
Policy Aware Systems
Some open research issues

Piero A. Bonatti

Università di Napoli Federico II and REWERSE

Pittsburgh, Feb 27, 2006

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 1 / 52



Outline

Outline I

1 Introduction

2 Formulating credential requests

3 Negotiations

4 A first set of open issues

5 Explanations

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 2 / 52



Introduction

Credentials for Open Systems

Digital credentials constitute the main approach to access control for open
systems

Reliable

Unforgeable (cryptographic techniques)
Ownership can be checked (with challenges)
. . .

Scalable

There can be many domain-specific certification authorities...

Privacy-oriented

Can represent properties of individuals
Without necessarily disclosing their identity

Widely adopted in basic tools such as SSL. Researchers are more ambitious

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 3 / 52



Introduction

Scenario

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 4 / 52



Introduction

Scenario

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 4 / 52



Introduction

Scenario

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 4 / 52



Introduction

Scenario: Scalability and usability issues

Similar considerations hold for systems based on

MyProxy, Kerberos, CAS

oriented to “localized” navigation

In the absence of more flexible identification methods:

Web services have to keep accounts for all customers

Users have to create accounts all the time

Articulated business policies are discouraged

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 5 / 52



Introduction

Scenario: Scalability and usability issues

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 6 / 52



Introduction

Scenario: Scalability and usability issues

What one would really want:

Suppose the Amazon card gives you free access to some products

If you have it, you want to use it automatically

click on the purchase button, and that’s it

If you don’t you may want to see something like the next figure

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 7 / 52



Introduction

Scenario: Scalability and usability issues

WARNING
You are about to pay
for paper0123.pdf
using your VISA card

10$

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 8 / 52



Introduction

Ubiquitous Computing Scenarios

Similar desiderata:

Travellers connect to airport lounge services

such as network, printers, content services, ...

using

frequent flier cards

pre-payed cards

credit cards

employee credentials (government, airlines, ...)

...

In a transparent way (well, as much as possible)

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 9 / 52



Formulating credential requests

How to ask for credentials

One by one (e.g. PeerTrust)

slow (more messages)

unnecessary disclosures
after sending off your credit card you realize that you should also send
an id credential that you don’t have

unnecessary messages (even slower)

All the alternatives at once

less messages, less unnecessary disclosures

combinatorial explosion: an id and a credit card becomes
passport and VISA
passport and Mastercard
...
student-card and VISA
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 10 / 52



Formulating credential requests

How to ask for credentials

One by one (e.g. PeerTrust)

slow (more messages)

unnecessary disclosures
after sending off your credit card you realize that you should also send
an id credential that you don’t have

unnecessary messages (even slower)

All the alternatives at once

less messages, less unnecessary disclosures

combinatorial explosion: an id and a credit card becomes
passport and VISA
passport and Mastercard
...
student-card and VISA
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 10 / 52



Formulating credential requests

How to ask for credentials

One by one (e.g. PeerTrust)

slow (more messages)

unnecessary disclosures
after sending off your credit card you realize that you should also send
an id credential that you don’t have

unnecessary messages (even slower)

All the alternatives at once

less messages, less unnecessary disclosures

combinatorial explosion: an id and a credit card becomes
passport and VISA
passport and Mastercard
...
student-card and VISA
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 10 / 52



Formulating credential requests

Send the policy

As a compact but exhaustive request formulation (e.g. Protune)

Informal policy

1 allow purchase if the customer sends an id and a valid credit card or...

2 an id can be a passport, a student-card, ... issued by a recognized CA

3 a valid credit card is issued by VISA or ... and it is not expired

4 ...

The client then searches its portfolio for credentials that - together with
the (formal) policy - entail allow purchase (an abduction problem)

Proposed for the first time in [CCS 2000]

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 11 / 52



Formulating credential requests

Formal policy in Protune

Something similar to:

allow(purchase,Item) ←
id(ID),
credit_card(CC),
ID.name = CC.holder.

...
credit_card(X) ←

credential(X),
accepted_cc(X.issuer).

accepted_cc(’VISA’).
accepted_cc(’Mastercard’).
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 13 / 52



Formulating credential requests

Formal policy in Protune

Something similar to:

allow(purchase,Item) ← (decision predicate)
id(ID),
credit_card(CC),
ID.name = CC.holder.

...
credit_card(X) ←

credential(X),
accepted_cc(X.issuer).

accepted_cc(’VISA’).
accepted_cc(’Mastercard’).
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 13 / 52



Formulating credential requests

Formal policy in Protune

Something similar to:

allow(purchase,Item) ←
id(ID),
credit_card(CC),
ID.name = CC.holder.

...
credit_card(X) ←

credential(X), (provisional predicate)
accepted_cc(X.issuer).

accepted_cc(’VISA’).
accepted_cc(’Mastercard’).
...

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 13 / 52



Formulating credential requests

Formal policy in Protune

Something similar to:

allow(purchase,Item) ←
id(ID),
credit_card(CC),
ID.name = CC.holder.

...
credit_card(X) ←

credential(X),
accepted_cc(X.issuer).

accepted_cc(’VISA’).
accepted_cc(’Mastercard’).
...

Flora-like O.O. syntax
P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 13 / 52



Formulating credential requests

Relationships with Semantic Web

Informal policy

1 allow purchase if the customer sends an id and a valid credit card or...

2 an id can be a passport, a student-card, ... issued by a recognized CA

3 a valid credit card is issued by VISA or ... and it is not expired

4 ...

The definitions of id, valid credit card, recognized CA etc. constitute
a simple ontology

The server shares its ontology with the client

basic shared knowledge: rule semantics and X.509
underlying logic: function-free Horn clauses
complex shared domain ontologies are not a prerequisite
feasible today

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 14 / 52



Negotiations

Privacy policies

Credentials may contain sensitive information

users should not explicitly authorize each disclosure

release policies are needed

that can be treated like access control policies [CCS 2000]

Informal privacy policy

1 allow credit card disclosure if the server joins the Better Business
Bureau program

2 allow student-id disclosure (always)

3 ...

In response to a credential request the client may issue a counter-request

⇒ Trust Negotiation
P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 15 / 52



Negotiations

A negotiation scenario

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 16 / 52



Negotiations

Multi-party negotiations

Third parties may be needed to:

check credit card validity

store credentials

give special permissions

...

Protune metapolicies may be used to specify whom is responsible for what,
e.g.

credential(C).actor:serverXY ← C.type:student_id

means that serverXY is to provide student ids

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 18 / 52



A first set of open issues

Some technical issues

Policy protection

Negotiation length

Negotiation success

Minimizing information disclosure

Provisional policies (actions)

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 19 / 52



A first set of open issues

Policy protection

The policy itself is confidential

it may reveal agreements between companies

it may reveal private information
1 only my best friend can see my pictures
2 my best friends are ...

definition of correct user-password pairs...

Policies have to be protected

by hiding some rules

by sanitizing others

⇒ Policy Filtering (before each disclosure)

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 20 / 52



A first set of open issues

Policy protection in Protune

The sensitivity of policy rules and predicates is declared with suitable
metapolicies:

A rule with name [r ] can be protected by asserting

[r].sensitivity:private

Sensitivity may depend on further conditions, as in

[r].sensitivity:public ← authenticated(User)

In this way, more rules can be disclosed as the level of trust increases
during negotiation

Predicates can be protected in a similar way, e.g.

passwd(User,Pwd).sensitivity:private

Further features are described in REWERSE report I2-D2
P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 22 / 52



A first set of open issues

Sanitizing credential requests

Private rules can be applicable or non-applicable

applicable rules are evaluated

only their results are sent off

non-applicable rules are discarded

rules with a private predicate in the head are private

Private state predicates are blurred

private atoms are replaced with a fresh propositional symbol

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 23 / 52



A first set of open issues

Policy filtering

Filter nonapplicable
and irrelevant rules

Pol

Compile applicable,
nonpublic rules

P1

Partial evaluation of
public rules

P2

Execute
immediate actions

P3

Evaluate
local provisional literals

P4

Blur deferred
state conditions

Filter irrelevant policies
due to blurring

P6

Replace provisional state 
predicates with actions

P7

Anonymize
abbreviation predicates

P8

P5

P9

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 24 / 52



A first set of open issues

Negotiation length

In general, difficult to predict

the server may issue a counter-counter-request, and so on

protected policies are disclosed incrementally

as the other peer sends more credentials

Techniques for estimating max length

Useful bounded protocols

Useful restricted policies

2-step disclosure [CCS 2000]
unilateral policies (the server releases no credentials)
transparent (public) policies
too restrictive in many cases
REWERSE is working on more general cases

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 25 / 52



A first set of open issues

Negotiation success

Negotiations may fail because the peers hide part of their policies

peers do not know how to fulfill the access control conditions

any local conditions that guarantee success? (if the policies allow)

little hope of being able to check global conditions on the policies of
the involved peers

current results: “if such & such disclosure sequence exists then...”

when does it exist?

REWERSE is working at improving these results

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 26 / 52



A first set of open issues

Minimizing information (sensitivity) disclosure

some credentials are more sensitive than others

Safeway’s discount card ≤ student-id ≤ credit card ≤ SSN ...

even if all the policies are published, finding an optimal choice is
computationally hard

precise characterization in the next REWERSE deliverable

in general, when policies are protected no strategies guarantee
optimality

design languages for expressing preferences

study reasonable negotiation strategies

identify useful restricted cases that admit optimal strategies

and efficient algorithms, possibly approximate algorithms
some preliminary results in a forthcoming REWERSE report

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 27 / 52



A first set of open issues

Provisional policies (actions)

Sometimes policies have to execute actions

log a request for audit purposes

activate a workflow (e.g. for manual registration)

...

Credential themselves involve an action

they can be requested and released and verified

In Protune further actions include

declarations (unsigned)

accept a copyright/license agreement
login and password
...

application dependent action

e.g. connect to a URL

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 28 / 52



A first set of open issues

Example of declaration

Traditional authentication:

allow(access_site) ←
declaration(username = N, password = P),
has_passwd(N,P).

Declarations are treated like credentials during negotiation

Declarations are not signed

they are included in the current state without any cryptographic
verification

Declarations can be supplied

automatically, if the client’s policy allows

by filling in a form on a pop-up window

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 30 / 52



A first set of open issues

Metapolicies for actions

Specifying who is in charge of an action

credential(ID).actor:cmu_CA ← ID.type:student_id.
log(Request).actor:self

Specifying application-specific actions

log(_).type:provisional.
log(M).action: ’echo’ + M + ’> log_file’.

Specifying when an action should be executed

log(_).evaluation: immediate.

other values: deferred, concurrent

Plus some extra features (see REWERSE report I2-D2)
P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 32 / 52



A first set of open issues

Interplay with filtering

Filter nonapplicable
and irrelevant rules

Pol

Compile applicable,
nonpublic rules

P1

Partial evaluation of
public rules

P2

Execute
immediate actions

P3

Evaluate
local provisional literals

P4

Blur deferred
state conditions

Filter irrelevant policies
due to blurring

P6

Replace provisional state 
predicates with actions

P7

Anonymize
abbreviation predicates

P8

P5

P9

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 33 / 52



A first set of open issues

Execution module

Inference Engine
N

eg
ot

ia
tio

n 
C

on
tro

lle
r

Execution 
Handler

Action Policies

Metadata
query

Answer

ClientClient

Access Control
Queries

Why Queries

How-to Queries

Policy Set

Decision

Query

Policy Set

Filtered Policies
+ Proof

Annotated Policies
(derived from

last client’s request)

Query

Annotated
Policies

…
..

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 34 / 52



A first set of open issues

Event-Condition-Action rules

Current action semantics is vaguely Prolog-like

when a predicate with actor self and evaluation immediate is
enclosed in the filtered policy, it is evaluated

allow(Usr,Op,Obj) ← log(Usr+Op+Obj), ...

a bit less procedural than Prolog (parallel action execution)

it fits well the abductive nature of negotiation

However many actions would be more naturally specified as ECA rules

“... And by the way, whenever you get a request, log it”

incremental policy formulation style

not clear how to harmonize abductive and ECA semantics

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 36 / 52



Explanations

Explanations

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 37 / 52



Explanations

Users and policies

Common users have little awareness and understanding of security
and privacy policies

applied by their own system and by remote services

this is a major source of security problems

a typical PC with default security settings is violated in < 5min
with a careful setting the same machine resists for weeks

there may be service usability issues

many first-time and occasional users in web and pervasive environments

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 38 / 52



Explanations

Challenges

a tradeoff is needed between protection and functionality

based on user’s needs
generic policies typically won’t work

⇒users should be able to personalize their policies

similar arguments apply to privacy policies and credential release
policies

risks are to be balanced with functionality and value

⇒help users get better understanding of and control on policies

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 39 / 52



Explanations

Strategies

Education and dissemination through mass media

Let users formulate their policies

user-friendly languages
based on simple concepts (no cookies)

Explain policies and decisions

never say (only) no
negative answers should come with explanations and suggestions

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 40 / 52



Explanations

Formulating policies

Graphical languages

so far, not expressive enough [Winslett et al.]

still interesting for part of the specifications e.g. user and object
hierarchies

Controlled natural language

A user can browse directory “internal docs” if he provides a
REWERSE credential

to be translated into Protune rules

REWERSE is extending the Attempto system [Fuchs et al.]

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 41 / 52



Explanations

Automated Explanations - Goals

Rich query set

how-to, why/why-not, what-if

Quality comparable to 2nd generation explanation facilities

remove irrelevant details

high-level object identification

...

With improved failure explanations (why not queries)

handling infinite failures

And low framework instantiation cost

for every new application domain

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 42 / 52



Explanations

Protune’s explanations in a nutshell

a hypertext

nodes corresponds to the entries of tabled LP engines (subgoal calls)
⇒ can explain infinite failure

local and global proof info to improve navigation ease

rules applicable to the current goal
answer substitutions for each of them

intra- and inter-proof info

users can match anticipated proof outcomes with their own
expectations and expand only the interesting parts of the proof

explanations are focussed on what the user can do/should do/should
have done

irrelevant details are omitted using generic heuristics

objects are denoted by means of their attributes (clusters)

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 43 / 52



Explanations

Example: How-to query

to make sure that
it is allowed to download
Resource

nothing needs to be done if
Resource is public

alternatively

please make sure that
for some User
User is authenticated
where for some Subscription
User subscribed Subscription
and
Resource is available for Subscription

alternatively ...

allow(download(Resource)) ←
public(Resource).

allow(download(Resource)) ←
authenticated(User),
has_subscr(User,Subscription),
available(Resource,Subscription).

allow(download(Resource)) ←
authenticated(User),
paid(User,Resource).

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 45 / 52



Explanations

Example: Why-not query

I can’t prove that
it is allowed to download
paper012.pdf because:

Rule [2] is not applicable:
there is no User such that
User is authenticated

and

Rule [3] is not applicable:
there is no User such that
User is authenticated
moreover
there is no User such that
User paid for paper012.pdf

allow(download(Resource)) ←
public(Resource).

allow(download(Resource)) ←
authenticated(User),
has_subscr(User,Subscription),
available(Resource,Subscription).

allow(download(Resource)) ←
authenticated(User),
paid(User,Resource).

Rule [1] removed by filtering

Rule [2] partially omitted

Rule [3] involves 2
user-dependent conditions

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 47 / 52



Explanations

Example: Why-not query

I can’t prove that
it is allowed to download
paper012.pdf because:

Rule [2] is not applicable:

there is no User such that
User is authenticated

and

Rule [3] is not applicable:
there is no User such that
User is authenticated
moreover
there is no User such that
User paid for paper012.pdf

allow(download(Resource)) ←
public(Resource).

allow(download(Resource)) ←
authenticated(User),
has_subscr(User,Subscription),
available(Resource,Subscription).

allow(download(Resource)) ←
authenticated(User),
paid(User,Resource).

Rule [1] removed by filtering

Rule [2] partially omitted

Rule [3] involves 2
user-dependent conditions

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 47 / 52



Explanations

Example: Why-not query

I can’t prove that
it is allowed to download
paper012.pdf because:

Rule [2] is not applicable:
there is no User such that
User is authenticated

and

Rule [3] is not applicable:
there is no User such that
User is authenticated
moreover
there is no User such that
User paid for paper012.pdf

allow(download(Resource)) ←
public(Resource).

allow(download(Resource)) ←
authenticated(User),
has_subscr(User,Subscription),
available(Resource,Subscription).

allow(download(Resource)) ←
authenticated(User),
paid(User,Resource).

Rule [1] removed by filtering

Rule [2] partially omitted

Rule [3] involves 2
user-dependent conditions

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 47 / 52



Explanations

Example: Why-not query

I can’t prove that
it is allowed to download
paper012.pdf because:

Rule [2] is not applicable:
there is no User such that
User is authenticated

and

Rule [3] is not applicable:
there is no User such that
User is authenticated
moreover
there is no User such that
User paid for paper012.pdf

allow(download(Resource)) ←
public(Resource).

allow(download(Resource)) ←
authenticated(User),
has_subscr(User,Subscription),
available(Resource,Subscription).

allow(download(Resource)) ←
authenticated(User),
paid(User,Resource).

Rule [1] removed by filtering

Rule [2] partially omitted

Rule [3] involves 2
user-dependent conditions

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 47 / 52



Explanations

Example: Why-not query

Predicate authenticated/1 depends on valid_id/1 ...

I can’t find any Cred such that
Cred is a valid id because:

Rule [6] is not applicable:
c321 is a credential

with type student-id
and issuer Open University,

student-id is an id
but it is not the case that
Open University is trusted for id

valid_id(Cred) ←
credential(Cred),
Cred.type : T,
Cred.issuer : CA,
isa(T,id),
trusted_for(CA,id).

Here you see an example of a cluster

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 49 / 52



Explanations

Example: Why-not query

Predicate authenticated/1 depends on valid_id/1 ...

I can’t find any Cred such that
Cred is a valid id because:

Rule [6] is not applicable:
c321 is a credential

with type student-id
and issuer Open University,

student-id is an id
but it is not the case that
Open University is trusted for id

valid_id(Cred) ←
credential(Cred),
Cred.type : T,
Cred.issuer : CA,
isa(T,id),
trusted_for(CA,id).

Here you see an example of a cluster

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 49 / 52



Explanations

Architecture

Explanations need not be built on the server:

the “server” sends its filtered policy together with predicate
verbalization rules (and possibly the outcome of local predicates)

authenticated(X).explanation : [X,is,authenticated]
not authenticated(X).explanation : [X,is,not,authenti...

the “client” constructs the tabled explanation structure and verbalizes
the explanations

⇒ the computational cost of explanations can be moved to the clients

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 51 / 52



Explanations

Final observations

Explanations with a reasonable quality can be built with little
instantiation effort

and without overloading the server

we are planning to assist the creation of literal verbalization by means
of the natural language front-end for policy formulation

some experimentation is needed to evaluate and refine the current
heuristics

there is space for improvements...

NB: there are several other interesting TM issues that could not be
discussed in this talk...

Questions?

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 52 / 52



Explanations

Final observations

Explanations with a reasonable quality can be built with little
instantiation effort

and without overloading the server

we are planning to assist the creation of literal verbalization by means
of the natural language front-end for policy formulation

some experimentation is needed to evaluate and refine the current
heuristics

there is space for improvements...

NB: there are several other interesting TM issues that could not be
discussed in this talk...

Questions?

P.A. Bonatti (Univ. di Napoli & REWERSE) Policy Aware Systems Pittsburgh, Feb 27, 2006 52 / 52


	Outline
	Introduction
	Formulating credential requests
	Negotiations
	A first set of open issues
	Explanations

