the policies of its two
divisions, Cardiology and Oncology, and of a policy Padm specified by the central
administration of the department. The Oncology division can revoke authoriza-
tions in Padm regarding data related to clinic trials, by listing them in P−onc. In ad-
dition, each of the divisions can specify further authorizations (policies P+onc and
Pcard), whose scope is restricted to objects in their respective domains. The med-
ical department’s policy Pmed can be expressed as Padm− P−oncˆ[o ≤ trials]+
P+oncˆ[o ≤ onc]+ Pcardˆ[o ≤ card]. Let us take a closer look at the component pol-
icy P+onc, which consists of two separate policies: Preg, regulating access to the
hospital cancer register; and Ptreats, regulating access to experimental cancer
treatments. In addition, access to experimental cancer treatments can be al-
lowed only if the Cancer Clinical Trials Office (CCTO) has approved testing
the treatments on patients. By representing approvals as policy Pappr , we can
write policy P+onc as Pregˆ[o ≤ reg]+ (Ptreatsˆ[o ≤ treatments]&Pappr).

Figure 2(a) illustrates the global policy regulating access to the hospital data
and the content of the component policies discussed.

4.2 Example 4.2: University Laboratories

Consider a policy regulating access to university laboratories. To use machines,
students must be authorized by both the laboratory tutors and the department
administration. The tutors and the administration can specify authorizations
at different levels of detail. In particular, policy Ptutors, specified by the tutors,
can state permissions on a single-user-single-machine basis, with statements
such as (jim.smith,machine1,login). The department policy can state permis-
sions Pd with reference to groups of students and machines, with statements
such as (cs101,cs-lab,login) which, closed under classical propagation rules
RH implies a permission for all students enrolled in class cs101 to use ma-
chines in the cs-lab. Authorized accesses are defined as a conjunction of the
two policies (intuitively, students should have permission to use the labora-
tory by the department and machine assignment by the tutor). In addition,
access to any laboratory resource is forbidden to students blacklisted for in-
fraction of rules (e.g., honor code); only an explicit permission by the provost
can override such a restriction. The overall policy can thus be expressed as
o(Ptutors&Pdept, Pprovost, ˆ[blacklisted(s)]) whose graphical representation is il-
lustrated in Figure 2(b).

5. PROPERTIES

The formal semantics on which the algebra is based allows us to reason about
policy specifications and their properties, meaning correctness requirements
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Fig. 2. A policy regulating access to (a) hospital data and (b) to the university laboratories.
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that the resulting access control process should satisfy. For instance, consider
the hospital policy above; some examples of correctness statements that need
to be guaranteed may be

1. patient awareness and hospital authorization: no one can access lab tests
data if there are not both the patient consent and the hospital authorization
for it;

2. obedience to explicit denials: if the oncology department has stated that an
access should not be allowed, the access will not be; and

3. law enforcement: no one can access new cancer treatments without the ap-
proval of the CCTO.

These correctness criteria must be satisfied regardless of the contents of the
component policies. For instance, Property 1 above must be satisfied regardless
of which patients gave consents, what accesses the medical department wishes
to permit, or how the hospital policy is formulated. Correctness criteria such
as those above can be easily proved exploiting the set theoretic semantics of
the algebra. Intuitively, the correctness statements establish that given a tem-
plate, whatever the structure or content of the specific policies in it, certain
conditions are satisfied. The proofs use the formal semantics of expressions
to determine whether the conditions will be satisfied. In particular, Proposi-
tions 5.1 through 5.3 ensure us, by a simple analysis on the template, that the
policy in Figure 2(a) satisfies Properties 1, 2, and 3.

PROPOSITION 5.1. Let T = τ (X Y ).o(X , Y , ˆc) be a partially specified policy
(template). For all policy expressions P1 and P2, environments e, and authoriza-
tions (s, o, a) satisfying c, (s, o, a) ∈ [[T (P1, P2)]]e if and only if (s, o, a) ∈ [[P1]]e
and (s, o, a) ∈ [[P2]]e.

PROOF. By definition, [[T (P1, P2)]]e= ([[P1]]e\[[P1ˆc]]e) ∪ ([[P2]]e ∩ [[P1ˆc]]e).
Since (s, o, a) satisfies c (by hypothesis), we have (s, o, a) 6∈ [[P1]]e\[[P1ˆc]]e, either
because (s, o, a) 6∈ [[P1]]e, or because (s, o, a) ∈ [[P1ˆc]]e. It follows that (s, o, a) ∈
T (P1, P2) if and only if (s, o, a) ∈ [[P2]]e ∩ [[P1ˆc]]e; in turn, since (s, o, a) satisfies
c, this is equivalent to saying that (s, o, a) ∈ [[P2]]e and (s, o, a) ∈ [[P1]]e.

PROPOSITION 5.2. Let T = τ (X Y Z W ).(X ˆc1+ (Y − Z ˆc2)+Wˆc3) be a par-
tially specified policy such that c1∧c2 and c2∧c3 are not satisfiable. For all policy
expressions P1, P2, P3, P4, environments e, and authorizations (s, o, a) satisfying
c2, if (s, o, a) ∈ [[P3]]e, then (s, o, a) 6∈ [[T (P1, P2, P3, P4)]]e.

PROOF. By definition, [[T (P1, P2, P3, P4)]]e = [[P1ˆc1]]e ∪ ([[P2]]e\[[P3ˆc2]]e) ∪
[[P4ˆc3]]e. Suppose (s, o, a) satisfies c2. Then, by hypothesis (s, o, a) 6∈ [[P1ˆc1]]e ∪
[[P4ˆc3]]e. Moreover, if (s, o, a) ∈ [[P3]]e, then by definition (s, o, a) 6∈ ([[P2]]e\
[[P3ˆc2]]e). It follows that (s, o, a) 6∈ [[T (P1, P2, P3, P4)]]e.

PROPOSITION 5.3. Let T = τ (X Y Z ).(X ˆc1+ (Y ˆc2&Z )) be a partially
specified policy such that c1 ∧ c2 is not satisfiable. For all policy expressions
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P1, P2, P3, environments e, and authorizations (s, o, a) satisfying c2, (s, o, a) ∈
[[T (P1, P2, P3)]]e only if (s, o, a) ∈ [[P3]]e.

PROOF. By definition [[T (P1, P2, P3)]]e = [[P1ˆc1]]e ∪ ([[P2ˆc2]]e ∩ [[P3]]e). Sup-
pose that (s, o, a) satisfies c2 and (s, o, a) ∈ [[T (P1, P2, P3)]]e. Then, (s, o, a) 6∈
[[P1ˆc1]]e; otherwise (s, o, a) would also satisfy c1 contradicting the hypothesis.
It follows that (s, o, a) ∈ [[P2ˆc2]]e ∩ [[P3]]e ⊆ [[P3]]e.

Note that in the absence of the scoping restriction attached to Preg, it would
not have been possible to prove Proposition 5.3 and therefore Property 3 (which
in fact would not be satisfied), as stated by the following proposition.

PROPOSITION 5.4. Let T = τ (X Y Z ).(X + (Y ˆc&Z )) be a partially specified
policy. There exist policy expressions P1, P2, P3, an environment e, and an autho-
rization (s, o, a) satisfying c such that (s, o, a) ∈ [[T (P1, P2, P3)]]ε and (s, o, a) 6∈
[[P3]]e.

PROOF. Take three distinct policy identifiers P1, P2, and P3, and define
e(P1)={(s, o, a)}, and e(P2)= e(P3)=∅. By definition, [[T (P1, P2, P3)]]e = [[P1]]e ∪
[[P2ˆc&P3]]e ⊇ [[P1]]e = {(s, o, a)}. Then, clearly, (s, o, a) ∈ [[T (P1, P2, P3)]]e and
(s, o, a) 6∈ P3.

In our framework policies can also be analyzed to point out inherent inconsis-
tencies. For instance, a bad formulation of a policy can always cause the result
to be empty, whatever the structure or contents of its components. This is, for
example, the case of a policy of the form τ (X Y ).o(X &Y , X − Y , Y ), as stated
by the following proposition.

PROPOSITION 5.5. Let T = τ (X Y ).o(X &Y , X−Y , Y ) be a partially specified
policy. For all policy expressions P1, P2, and environments e, [[T (P1, P2)]]e is an
empty set.

PROOF. By definition [[T (P1, P2)]]e = (([[P1]]e ∩ [[P2]]e)\[[P2]]e) ∪ (([[P1]]e\
[[P2]]e) ∩ [[P2]]e). First note that ([[P1]]e ∩ [[P2]]e)\[[P2]]e is empty, as no autho-
rization can be in [[P1]]e ∩ [[P2]]e without also being in [[P2]]e. Second, note that
([[P1]]e\[[P2]]e) ∩ [[P2]]e is empty, as no authorization can be in [[P1]]e\[[P2]]e and
[[P2]]e at the same time. The proposition immediately follows.

Note that even though the proofs are straightforward (and this is the beauty
of the framework), properties they allow to be proved are not. As authorization
languages get more expressive and complete, it is not easy to ensure correct-
ness. Think, for example, of recent logic-based authorization languages, where
insertion of a rule or fact can cause an authorization to be derived without
the security administrator being aware of it. Being able to state and prove cor-
rectness requirements in a very simple way is therefore a great advantage. The
simplicity of the correctness statements and proofs is also due to the component-
based view supported by the algebra, which can be exploited to reason at dif-
ferent levels of abstraction, considering only the relevant details. Of course,
the equivalence and containment problems in their most general form are
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co-NP-hard, because they encompass as a special case validity checks for propo-
sitional sentences.

6. EVALUATING POLICY EXPRESSIONS

The resolution of the expression defining a policy P determines a set of ground
authorization terms corresponding to the accesses allowed by P . Different
strategies can be used to evaluate expressions for enforcing access control. A
possible strategy consists of completely resolving the expression (i.e., compiling
the policy) and materializing the result as the set of allowed triples. The mate-
rialization, against which access control can be efficiently evaluated, will only
need to be updated upon changes to the policy.6 An alternative strategy con-
sists of enforcing a run-time evaluation of each request (access triple) against
the policy expression to determine whether the triple belongs to the result (i.e.,
whether the access should be allowed). Although this does not bear any cost
for the complete resolution, it clearly makes the (much more frequent) process
of controlling access requests more expensive. Between these two extremes,
possibly combining the advantages of them, there are partial evaluation ap-
proaches, which can enforce different degrees of computation/materialization.
Partial evaluation is particularly appealing as it can combine the advantages of
the two solutions: relatively static and known policies can be precomputed and
materialized, and more dynamic or unknown policies (like CCTO and Provost
permissions in Section 4) can be evaluated at run-time.

Before describing access control in more detail we illustrate a translation
of algebraic expressions into equivalent logic programs, which are then used
for access control enforcement. The main reason for using a logic-based
approach is that logic programs provide executable specifications compatible
with different evaluation strategies (e.g., Datalog bottom-up engines [Lloyd
1984], Prolog top-down evaluation [Lloyd 1984], XSB delayed evaluation and
tabling [Sagonas et al. 2000], and Hermes [Subrahmanian et al. 1997]). In
particular, partial evaluation techniques permit compilation of the static parts
of the policies, thereby improving efficiency. Formal results on logic programs
guarantee that the partial evaluation steps preserve the program semantics
on the authorization predicates being compiled.

6.1 Translating Algebra Expressions into Logic Programs

We present a translation pe2lp from policy expressions into logic programs.
pe2lp creates a distinct predicate symbol for each policy identifier and for each
internal node in the syntax tree of the given algebraic expression. For this
purpose, a means is needed to denote each operator occurrence (corresponding
to different internal nodes); this is accomplished by labeling each such occur-
rence with a distinct integer, as in P +3 Q&5S −2 R. Formally, such extended
expressions are called labeled policy expressions.

6Incremental approaches can be applied to minimize the recomputation of the policy
[Subrahmanian et al. 1997].
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Fig. 3. Translation pe2lp: from policy expressions to logic programs.

Definition: Canonical Labeling. The canonical labeling of a policy expres-
sion E is the labeled policy expression obtained by numbering the operators in
E from left to right with contiguous integers, starting from 0.

Definition: Main Label. The main label of a labeled policy expression E is
the label of the outermost operator of E, that is, the label of the root of the
syntax tree of E. If E is simply a policy identifier, then the main label of E is
E itself.

For instance, the canonical labeling of P + o(Qˆc, S, R) is P + 0o1(Qˆ2c, S, R).
The main label of this formula is 0. Roughly speaking, the main label of E
corresponds to the last operator evaluated, and hence to the “output” of E.

Translation pe2lp takes a labeled expression and an environment as input,
and returns a logic program “equivalent to” the given expression, in a sense
that is formally specified later. For each policy identifier P , a predicate authP
is defined. For each labeled operator opi, a predicate authi is created. All these
predicates have three arguments, a subject, an object, and an action. The trans-
lation, for an expression E and an environment e, is recursively defined by the
table in Figure 3, where P ranges over policy identifiers, and F , G, and M range
over policy expressions. By mainpF we denote the predicate auth`, where ` is
the main label of F .

Definition: Canonical Translation. The canonical translation of a policy ex-
pression E with respect to an environment e is pe2lp(E`, e), where E` is the
canonical labeling of E.

Example 6.1. Let E = P +o(Q , S, R), and let e0 be the environment map-
ping P to {(s′, o′, a′), (s′′, o′′, a′′)}. Let Q , S, R all be undefined in e0. The canonical
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translation of E with respect to e0 is:

authP (s′, o′, a′)
authP (s′′, o′′, a′′)
auth0(x, y , z)← authP (x, y , z)
auth0(x, y , z)← auth1(x, y , z)
auth1(x, y , z)← authQ (x, y , z) ∧ ¬authR(x, y , z)
auth1(x, y , z)← authS(x, y , z) ∧ authR(x, y , z).

The above translation works correctly if the formal parameters of the tem-
plates occurring in E are all distinct. Formally, we say that E is clash-free if for
all distinct subexpressions τX .P, τY .Q of E, it holds that X 6=Y . Note that
formal parameter names do not affect template semantics, so we can always
rename parameters uniformly to avoid name clashes in the translation process,
and the following proposition holds.

PROPOSITION 6.1. For each expression E there exists a clash-free expression
E ′ such that E and E ′ are equivalent; that is, for all environments e, [[E]]e =
[[E ′]]e.

The following theorem tells us that pe2lp is semantics preserving. The logic
program resulting from the translation must be interpreted according to the
stable model semantics [Gelfond and Lifschitz 1988] (recalled in the appendix),
or any other semantics (such as the well-founded semantics or the perfect model
semantics) equivalent to the stable model semantics on stratified programs (i.e.,
programs that contain no recursion through negation), such as those produced
by the translation. In the following the unique stable model of a stratified pro-
gram P is denoted by sm(P ).

THEOREM 6.1. Let B be a set of ground atoms defining the basic predicates
and operators of Lacon and Lrule. For all clash-free expressions E and all envi-
ronments e defining all free identifiers in E,

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if (t, u, v) ∈ [[E]]e.

In other words, in order to decide whether an authorization triple (t, u, v) is
allowed by E, it suffices to evaluate the goal mainpE (t, u, v) in the program
pe2lp(E`, e) ∪ B. The proof of this theorem, together with some preliminary
concepts and notation, can be found in the appendix.

6.2 Access Control Enforcement

Before illustrating the use of logic programs to enforce access control, we need to
specify how to treat “foreign” policies, that is, policies that may be expressed in
a different language or stored at other sites. For each foreign policy, a wrapper
should be provided [Subrahmanian et al. 1997] that allows our logic programs
to query the policy. This can be done with existing logic-based mediator
techniques. For instance, using a HERMES-like syntax [Subrahmanian et al.
1997], we may implement the link to an external policy P as authP (s, o, a) ←
in((s, o, a), P : grant()). Similarly, if the external policy specifies negative
authorizations, we may write authP− (s, o, a) ← in((s, o, a), P : deny()). In the
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following, for each policy expression E and environment e, we denote by 5E,e
the logic program consisting of the canonical translation pe2lp(E`, e) extended
with the above wrapper rules for each foreign policy P .

We are now ready to discuss access control and related techniques for par-
tial and complete materialization of policy expressions. In the discussion, we
assume a given set of policy identifiers, Poldyn, containing the identifiers of
policies that should not be materialized and the base predicates that cannot be
evaluated at materialization time.

Partial materialization is accomplished by applying standard partial eval-
uation [Sterling and Shapiro 1997] techniques to the logic program 5E,e. We
recall that partial evaluation transforms program rules by iteratively applying
unfolding steps of the form:

(A← B1, . . . , Bn)⇒ (A← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn)θ ,

where H ← C1, . . . , Cm is a program clause whose variables are renamed with
fresh variables, and θ is the most general unifier [Lloyd 1984] of Bi and H.
Certain predicates are not unfolded:

—predicates in(. . . , P : . . .) such that P ∈ Poldyn;
—predicates of the form authP such that P ∈ Poldyn, unless authP is imple-

mented by a wrapper; and
—base predicates in Poldyn.

Eventually, rule bodies contain only predicates of this kind, and partial evalua-
tion terminates. By well-known logic programming results, the following propo-
sition holds ([Sterling and Shapiro 1997]).

PROPOSITION 6.2. Let PartEv(5E,e) be the result of the partial evaluation of
5E,e, and let mainpE be the main predicate of E’s canonical translation. Then,
for all ground authorizations (s, o, a), PartEv (5E,e) |= mainpE (s, o, a) if and
only if 5E,e |=mainpE (s, o, a).

Intuitively, this proposition says that partial evaluation preserves the meaning
of the original logic program. As a corollary of this proposition and Theorem 6.1,
the partially evaluated (or partially materialized7) logic program exactly cap-
tures the meaning of the policy expression E in environment e.

COROLLARY 6.1. For all ground authorizations (s, o, a),PartEv(5E,e) |=mainpE
(s, o, a) if and only if (s, o, a) ∈ [[E]]e.

Example 6.2. Consider the University Laboratory Policy in Figure 2(b). As-
sume that, at materialization time, the policies Ptutors and Pdept are known and
consist of {(s1, o1, a1), . . . , (sn, on, an)} and {(s1, o1, a1), . . . , (sk , ok , ak)} (k > n), re-
spectively; while Pprovost policy and predicate blacklisted are unknown, mean-
ing Poldyn={Pprovost, blacklisted}. The canonical translation of the policy, with
respect to the environment e binding Ptutor and Pdept to the above triples and

7Complete materialization is a special case of partial evaluation, where Poldyn is empty and every
predicate is unfolded.
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leaving policy Pprovost and predicate blacklisted undefined, is:

auth0(x, y , z)← auth1(x, y , z) ∧ ¬auth3(x, y , z)
auth0(x, y , z)← authprovost(x, y , z)∧ auth3(x, y , z)
auth1(x, y , z)← authtutors(x, y , z)∧ authdept(x, y , z)
auth2(x, y , z)← authtutors(x, y , z)∧ authdept(x, y , z)
auth3(x, y , z)← auth2(x, y , z)∧ blacklisted(x)
authtutor(si, oi, ai) (i = 1, . . . , n)
authdept(si, oi, ai) (i = 1, . . . , k).

We extend this program with the wrapper rule

authprovost(x, y , z)← in((x, y , z), Pprovost: grant()).

Then, we partially evaluate this program, obtaining:

auth0(si, oi, ai)← ¬blacklisted(si)
auth0(si, oi, ai)← in((si, oi, ai), Pprovost: grant()) ∧ blacklisted(si)
auth3(si, oi, ai)← blacklisted(si),

where i = 1, . . . , n.
Note that several intermediate predicate calls have been removed from the
partially evaluated (or materialized) program.

7. ELEMENTARY POLICY SPECIFICATION

Our algebra can combine policies stated in different languages and through
different paradigms. The algebra is therefore not substitutive of authorization
languages, but complements them by allowing different specifications to be
merged and combined according to different options. The independence from
and support for the coexistence of different authorization languages and control
mechanisms is a considerable advantage of our approach.

We note, however, that when no other authorization language is being applied
already, the constructs of our algebra also can be used to specify elementary
policies.

In particular, the traditional closed policy can be expressed as a policy “P”
listing the authorization triples corresponding to the accesses to be allowed,
whereas the open policy can be expressed as a policy “Pall− P ,” where Pall is
bound to the set of all possible authorizations and P contains the accesses to
be denied. Authorizations for user groups and data types that propagate to
their members can be simply expressed in our framework through rules that
enforce authorization propagation along the hierarchy. The authorization spec-
ifications, stated with respect to individual elements (e.g., users or documents)
or classes thereof (e.g., user groups or directories), would then be closed by the
set of derivation rules R = {(s, o, a)← (s′, o, a), s ≤ s′, (s, o, a)← (s, o′, a), o ≤ o′,
(s, o, a)← (s, o, a′), a ≤ a′}, where ≤ reflects the order defined on the different
dimensions [Jajodia et al. 2001]. Derivation of authorizations according to cri-
teria other than hierarchical relationships can be enforced in an analogous way.

Recent authorization models support both positive and negative autho-
rizations. Positive authorizations state permissions whereas negative autho-
rizations state denials [Lunt 1989]. The interplay of positive and negative
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authorizations is established by overriding/conflict resolution rules that may
depend on the hierarchical relationships of the authorization elements and/or
on priorities (or types) associated with the authorizations. Although we do not
explicitly support negative authorizations, our framework can indeed express
denials through the subtraction operator (negative authorizations appear as a
policy to be removed). For instance, a specification supporting both permissions
and denials and enforcing a denial takes precedence policy can be represented
by expression “P+−P−” where P+ are the positive authorization terms and P−

are the authorization terms to be negated. Conflict resolution policies based on
the hierarchies of the data system can be supported in an analogous way. As an
example, the most specific takes precedence policy with respect to a hierarchy
is obtained by computing for each node the sum of its positive statements minus
the negative statements for all its descendants, and summing up all the triples
returned for each node. Here, by statements we mean the authorization triples
closed under the propagation rules for the considered hierarchy. Formally, let
i be the different nodes in the hierarchy with respect to which the policy is
stated,8 P+i and P−i the authorization triples corresponding to permissions
and denials referred to i, and RH the hierarchy-based propagation rules.
Then, the most specific takes precedence policy with respect to hierarchy H
is defined as

∑
i∈H (P+i ∗ RH −

∑
j≤i P−j ∗ RH ).9 Alternatively, the most specific

takes precedence principle can be achieved by closing the given authorizations
under suitable propagation rules enforcing the criteria [Jajodia et al. 2001].
As another example, consider the Orion authorization model [Rabitti et al.
1991], where authorizations propagate down the hierarchies and are classified
as strong or weak. Strong authorizations (guaranteed to be free of conflict
among themselves) override weak authorizations. Conflicts between weak
authorizations are solved according to the most specific takes precedence
policy. The overall policy can be stated as “Pweak + P+strong ∗ RH − P−strong ∗ RH ,”
where P+strong and P−strong are the positive and negative strong authorizations,
respectively, RH are the hierarchy-based propagation rules, and Pweak is the
set of triples resulting from applying the most specific takes precedence policy
to weak authorizations as stated above.

Approaches enforcing further overriding criteria, for example, inclusion of
organizational-level versus site-level authorizations [Damiani et al. 2000], or
explicit priorities, such as the order in which authorizations are listed [Shen
and Dewan 1992], can be expressed in a similar way. Intuitively, in the ex-
pressions enforcing authorizations with respect to a given criteria, triples de-
noting permissions appear as policies to be added, and triples denoting de-
nials appear as policies to be subtracted. The order in which policies appear
in the expression determines which policy overrides which. Our framework is

8The hierarchy can be the hierarchy of subjects, objects, or actions or a combination of them [Jajodia
et al. 2001].
9In case of incomparable conflicts, this expression resolves in favor of positive authorizations. A
denial takes precedence principle could be enforced by subtracting from the result the sum of the
nonoverridden negative statements, obtained with the dual expression

∑
i∈H (P−i ∗ RH−

∑
j<i P+j ∗

RH ).
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therefore able to support and combine different approaches existing in the lit-
erature. In this respect, algebraic expressions turn out to be very flexible: a
new dimension/criterion to be taken care of is simply reflected in the introduc-
tion of one (or two, if negative authorizations are supported) operands in the
expression. This also has advantages in terms of clarity and readability of the
specifications.

8. EXPRESSIVENESS ANALYSIS WITH RESPECT TO FIRST-ORDER LOGIC

A policy expression defines a mapping from a set of input policies (the policy
identifiers occurring in the expression) to an output policy (the expression’s
value). It is interesting to investigate which classes of mappings can be ex-
pressed within the composition algebra.

Similar expressiveness analyses have already been carried out for database
query mappings. The first investigations of this kind characterized the relation-
ships between relational expressions and first-order logic (FOL) (cf. Kanellakis
[1990]). In the following a similar expressiveness analysis is carried out for
the policy composition algebra. It turns out that the basic core of our algebra
captures only a strict subset of FOL (whereas the relational calculus is equiv-
alent to it). This is mainly due to the fact that policy expressions operate on a
fixed relation schema (corresponding to authorization triples). An advantage of
this feature is that certain important decision problems are decidable for policy
expressions, as discussed later.

We start by introducing the logical framework. Let Pall, P1, P2, . . . be policy
identifiers, where Pall is bound to the set of all possible authorizations, and let
C1, C2, . . . be unary constraint predicates. Constraint predicates model elemen-
tary properties of authorization triples, such as the scoping restrictions used in
the examples. For instance, some Ci may represent the constraint [o ≤ surg].
Then Ci(x) is satisfied by all authorization triples x whose object field is domi-
nated by surg in the object hierarchy. Similarly, each policy identifier Pi can be
identified with a unary predicate such that Pi(x) holds if and only if the triple
x belongs to policy Pi.

Now, from the basic domains S, O, and A, from the interpretation of constraint
predicates satisfy, and from an environment e, one can obtain interpretation
structures of the form

〈S×O× A, e, satisfy〉
for the monadic10 first-order language L induced by predicates {Pall, P1, P2, . . .}
and {C1, C2, . . .}. More precisely, the truth of closed11 sentences is defined in-
ductively as follows, where t ranges over ground authorization triples, F and G
range over arbitrary closed formulae, and H is a formula with one free variable.

〈S×O× A, e, satisfy〉 |= Pi(t) if and only if t ∈ e(Pi) (1)
〈S×O× A, e, satisfy〉 |= Ci(t) if and only if t satisfy Ci (2)

10A first-order language is monadic if all the predicate symbols are unary.
11A formula is closed if it has no free variables.
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〈S×O× A, e, satisfy〉 |= F ∧ G if and only if 〈S×O× A, e, satisfy〉 |= F and
〈S×O× A, e, satisfy〉 |= G (3)

〈S×O× A, e, satisfy〉 |= F ∨ G if and only if 〈S×O× A, e, satisfy〉 |= F or
〈S×O× A, e, satisfy〉 |= G (4)

〈S×O× A, e, satisfy〉 |= ¬F if and only if 〈S×O× A, e, satisfy〉 6|= F (5)
〈S×O× A, e, satisfy〉 |= ∃x.H if and only if for some t ∈ S×O× A,

〈S×O× A, e, satisfy〉 |= H[t/x],
(6)

where H[t/x] denotes the result of replacing all free occurrences of x with t in
H. Universal quantification (∀) and implication (→) have been omitted as they
can be expressed in terms of the above connectives in the usual way.

Now that the logical framework has been defined, we are ready to formulate
the notion of equivalence between algebra expressions and logical formulae.

Definition: Equivalence. Let E be a policy expression, and F be a formula
in L with one free variable x. We say that E and F are equivalent if and only if
for all environments e defined for all free identifiers of E, and for all relations
satisfy

[[E]]e = {t ∈ S×O× A | 〈S×O× A, e, satisfy〉 |= F [t/x]}.
In other words, E is equivalent to F if all the triples in E satisfy F and vice
versa.

Example 8.1. It is not hard to see that the expression E = P1+ P2 is equiv-
alent to the formula F (x) = P1(x) ∨ P2(x).

We prove the equivalence between policy expressions and the fragment of L
identified by the following definition.

Definition: 0–1 Formulae. A 0–1 formula F is a formula of L such that each
subformula of F (including F itself) has at most one free variable.

Intuitively, the restriction on subformulae is due to the fact that each subex-
pression returns a policy and, moreover, policies have a fixed relation schema
(they may only contain members of S × O × A). When we move to the logical
framework we must ensure a similar property. If a subformula contained two or
more free variables (each corresponding to a triple), then the “output schema”
of the subformula would consist of several triples and would not correspond
to any single policy. We show later that subexpressions without free variables
cause no difficulties.

We almost exclusively investigate the expressive power of closure-free ex-
pressions. The closure operator introduces two parameters, namely, the rule
language and its semantics. In particular, negation as failure has been given
numerous alternative semantics, with significantly different properties. An ex-
tensive expressiveness analysis taking into account such different semantics
lies beyond the scope of the current article—it is more like an issue about ex-
isting rule languages, whereas our main interest here concerns the expressive
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power of the basic core of the algebra. Accordingly, our first result is about
closure-free expressions. They correspond to the quantifier-free, 0–1 fragment
of monadic first-order logic.

THEOREM 8.1. For each closure-free policy expression E there exists an equiv-
alent quantifier-free 0–1 formula F . Conversely, for each quantifier-free 0–1 for-
mula F there exists an equivalent closure-free policy expression E.

PROOF. We first prove—by structural induction—that for each closure-free
and template-free policy expression E there exists an equivalent quantifier-free
0–1 formula F .

Base case: Let E be a policy identifier Pi. Then [[E]]e= e(Pi). Moreover,
from (1), 〈S×O× A, e, satisfy〉 |= Pi(t) if and only if t ∈ e(Pi). It follows im-
mediately that E is equivalent to the 0–1 formula Pi(x).

Induction step: We assume that policy expressions E1, E2, and E3 are equiv-
alent to quantifier-free 0–1 formulas F1, F2, and F3, respectively. Without loss
of generality we assume that the free variable of F1, F2, and F3 is x. Let e be
an arbitrary environment. There are the following possible cases.

—Case 1: E = E1 + E2. We have t ∈ [[E1 + E2]]e if and only if either t ∈ [[E1]]e
or t ∈ [[E2]]e. In turn, by induction hypothesis, this holds if and only if either
〈S×O× A, e, satisfy〉 |= F1[t/x] or 〈S×O× A, e, satisfy〉 |= F2[t/x]. By (4),
this is equivalent to 〈S×O× A, e, satisfy〉 |= F1[t/x] ∨ F2[t/x]. We conclude
that E1 + E2 is equivalent to F1 ∨ F2.

—Case 2, 3: By analogy with the previous case, it can be shown that E1&E2 is
equivalent to F1 ∧ F2, and that E1 − E2 is equivalent to F1 ∧ ¬F2.

—Case 4: E = E1ˆC. By definition, t ∈ [[E1ˆC]]e holds if and only if t ∈ [[E1]]e
and t satisfy C. In turn, by induction hypothesis and (2), this is equivalent
to 〈S×O× A, e, satisfy〉 |= F1[t/x] and 〈S×O× A, e, satisfy〉 |= C(t); that is,
〈S×O× A, e, satisfy〉 |= F1[t/x]∧C(t). We can conclude that E1ˆC is equiva-
lent to F1 ∧ C(x).

—Case 5: E = o(E1, E2, E3). [[o(E1, E2, E3)]]e is defined as [[(E1− E2)+
(E2&E3)]]e. From Cases 2 and 3, it follows that E2&E3 and E1 − E2 are
equivalent to F2 ∧ F3 and F1 ∧ ¬F2, respectively. From Case 1, we can
conclude that o(E1, E2, E3) is equivalent to (F2 ∧ F3) ∨ (F1 ∧ ¬F2).

—Case 6: E = (τX .E ′)(E1). This expression is equivalent to E ′[E1/X ]. By ex-
haustively applying such transformations we can eliminate all templates,
preserving the expression semantics. Then the proof for template-free ex-
pressions applies.

It follows that for all closure-free expressions there exists an equivalent
quantifier-free 0–1 formula.

We are left to prove the opposite implication; that is, for each quantifier-free
0–1 formula F there exists an equivalent closure-free policy expression E. Also
this proof is by structural induction.
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Base case: Pi(x) is equivalent to Pi, whereas a constraint C(x) is equivalent
to PallˆC. The details are left to the reader.

Induction step: We assume that formulas F1 and F2 are equivalent to closure-
free policy expressions E1 and E2, respectively. The cases are as follows.

—Case 1: F = ¬F1. It is easy to see that F is equivalent to Pall − E1.
—Case 2, 3: F1 ∨ F2 is equivalent to E1+ E2, and F1 ∧ F2 is equivalent to

E1&E2, as shown in the first part of the proof.

Capturing quantifiers is not difficult, if we use the closure operator. Fortu-
nately, there is no need to dig into sophisticated rule languages; indeed, one
simple Horn clause interpreted with standard least Herbrand model semantics
is enough. (Most logic programming semantics collapse to standard semantics
on Horn clauses, so the choice of semantics is not an issue in this case.)

THEOREM 8.2. Let R ={(v, y , z)← (v′, y ′, z ′)}, where v, y , z, v′, y ′, and z ′ are
distinct variables. Suppose that for all subexpressions of E of the form E ′ ∗ R ′,
R ′ = R. Then there exists an equivalent 0–1 formula F . Conversely, for each 0–1
formula F with one free variable there exists an equivalent policy expression E
whose subformulae of the form E ′ ∗ R ′ satisfy R ′ = R.

PROOF. (First part) Let E be a policy expression satisfying the hypothesis.
We prove that an equivalent 0–1 formula F exists by structural induction on
E. The base case can be proved as in Theorem 8.1. Similarly, the induction step
can be proved as in Theorem 8.1 whenever E is not of the form E ′ ∗ R. Finally,
assume E = E ′ ∗ R. By definition of R, for all environments e defined over the
free identifiers of E,

[[E]]e =
{

S×O× A if [[E ′]]e 6= ∅,
∅ otherwise.

(7)

By the induction hypothesis there exists a 0–1 formula F ′ equivalent to E ′,
with a unique free variable x. Let F = (P1(x) ∨ ¬P1(x)) ∧ ∃x.F ′. Note that

{t ∈ S×O× A | 〈S×O× A, e, satisfy〉 |= F [t/x]}
=
{

S×O× A if 〈S×O× A, e, satisfy〉 |= ∃x.F ′
∅ otherwise.

(8)

Moreover, since E ′ and F ′ are equivalent,

〈S×O× A, e, satisfy〉 |= ∃x.F ′ if and only if [[E ′]]e 6= ∅.
From this equivalence, (7) and (8), it follows that E and F are equivalent.

(Second part) The proof is by structural induction on logical formulae. We
need a stronger induction hypothesis: we prove simultaneously that

1. for each 0–1 formula F with one free variable there exists an equivalent
policy expression E;

2. for each closed 0–1 formula F there exists a policy expression E such
that for all environments e defined over the free identifiers of E, and for
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all relations satisfy,

〈S×O× A, e, satisfy〉 6|= F if and only if [[E]]e = ∅, (9)
〈S×O× A, e, satisfy〉 |= F if and only if [[E]]e = S×O× A. (10)

Let F be a 0–1 formula. Assume without loss of generality that F contains
only existential quantifiers (as ∀ can be expressed in terms of ∃ and ¬). We
prove 1 first; therefore, assume F has one free variable x. The base case can be
proved as in Theorem 8.1. The induction step can be proved as in Theorem 8.1
whenever the main connective of F is not a quantifier, and each immediate
subformula of F has one free variable. We are left to prove the following cases.

—Case 1: F is ∃ y.F ′[x]. Note that y must be distinct from x (otherwise x would
not be free, violating the assumption). Second, note that y cannot be free in
F ′[x], otherwise F ′[x] would have two free variables, x and y , and F would
not be 0–1, a contradiction. Since y is not free in F ′[x], F is equivalent to
F ′[x]. By the induction hypothesis, there exists a policy expression E equiv-
alent to F ′[x], hence to F .

—Case 2: F is F1[x] ∧ F2 or F2 ∧ F1[x], where F2 is closed and x is the unique
free variable of F1. By the induction hypotheses 1 and 2, there exist two policy
expressions E1 and E2 such that E1 is equivalent to F1, and E2, F2 satisfy
(9) and (10). Let E = E1&E2. We have:

[[E]]e = [[E1]]e ∩ [[E2]]e

= {t ∈ S×O× A | 〈S×O× A, e, satisfy〉 |= F1[t/x]}
∩
{

S×O× A if 〈S×O× A, e, satisfy〉 |= F2

∅ otherwise.
= {t ∈ S×O× A | 〈S×O× A, e, satisfy〉 |= (F1[x] ∧ F2)[t/x]};

that is, E is equivalent to F .
—Case 3: F is F1[x] ∨ F2 or F2 ∨ F1[x], where F2 is closed and x is the unique

free variable of F1. By analogy with the previous case, it can be shown that F
is equivalent to E = E1 + E2, for some E1 and E2 such that E1 is equivalent
to F1, and E2, F2 satisfy (9) and (10).

We are only left to prove induction hypothesis 2. Therefore, assume F is closed.
The following cases are possible.

—Case 1: F is ∃ y.F ′. First assume that y is not free in F ′. Then F is equivalent
to F ′ and hence, by the induction hypothesis, there exists a policy expression
E such that (9) and (10) are satisfied. Now assume y is free in F ′ (since F
is 0–1, y is the only free variable of F ′). By the induction hypothesis there
exists E ′ equivalent to F ′. By definition of equivalence and (6),

[[E ′]]e = ∅ if and only if 〈S×O× A, e, satisfy〉 6|= ∃ y.F ′. (11)

Moreover, [[E ′]]e = ∅ if and only if [[E]]e = [[E ′ ∗ R]]e = ∅. From this and (11)
we obtain (9). Furthermore, [[E]]e = [[E ′ ∗ R]]e 6= ∅ if and only if [[E ′ ∗ R]]e =
S×O× A. From this and (11) we obtain (10). Summarizing, (9) and (10) are
satisfied by E = E ′ ∗ R and F .
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—Case 2: F is F1 ∧ F2. By induction hypotheses 1 and 2, there exist two policy
expressions E1 and E2 such that both E1, F1 and E2, F2 satisfy (9) and (10).
Let E = E1&E2. We have:

[[E]]e = [[E1]]e ∩ [[E2]]e

=
{

S×O× A if 〈S×O× A, e, satisfy〉 |= F1

∅ otherwise,

}
∩{

S×O× A if 〈S×O× A, e, satisfy〉 |= F2

∅ otherwise,

=
{

S×O× A if 〈S×O× A, e, satisfy〉 |= F1 ∧ F2

∅ otherwise,

and hence, E, F satisfy (9) and (10).
—Case 3: F is F1∨ F2. By analogy with the previous case, it can be shown that

F is equivalent to E = E1+ E2, for some E1 and E2 such that E1, F1 and
E2, F2 satisfy (9) and (10).

—Case 4: F is ¬F ′. By analogy with the previous case, it can be shown that
F is equivalent to E = Pall− E ′, for some E ′ such that E ′, F ′ satisfy (9) and
(10).

Summarizing, closure-free policy expressions exactly capture the quantifier-
free 0–1 fragment of monadic first-order logic. Quantifiers can be captured with
the closure operator and one simple rule. Our results have the following inter-
esting consequences.

—From the point of view of formal expressiveness, logical connectives are not
needed within scoping restrictions (i.e., in the constraint language). Com-
plex constraints can be simulated via basic constraints plus other algebra
operators. For example, the logical formula C1(x) ∧ C2(x) can be expressed
in the algebra as (PallˆC1)&(PallˆC2), without resorting to constructs such as
Pallˆ[C1 ∧ C2] (nonetheless they might be appealing as syntactic sugar).

—Deciding whether a monadic logical property is entailed by (the first-order
version of) a policy expression is a decidable problem, as monadic first-order
logic is decidable.

The latter point has interesting consequences on important decision problems,
such as expression containment and expression equivalence. The containment
problem consists of checking whether given two policies E1 and E2, it holds that
[[E1]]e ⊆ [[E2]]e, for all total environments e and all relations satisfy. Checking
containment may be useful to verify that policy refinements and updates do
not open security breaches. These problems are decidable for a large class of
expressions, as proved by the next theorem.

THEOREM 8.3. The containment problem is decidable for policy expressions
satisfying the restriction on closures specified in Theorem 8.2.

PROOF. Let E1 and E2 be two arbitrary policy expressions and let F1(x) and
F2(x) be two logical formulae equivalent to E1 and E2, respectively. Checking
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containment is equivalent to checking that the formula ∀x(F1(x)→ F2(x)) is
valid (the connectives ∀ and→ can be expressed in terms of those dealt with
in the above results). This is a decidable problem, because the above formula is
monadic.

From the notion of containment we obtain a strong form of expression equiva-
lence, according to which two expressions E1 and E2 are strongly equivalent if
and only if E1 is contained in E2 and vice versa.12 Checking the strong equiva-
lence of two policy expressions may be useful for optimization purposes. Clearly,
the following corollary holds.

COROLLARY 8.1. Checking strong equivalence is decidable for policy expres-
sions satisfying the restriction on closures specified in Theorem 8.2.

It is worth noting that the analogous equivalence and containment problems
for the relational algebra are not decidable. The above decidability results open
the way to automated optimization and verification techniques.

9. EVALUATION WITH RESPECT TO THE DESIDERATA

Before concluding, we summarize how our approach addresses the different
requirements discussed in Section 2.

1. Heterogeneous policies can be supported either by exploiting the algebra
constructs to represent the different policies (see Section 7) or by referring to
heterogeneous policies through policy identifiers then interpreted by means
of wrappers (see Section 6.2).

2. Unknown policies are supported by means of policy identifiers that can re-
main unbound in the environment. The translation of expressions into logic
programs and the application of partial evaluation techniques on them al-
low us to delay the evaluation of unknown policies until run-time, without
need of redoing the whole computation, and guarantee the correctness of
the resulting controls (see Section 6.2). Furthermore, templates allow the
expression of partially specified policies in the formal semantics and the
proofs of correctness properties on incomplete specifications (see Section 5).

3. Interference of program rules and authorizations coming from different poli-
cies is controlled by restricting rule application to specific policies by means
of the closure construct.

4. Expressiveness is achieved by the different operators that easily allow the
formulation of protection restrictions as illustrated in the examples and
discussions contained herein.

5. Different abstraction levels are naturally supported by the component-based
approach. Each component may be internally structured in subcomponents
and security administrators can zoom in on the different policies or look at
a higher-level view as desired (see Figure 2). Templates provide a formal

12In Proposition 6.1 we introduced a weaker form of equivalence which holds with respect to a fixed
relation satisfy.
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means of operating on the different levels as one may simply look at the
template (higher abstraction level) or at its actual parameters corresponding
to the contents (zoom in) of the formal parameters.

6. Formal semantics has been provided in Section 3. We have also illustrated
how the algebra semantics can be exploited to reason about properties of
the specifications and not only to implement them. Our algebra is imple-
mentation independent and can be used to design, analyze, and combine
requirements in different systems.

10. CONCLUDING REMARKS

The main contributions of this article can be summarized as follows. First, we
have analyzed the problem of composing security policies in a modular and in-
cremental fashion and identified six desiderata for a policy composition frame-
work. Second, we then proposed an algebra of security policies as a composition
language. Third, we proposed an implementation approach based on logic pro-
gramming and partial evaluation techniques which we formally proved correct.
Fourth, we provided an extensive preliminary analysis of the algebra. The anal-
ysis was based on four different evaluation measures.

—The algebra has been applied to example scenarios as a preliminary usability
test. We have also shown how the algebra can be used to model and reason
about incomplete specifications.

—In Section 7, we have reproduced with the algebra a number of specification
styles (open and closed policies, inheritance, etc.); the algebra should princi-
pally function as glue to combine existing policies, rather than as a tool for
building component policies; however, the absence of directly competing for-
malisms encouraged us to compare the algebra with such traditional tasks
as well.

—It has been checked that the algebra is compatible with the desiderata.
—We have taken the first step toward a formal expressiveness analysis of the

algebra, in the style of query language analysis. The analysis shows that the
composition algebra with restricted closure operators is less powerful than
the relational algebra, since it cannot manipulate multiple relation schemata
(the composition algebra is specialized on authorization triples). An advan-
tage of such specialization is that certain important decision problems (such
as expression containment and equivalence) that are undecidable for query
algebras, are decidable for the composition algebra. This opens the way to
automated policy verification techniques.

Such a composite analysis sets up a basis for a rich assessment methodology
tailored to policy composition frameworks. The methodology may be enriched
with direct comparisons with other approaches, as these appear. Of course,
the expressiveness analysis carried out in this article is not meant to replace
realistic case studies. It should rather be considered as a tool for preliminary
feasibility analysis and fine-grained comparison of different approaches.
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We recall that the influence of different rule languages on the expressiveness
of the algebra has not been investigated in this article. This is an interesting
subject for future work. Further work to be carried out includes the consider-
ation of administrative policies. Here we focused on composition and merging
of component policies, possibly stated by different parties, which could manage
their policies with their own approach for dealing and granting of permissions.
In this sense, our approach could be complemented with any administrative
policy for the specification of the single component policies. There are, however,
interesting administrative-related issues to be addressed at the composition
level, for regulating the authority and interoperation of different parties in-
volved in the specification of the components within a global policy. Other issues
to be investigated include the analysis of incremental approaches to updating
component policies, automated verification techniques to prove properties of the
specifications, and the performance assessment of different partial evaluation
techniques.

APPENDIX

A. PROOF OF THEOREM 6.1

Some preliminary definitions and notation are needed. See Lloyd [1984] and
Gelfond and Lifschitz [1988] for more details. Let Ground(P ) denote the ground
instantiation of program P . When P is a positive (i.e., negation-free) program,
let lm(P ) denote the unique least Herbrand model of P . Recall that

lm(P ) =
⋃
i≥0

Ti
P (∅).

The Gelfond–Lifschitz transformation of P with respect to an Herbrand inter-
pretation I , denoted by P I , is obtained from Ground(P ) by:

—deleting all rules with some negative literals ¬A such that A ∈ I ; and
—deleting all negative literals from the remaining rules.

Then M is a stable model of P if and only if M = lm(P M ).
The stable model of a stratified program (i.e., programs with no recursion

through negation) is unique and coincides with all the canonical models pre-
scribed by the major competing semantics, such as the perfect model semantics
and the well-founded semantics. We denote by sm(P ) the unique stable model
of a stratified program P .

Let P ∪ Q be a stratified program, such that the predicates defined in P do
not occur in Q . Let HU (Q) denote the Herbrand universe of Q (i.e., the set of
ground atoms in the language of Q). Define P [Q] as the program obtained from
Ground(P ) by:

—deleting all rules containing a subgoal A ∈ HU (Q) \ sm(Q);
—deleting all rules containing a subgoal ¬A s.t. A ∈ sm(Q); and
—deleting all subgoals with an atom from HU (Q) from the remaining rules.

Since the predicates defined in P do not occur in Q , HU (Q) is a splitting
set as defined in Lifschitz and Turner [1994]. Moreover, P [Q] is nothing but
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a specialization of the program eHU(Q)(P, MQ ). Then the Splitting Theorem of
Lifschitz and Turner [1994] can be restated and specialized as follows:

LEMMA A.1 (Lifschitz and Turner [1994]). If P ∪ Q is a stratified program
such that the predicates defined in P do not occur in Q , then

sm(P ∪ Q) = sm
(
P [Q]) ∪ sm(Q).

As a consequence of this result we have the following lemma.

LEMMA A.2. Let P ∪ Q ∪ R be a stratified program. Suppose that the predi-
cates defined in P do not occur in Q ∪ R, and that the predicates defined in Q
do not occur in P ∪ R. Then

sm(P ∪ Q ∪ R) = sm(P ∪ R) ∪ sm(Q ∪ R).
PROOF. Note that since the predicates defined in Q do not occur in P we

have that no atom A in Ground(P ) belongs to HU (Q ∪ R) and hence:

P [Q∪R] = P [R].

From this equality and Lemma A.1 derive:

sm(P ∪ Q ∪ R) = sm
(
P [Q∪R]) ∪ sm(Q ∪ R)

= sm
(
P [R]) ∪ sm(Q ∪ R)

= sm
(
P [R]) ∪ sm

(
Q [R]) ∪ sm(R)

= sm(P ∪ R) ∪ sm(Q ∪ R).

THEOREM 6.1. Let B be a set of ground atoms defining the basic predicates
and operators of Lacon and Lrule. For all clash-free expressions E and all envi-
ronments e defining all free identifiers in E,

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if (t, u, v) ∈ [[E]]e.

PROOF. By structural induction on E.

Base case: E = P , where P is a policy identifier. By definition, pe2lp(E`, e) =
{authi(t ′, u′, v′) | (t ′, u′, v′) ∈ e(P )}. This program and B are sets of ground
atoms, so

sm(pe2lp(E`, e) ∪ B) = pe2lp(E`, e) ∪ B.

Moreover, mainpE is authP . It follows that mainpE (t, u, v) ∈ sm(pe2lp(E`, e)∪B)
if and only if (t, u, v) ∈ e(P ) if and only if (t, u, v) ∈ [[P ]]e = [[E]]e.

Induction step: There are several possibilities.

1. E` = F&iG, for some integer i (and mainpE = authi). Let

P = {authi(x, y , z)← mainpF (x, y , z) ∧mainpG(x, y , z)}.
By definition of pe2lp, Lemma A.1, and Lemma A.2,

sm(pe2lp(E`, e) ∪ B) = sm(P ∪ pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)
= sm

(
P [pe2lp(F,e)∪pe2lp(G,e)∪B]) ∪ sm(pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)

= sm
(
P [pe2lp(F,e)∪pe2lp(G,e)∪B]) ∪ sm(pe2lp(F, e) ∪ B)

∪ sm(pe2lp(G, e) ∪ B). (12)
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Note that mainpF occurs only in pe2lp(F, e) and mainpG occurs only in
pe2lp(G, e), therefore (with the help of Lemma A.2),

mainpF (t, u, v) ∈ sm(pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)
if and only if mainpF (t, u, v) ∈ sm(pe2lp(F, e) ∪ B),

mainpG(t, u, v) ∈ sm(pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)
if and only if mainpG(t, u, v) ∈ sm(pe2lp(G, e) ∪ B). (13)

It follows by definition of P [pe2lp(F )∪pe2lp(G)∪B] that

P [pe2lp(F,e)∪pe2lp(G,e)∪B] = {authi(t ′, u′, v′) |
mainpF (t ′, u′, v′) ∈ sm(pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)
and mainpG(t ′, u′, v′) ∈ sm(pe2lp(F, e) ∪ pe2lp(G, e) ∪ B)}

= {authi(t ′, u′, v′) | mainpF (t ′, u′, v′) ∈ sm(pe2lp(F, e) ∪ B)
and mainpG(t ′, u′, v′) ∈ sm(pe2lp(G, e) ∪ B)}. (14)

Now note that authi may not occur in pe2lp(F, e)∪ pe2lp(G, e)∪ B (as labels
are unique), therefore, by (12),

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if
mainpE (t, u, v) ∈ sm

(
P [pe2lp(F,e)∪pe2lp(G,e)∪B]).

Moreover, P [pe2lp(F,e)∪pe2lp(G,e)∪B] is a set of ground atoms and hence it coin-
cides with its unique stable model. It follows from (14) that

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B)
if and only if mainpF (t, u, v) ∈ sm(pe2lp(F, e) ∪ B)
and mainpG(t, u, v) ∈ sm(pe2lp(G, e) ∪ B).

By the induction hypothesis, it follows that

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if (t, u, v)
∈ [[F ]]e ∩ [[G]]e = [[F&G]]e.

2. When E` is F + iG, F − iG or oi(F, G, G ′) the proof is analogous to the pre-
vious case.

3. E`= F ˆic. Let P ={authi(s, o, a)←mainpF (s, o, a)∧c}. By definition of pe2lp
and Lemma A.1,

sm(pe2lp(E`, e) ∪ B) = sm(P ∪ pe2lp(F, e) ∪ B)
= sm

(
P [pe2lp(F,e)∪B]) ∪ sm(pe2lp(F, e) ∪ B). (15)

Since authi does not occur in pe2lp(F, e) ∪ B, (15) entails:

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if
mainpE (t, u, v) ∈ sm

(
P [pe2lp(F,e)∪B]). (16)
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Note that

P [pe2lp(F,e)∪B] = {authi(s, o, a)θ |
mainpF (s, o, a)θ ∈ sm(pe2lp(F, e) ∪ B)
and cθ ∈ sm(pe2lp(F, e) ∪ B)}

= {authi(s, o, a)θ |
mainpF (s, o, a)θ ∈ sm(pe2lp(F, e) ∪ B)
and cθ ∈ B}. (17)

By the induction hypothesis and the definition of B it follows that

P [pe2lp(F,e)∪B] = {authi(s, o, a)θ | (s, o, a)θ ∈ [[F ]]e

and (s, o, a)θ satisfy cθ}. (18)

From (16) and (18) we get

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if (t, u, v) ∈ [[F ˆc]]e.

4. E` = F ∗i R. Let

P = {authi(s, o, a)← authi(s1, o1, a1) ∧ . . . ∧ authi(sn, on, an) ∧ c1 ∧ . . . ∧ cm |
((s, o, a)← (s1, o1, a1) ∧ . . . ∧ (sn, on, an) ∧ c1 ∧ . . . ∧ cm) ∈ R}

∪ {authi(s, o, a)← mainpF (s, o, a)}.
By analogy with the previous case,

mainpE (t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) if and only if
mainpE (t, u, v) ∈ sm

(
P [pe2lp(F,e)∪B]). (19)

Note that by definition of P [pe2lp(F,e)∪B] and by the induction hypothesis,

P [pe2lp(F,e)∪B]

= {(authi(s, o, a)← authi(s1, o1, a1) ∧ . . . ∧ authi(sn, on, an))θ |
((s, o, a)← (s1, o1, a1) ∧ . . . ∧ (sn, on, an) ∧ c1 ∧ . . . ∧ cm)θ ∈ Ground(R)
and {c1, . . . , cm}θ ⊆ B}

∪ {authi(s, o, a)θ | mainpF (s, o, a)θ ∈ sm(pe2lp(F, e) ∪ B)}
= {(authi(s, o, a)← authi(s1, o1, a1) ∧ . . . ∧ authi(sn, on, an))θ |

((s, o, a)← (s1, o1, a1) ∧ . . . ∧ (sn, on, an) ∧ c1 ∧ . . . ∧ cm)θ ∈ Ground(R)
and {c1, . . . , cm}θ ⊆ B}

∪ {authi(s, o, a)θ | (s, o, a)θ ∈ [[F ]]e}.

Then

authi(t, u, v) ∈ sm
(
P [pe2lp(F,e)∪B]) if and only if (t, u, v)∈ lm(P ∪ [[F ]]e ∪ B)

= closure(R, [[F ]]e) = [[F ∗i R]]e.
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5. E` = (τi X .F )(G). Let P = {authX (x, y , z)← mainpG(x, y , z)}. Define

Q = P ∪ pe2lp(G, e) ∪ B
Q ′ = {authX (t, u, v) | (t, u, v) ∈ [[G]]e} ∪ B.

It follows easily from Lemma A.1 that sm(Q) and sm(Q ′) agree on authX and
on all the basic predicates and operators defined by B. As a consequence,
sm(Q) and sm(Q ′) agree on all the predicates in pe2lp(F, e), and hence,

pe2lp(F, e)[Q] = pe2lp(F, e)[Q ′].

It follows that

authi(t, u, v) ∈ sm(pe2lp(E`, e) ∪ B) = sm(pe2lp(F, e) ∪ Q)
if and only if authi(t, u, v) ∈ sm

(
pe2lp(F, e)[Q]) = sm

(
pe2lp(F, e)[Q ′])

if and only if authi(t, u, v) ∈ sm(pe2lp(F, e) ∪ Q ′)
= sm(pe2lp(F, e[X /[[G]]e]) ∪ B) ,

and hence, by induction hypothesis,

authi(t, u, v)∈ sm(E`, e) if and only if (t, u, v)∈ [[F ]]e[X /[[G]]e]

= [[(τi X .F )(G)]]e.
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