
1 © Copyright of HeathWallace 2008

Software Security

Case Study:

Java 2 Security

© Copyright of HeathWallace 2008

•  About Us

•  Objectives

•  Introduction

•  Foundations of Java 2 Security

•  Tools and APIs

•  Conclusion

2

Agenda

About Us

3

© Copyright of HeathWallace 2007 4

About HeathWallace

•  Dominant supplier of online services to the FS Industry Globally

•  Extensive experience with High Net Worth segment

•  Right mix of skills and experience to deliver a robust, differentiated
online experience

•  Currently working on projects in Europe, North America, South
America, Asia and the Middle East

© Copyright of HeathWallace 2007 5

Key Facts

•  60 Internet professionals in UK and Hong Kong

•  Journey planning, Research, IA, Design and Build

•  Global strategic online agency for HSBC

•  2006, 2 billion site visits to HSBC web sites

•  27% of all credit cards now opened online

•  Global agency for RBS and GE Money

Objectives

7

© Copyright of HeathWallace 2008

•  Describe in depth the Java 2 Security Architecture

•  Show how to use security tools provided by Java Platform

•  Show how to use the most common APIs to develop
secure applications

8

Objectives

Introduction

9

© Copyright of HeathWallace 2008

•  Developed by Sun Microsystems

•  First public release in mid 90s

•  Simple, robust, object orientated

•  Platform Independent

•  Interpreted

•  Type-safe

•  Garbage Collection

10

The Java Language

© Copyright of HeathWallace 2008 11

Versions of the Java Language [1 of 2]

Java 2

Java 5

Java

Previous versions:

© Copyright of HeathWallace 2008 12

Versions of the Java Language [2 of 2]

Coming soon: Current version:

© Copyright of HeathWallace 2008 13

What’s the difference? [1 of 2]

JDK 1.0 JDK 1.1 JDK 1.2+

“Black and white” model “Shade of grey” model “Fine-grained” model
Trust local code Trust local code Trust local code

Don’t trust remote code Don’t trust remote code Don’t trust remote code
Remote code in sandbox Remote code in sandbox Remote code in sandbox

– local code can be too
Sandbox = limited access

to system resources
Sandbox can be extended

by writing custom code
Sandbox can be extended

using a security policy
Cannot provide remote

code with custom or
additional permissions

Applets can be signed.
Signed code is granted

the same permissions as
local code

Applets can be signed.
Permissions can be fine-
tuned by specifying the

signers of the code.

© Copyright of HeathWallace 2008 14

What’s the difference? [2 of 2]

JDK 1.0 JDK 1.1 JDK 1.2+

Foundations of Java 2 Security

15

© Copyright of HeathWallace 2008

•  Security can be split in two layers:

•  Low-level security [JVM layer]: garbage collection, class file
verification, ...

•  High-level security [Application layer]: sandbox, security policy,
security APIs, ...

•  Provides a solid basis for secure applications.

•  Secure applications can implement security functions
using security APIs [JCE, JSSE, JAAS]

16

Foundations [1 of 2]

© Copyright of HeathWallace 2008 17

Foundations [2 of 2]

Application Layer

JVM Layer

JVM Layer

© Copyright of HeathWallace 2008

•  Java Virtual Machine [JVM]:

•  is responsible for platform independence

•  is an abstract computing machine

•  has an instruction set

•  can manipulate memory at runtime

•  does *not* interpret Java source code, but

•  Interprets Java Bytecodes

•  Java Bytecodes are stored in a class file

19

JVM Layer – Java Virtual Machine

© Copyright of HeathWallace 2008

•  The class file is made of:

•  A “magic” constant: 0XCAFEBABE

•  Major/minor version information

•  Access flags

•  The “constant pool”

•  Information about the current class (name, superclass, ...)

•  Information about the fields and methods in the class

•  Debugging information

20

JVM Layer – Class file structure [1 of 2]

© Copyright of HeathWallace 2008 21

JVM Layer – Class file structure [2 of 2]
public class HelloWorld {
 public static void main(String[] args) {
 String aVariable = "Hello, World";
 System.out.println(aVariable);
 }
}

© Copyright of HeathWallace 2008

1.  Basic checks on the class file structure

2.  Basic checks on the “looks” of:

•  Class references

•  Field references

•  Method references

3.  Bytecode verification

4.  Actual verification of:

•  Class References

•  Field access/modifications and method calls
22

JVM Layer – The Class File Verification [1 of 8]

© Copyright of HeathWallace 2008

1.  Basic checks on the class file structure

a.  First 4 bytes must equal to 0XCAFEBABE

b.  All recognized attributes must have the appropriate
length

c.  The class file can’t be truncated or have extra bytes
at the end

d.  All data in the constant pool must be recognized

23

JVM Layer – The Class File Verification [2 of 8]

Why CAFEBABE?!

1. Need a number to
 uniquely identify the
 class file

2. Better than:

  A FAB CAFE
  A BAD CAFE
  CAFE A FAD
  DEAD CAFE
  CAFE FACE
  ...?

© Copyright of HeathWallace 2008

1.  Basic checks on the class file structure

a.  First 4 bytes must equal to 0XCAFEBABE

b.  All recognized attributes must have the appropriate
length

c.  The class file can’t be truncated or have extra bytes
at the end

d.  All data in the constant pool must be recognized

24

JVM Layer – The Class File Verification [2 of 8]

© Copyright of HeathWallace 2008

2.  Basic checks on the “looks” of:

a.  Class references:

  final classes must not be sub-classed

  Every class must have a super class

b.  Field/method references must have:

  Legal names/classes

  Legal type signature

c.  The constant pool satisfies certain constraints

25

JVM Layer – The Class File Verification [3 of 8]

© Copyright of HeathWallace 2008

3.  Bytecode verification

•  Each instruction is converted into an array

•  The array contains attributes and arguments (if any)
for that instruction

•  A flag indicates whether an instruction needs to be
verified

•  An algorithm is run on each of the instructions

26

JVM Layer – The Class File Verification [4 of 8]

© Copyright of HeathWallace 2008

3.  Bytecode verification

1.  Find an instruction that needs looking at

2.  Emulate the effect of the current instruction on the
stack/registers

•  Check if the elements needed from the registers/stack are
of the right type and that there are enough elements on the
stack

•  Check if there is enough space for new elements to be
placed onto the stack and indicate their type.

•  If registers are modified, indicate those registers contain the
new type(s)

27

JVM Layer – The Class File Verification [5 of 8]

© Copyright of HeathWallace 2008

3.  Bytecode verification

3.  Determine what instruction will follow this one:

A.  The next instruction [if the current instruction is not a goto,
return or throw]

B.  The target of a (un)conditional statement

C.  Exception handler for the current instruction

4.  Merge the stack and registers into each of the
successor instructions

5.  Back to step 1

28

JVM Layer – The Class File Verification [6 of 8]

© Copyright of HeathWallace 2008

4.  Actual verification of:

1.  Class references

1.  Load the class being referred to
(if not already loaded by previous instructions)

2.  Check if the current class can refer to the referred class

2.  Field access/modifications and method calls

1.  Check if the method or field exists in the given class

2.  If it does, check its type

3.  Check if the current method can access the given field/
method

29

JVM Layer – The Class File Verification [7 of 8]

© Copyright of HeathWallace 2008

•  If successfully verified, the instructions will be flagged

•  The JVM will thus not run the verifier on those
instructions again

30

JVM Layer – The Class File Verification [8 of 8]

Application Layer

© Copyright of HeathWallace 2008

•  A class loader loads classes on demand

•  Referred to as “Lazy Loading” [cf. class file verification –
pass 4]

•  Reduces memory usage

•  Improves system response time

•  Enforces type-safety alongside the JVM

32

Application Layer – Class loading [1 of 3]

© Copyright of HeathWallace 2008

•  Instances of class loaders

•  Primordial/bootstrap class loader
[loads java base classes]

•  System class loader
[loads classes in the classpath]

•  Application class loader
[defined by the developer]

33

Application Layer – Class loading [2 of 3]

© Copyright of HeathWallace 2008

•  Class loaders are called by the JVM

•  Class loaders are responsible in defining the classes
they load and providing a namespace

•  Class loaders define classes by loading them and
associating those to a protection domain

34

Application Layer – Class loading [3 of 3]

© Copyright of HeathWallace 2008 35

Application Layer – Protection Domain [1 of 2]

•  A protection domain associates permissions to class
with regards to their location, certificate and principals

•  A protection domain is defined by the security policy

•  Classes that belong to the same protection domain are
loaded by the same class loader

•  Similarly, code coming from the same code source
belong to the same domain

© Copyright of HeathWallace 2008 36

Application Layer – Protection Domain [2 of 2]

•  All Java base classes have a protection domain referred
to as the system domain

•  Any class that does not belong to the system domain
belongs to the application domain

•  The Java Runtime maintains a mapping of classes to
their domains

•  Similarly, class loaders maintain a cache of protection
domains for reuse if classes are loaded from a known
code source

© Copyright of HeathWallace 2008 37

Application Layer – Code Source

•  A code source is simply the URL from where a class is
loaded

•  A code source may contain a certificate if it has been
signed

© Copyright of HeathWallace 2008 38

Application Layer – Security Policy [1 of 2]

•  The security policy defines the protection domain

•  The default security policy is referred to as the system-
wide policy and implements the default policy for the
sandbox

•  Additional policies are user-defined

•  You can have one or more security policies

•  All the references to the security policy (or policies) are
specified in the security property file located in the
installation directory of the JDK (or JRE)

© Copyright of HeathWallace 2008 39

Application Layer – Security Policy [2 of 2]
/* repository for certificates */
keystore "keystore";

/* policy statements */
/* grant any code signed by phil and running from */
/* the URL given below read access to C:\demo.txt */
grant signedBy "Phil", codeBase "http://
www.heathwallace.com/phil" {
 permission java.io.FilePermission "C:/demo.txt",
"read";
 };

/* grant anyone everything (!) */
grant {
 permission java.security.AllPermission;
 };

© Copyright of HeathWallace 2008 40

Application Layer – Security Manager

•  The security manager is the first point of permission
checking if system resource access is needed

•  Still exists for historical reasons

•  All the permission checking are now delegated to the
access controller

© Copyright of HeathWallace 2008 41

Application Layer – Access Controller [1 of 4]

•  The access controller enforces the security policy by
checking whether a piece code has got the required
permission to access system resources

•  The access controller runs a stack walking algorithm
on the caller stack called the execution stack

•  The execution stack keeps track of all caller classes

© Copyright of HeathWallace 2008 42

Application Layer – Access Controller [2 of 4]

•  The algorithm is as follows:
i = m;

 while (i > 0) {

 if (caller i's domain does not have the
permission)
 throw AccessControlException

 else if (caller i is marked as privileged) {
 if (a context was specified in the
call to doPrivileged)

context.checkPermission(permission)
 return;
 }
 i = i - 1; /*next method on stack */
 };

© Copyright of HeathWallace 2008 43

Application Layer – Access Controller [3 of 4]

•  Start with the most recent class that invoked a
checkPermission()

•  If all the classes have the appropriate permissions with
regards to their protection domain, the algorithm returns
“silently”

•  If a class along the stack is marked as privileged, the
algorithm returns

•  Other classes higher in the stack may or may not have
the permissions

© Copyright of HeathWallace 2008 44

Application Layer – Access Controller [4 of 4]

•  Classes marked as privileged do not gain additional
permissions

•  The same privileged classes do not “transfer” those
privileges to “less powerful” methods/classes

Tools and APIs

45

Tools

© Copyright of HeathWallace 2008

•  Command line utility used to

•  Generate private/public key pairs

•  Import/export certificates

•  Key pairs and certificates are stored in a physical
repository referred to as the “keystore”

47

Keytool [1 of 3]

© Copyright of HeathWallace 2008

•  How to

•  Generate a key pair:

•  Exporting certificate from the keystore:

•  Importing certificate to the keystore

48

Keytool [2 of 3]

keytool -genkey –alias <alias> -keystore <keystore> -storepass <password>

keytool -export –alias <alias> -file <certificate_file>

keytool -import –file <certificate_file>

© Copyright of HeathWallace 2008 49

Keytool [3 of 3]

© Copyright of HeathWallace 2008

•  Command line utility used to sign code

1.  Compress the class files using the jar tool

2.  Sign the java archive (*.jar)

50

Jarsigner

© Copyright of HeathWallace 2008

•  GUI to editing security policy

•  Generate private/public key pairs

•  Import/export certificates

•  Key pairs and certificates are stored in a physical
repository referred to as the “keystore”

51

Policytool [1 of 2]

© Copyright of HeathWallace 2008 52

Policytool [2 of 2]

APIs

© Copyright of HeathWallace 2008

•  Integral to the platform since JDK 1.4

•  Previously referred to as the Java Cryptography
Extension (JCE) due to U.S. Regulations on the export
of cryptography

•  Aims to provide developers a crypto API to use without
being concerned with the implementation of algorithms

54

Java Cryptography Architecture [1 of 5]

© Copyright of HeathWallace 2008 55

Java Cryptography Architecture [2 of 5]

Source: Inside Java 2 Platform Security

© Copyright of HeathWallace 2008

•  Engine class: defines a crypto service in an abstract
manner without providing a concrete implementation

•  Service Provider Interface (SPI) provides the crypto
interface to the application via the engine

•  Each engine class has a corresponding SPI which
defines exactly what crypto method a Cryptographic
Service Provider (CSP) must implement

56

Java Cryptography Architecture [3 of 5]

© Copyright of HeathWallace 2008

•  Symmetric Encryption Algorithms

•  DES - default keylength of 56 bits

•  AES

•  RC2, RC4 and RC5

•  IDEA

•  Triple DES – default keylength 112 bits

•  Blowfish – default keylength 56 bits

•  PBEWithMD5AndDES

•  PBEWithHmacSHA1AndDESede

•  DES ede

57

Java Cryptography Architecture [4 of 5]

Modes of encryption:

•  ECB
•  CBC
•  CFB
•  OFB
•  PCBC

Source: OWASP - http://www.owasp.org/index.php/
Using_the_Java_Cryptographic_Extensions

© Copyright of HeathWallace 2008

•  Asymmetric Encryption Algorithms

•  RSA

•  Diffie-Hellman – default keylength 1024 bits

•  Hashing / Message Digest Algorithms

•  MD5 – default size 64 bytes

•  SHA1 – default size 64 bytes

58

Java Cryptography Architecture [5 of 5]

Source: OWASP - http://www.owasp.org/index.php/
Using_the_Java_Cryptographic_Extensions

© Copyright of HeathWallace 2008

•  Java Authorization and Authentication Services (JAAS)
provides user-based access control

•  Thus extends the current code-based policy model

•  It is possible to combine both mechanisms in the
security policy

59

Java Authorization and Authentication Services [1 of 7]

© Copyright of HeathWallace 2008

•  A subject is an entity that wishes to authenticate to a
service

•  A principal is the association between a name and a
subject

•  A subject can have multiple names for different services

•  A subject thus has a set of multiple principals

60

Java Authorization and Authentication Services [2 of 3]

© Copyright of HeathWallace 2008 61

Java Authorization and Authentication Services [3 of 7]

© Copyright of HeathWallace 2008 62

Java Authorization and Authentication Services [3 of]

© Copyright of HeathWallace 2008

•  A login context provides the basic methods to
authenticate a subject

•  The login context uses the configuration file to
determine which login module to use

•  The configuration file can contain multiple login modules

63

Java Authorization and Authentication Services [4 of 7]

© Copyright of HeathWallace 2008

•  The login context performs authentication in two steps

1.  Login context invokes a login module to verify a
subject’s identity

2.  Login context invokes a login module to commit to
the authentication process

•  The login context the subject to its relevant principal

64

Java Authorization and Authentication Services [5 of 7]

© Copyright of HeathWallace 2008

•  The login context performs authentication in two steps

1.  Login context invokes a login module to verify a
subject’s identity

2.  Login context invokes a login module to commit to
the authentication process

•  The login context the subject to its relevant principal

65

Java Authorization and Authentication Services [6 of 7]

© Copyright of HeathWallace 2008

•  Authorization is principal-based not subject-based

•  Thus, permissions are granted to a subject based on the
authenticated principal it contains

66

Java Authorization and Authentication Services [7 of 7]

© Copyright of HeathWallace 2008

•  Provides a set of APIs and implementations for SSL
version 3 and TLS version 1

•  Trust establishment through certificates in keystores

•  Keystore on server side is referred to as “keystore”

•  Keystore on client side is referred to as “truststore”

67

Java Secure Socket Extension

Conclusion

68

© Copyright of HeathWallace 2008

1.  Java is rich-featured platform

2.  Provides secure foundation to building more secure
software

1.  Class file verifier

2.  Protection domain

3.  Code-based access control

4.  Privileged code execution

5.  Security policy

69

Conclusion [1 of 5]

© Copyright of HeathWallace 2008

3.  JVM Layer – Class file verification ensures:

1.  There are no stack overflow or underflow

2.  All register accesses and stores are valid

3.  All bytecode instruction parameters are valid

4.  There is no illegal data conversion

70

Conclusion [2 of 5]

© Copyright of HeathWallace 2008

4.  Application layer

1.  Class loaders define classes and associate them
with a protection domain

2.  The protection domain is comprised of:

•  A code source (URL, certificate)

•  A set of permissions

•  A set of principals

71

Conclusion [3 of 5]

© Copyright of HeathWallace 2008

3.  Protection domain is defined by the security policy

4.  The security policy is enforce by the access
controller

5.  The access controller runs a stack walking algorithm
to determine if classes have the appropriate
permissions

72

Conclusion [4 of 5]

© Copyright of HeathWallace 2008

5.  Provides security packages/libraries for developers to
build security-related applications

1.  JCA to provide crypto functionality

4.  JAAS to provide support for authentication/
authorization

5.  JSSE to provide implementations of SSL/TLS

73

Conclusion [5 of 5]

© Copyright of HeathWallace 2008

1.  Class File Structure

•  http://java.sun.com/docs/books/jvms/second_edition/html/
ClassFile.doc.html

2.  Bytecode verification

•  http://gallium.inria.fr/~xleroy/publi/bytecode-verification-JAR.pdf

74

Resources

© Copyright of HeathWallace 2008

3.  Java 2 Security

•  Inside Java 2 Platform Security, Second Edition – ISBN:
0201787911 or 978-0201787917

•  http://java.sun.com/javase/technologies/security/index.jsp

•  Hacking Exposed - J2EE & Java – ISBN: 0072225653 or
978-0072225655

5.  Practical examples

•  http://java.sun.com/docs/books/tutorial/security/index.html

75

Resources

Thank you!

76

