
Java security
(in a nutshell)

2

Outline

 components of Java
 Java security models
 main components of the Java security architecture

– class loaders
– byte code verification
– the Security Manager

3

Components of Java

 the development environment
– development lifecycle
– Java language features
– class files and bytecode

 the execution environment
– the Java Virtual Machine (JVM)

 interfaces and architectures
– e.g., Java beans, RMI, JDBC, etc.

C
om

po
ne

nt
s

of
 J

av
a

4

Development lifecycle

notes
– Java is a high-level programming language

 source code is English-like (syntax is similar to C)

– Java is compiled and interpreted
• source code is compiled into bytecode (low-level, platform independent code)
• bytecode is interpreted (real machine code produced at run time)

 fast and portable (“write once run anywhere”)

– dynamic linking (no link phase at compile time)
• program consists of class definitions
• each class is compiled into a separate class file
• classes may refer to each other, references are resolved at run-time

Java
source code

Java
bytecode

programmer

compiler

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 D
ev

el
op

m
en

t E
nv

iro
nm

en
t

5

Java language features

 object-oriented
 multi-threaded
 strongly typed
 exception handling
 very similar to C/C++, but cleaner and simpler

– no more struct and union
– no more (stand alone) functions
– no more multiple inheritance
– no more operator overloading
– no more pointers

 garbage collection
– objects no longer in use are removed automatically from memory

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 D
ev

el
op

m
en

t E
nv

iro
nm

en
t

6

Class files

 contain
– magic number (0xCAFEBABE)
– JVM major and minor version
– constant pool

• contains
– constants (e.g., strings) used by this class
– names of classes, fields, and methods that are referred to by this class

• used as a symbol table for linking purposes
• many bytecode instructions take as arguments numbers which are used as

indexes into the constant pool

– class information (e.g., name, super class, access flags, etc.)
– description of interfaces, fields, and methods
– attributes (name of the source file)
– bytecode

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 D
ev

el
op

m
en

t E
nv

iro
nm

en
t

7

The Java Virtual Machine (JVM)

class loader
instance

class file
verifier JIT

primordial
class loader

native method
loader

native method
area

execution
engine

Security
Manager

class
area

heap

operating system

Java code

native code

network

untrusted classes

trusted classes

native methods

local

JVM

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 E
xe

cu
tio

n
E

nv
iro

nm
en

t

8

JVM cont’d

 class loaders
– locate and load classes into the JVM
– primordial class loader

• loads trusted classes (system classes found on the boot class path)
• integral part of the JVM

– class loader instances
• instances of java.net.URLClassLoader (which extends SecureClassLoader)
• load untrusted classes from the local file system or from the network and

passes them to the class file verifier
• application developers can implement their own class loaders

 class file verifier
– checks untrusted class files

• size and structure of the class file
• bytecode integrity (references, illegal operations, …)
• some run-time characteristics (e.g., stack overflow)

– a class is accepted only if it passes the test

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 E
xe

cu
tio

n
E

nv
iro

nm
en

t

9

JVM cont’d

 native method loader
– native methods are needed to access some of the underlying operating

system functions (e.g., graphics and networking features)
– once loaded, native code is stored in the native method area for easy

access

 the heap
– memory used to store objects during execution
– how objects are stored is implementation specific

 execution engine
– a virtual processor that executes bytecode
– has virtual registers, stack, etc.
– performs memory management, thread management, calls to native

methods, etc.

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 E
xe

cu
tio

n
E

nv
iro

nm
en

t

10

JVM cont’d

 Security Manager
– enforces access control at run-time (e.g., prevents applets from reading

or writing to the file system, accessing the network, printing, ...)
– application developers can implement their own Security Manager
– or use the policy based SM implementation provided by the JDK

 JIT – Just In Time compiler
– performance overhead due to interpreting bytecode
– translates bytecode into native code on-the-fly

• works on a method-by-method basis
• the first time a method is called, it is translated into native code and stored

in the class area
• future calls to the same method run the native code

– all this happens after the class has been loaded and verified

C
om

po
ne

nt
s

of
 J

av
a

/ T
he

 E
xe

cu
tio

n
E

nv
iro

nm
en

t

11

Java security models

 the need for Java security
 the sandbox (Java 1.0)
 the concept of trusted code (Java 1.1)
 fine grained access control (Java 2)

Ja
va

 s
ec

ur
ity

 m
od

el
s

12

The need for Java security

 code mobility can be useful (though not indispensable)
– may reduce bandwidth requirements
– improve functionality of web services

 but downloaded executable content is dangerous
– the source may be unknown hence untrusted
– hostile applets may modify or destroy data in your file system
– hostile applets may read private data from your file system
– hostile applets may install other hostile code on your system (e.g.,

virus, back-door, keyboard sniffer, …)
– hostile applets may try to attack someone else from your system

(making you appear as the responsible for the attack)
– hostile applets may use (up) the resources of your system (DoS)
– all this may happen without you knowing about it

Ja
va

 s
ec

ur
ity

 m
od

el
s

13

The sandbox

idea: limit the resources that can be accessed by applets

– introduced in Java 1.0
– local code had unrestricted access to resources
– downloaded code (applet) was restricted to the sandbox

• cannot access the local file system
• cannot access system resources,
• can establish a network connection only with its originating web server

JVM

sandbox

resources

remote code
(applets)

local code

Ja
va

 s
ec

ur
ity

 m
od

el
s

14

The concept of trusted code

idea: applets that originate from a trusted source could be trusted

– introduced in Java 1.1
– applets could be digitally signed
– unsigned applets and applets signed by an untrusted principal were restricted

to the sandbox
– local applications and applets signed by a trusted principal had unrestricted

access to resources

JVM

sandbox

resources

remote code
(applets)

local code

signed and
trusted

unsigned, or
signed and

untrusted

Ja
va

 s
ec

ur
ity

 m
od

el
s

15

Fine grained access control

idea: every code (remote or local) has access to the system resources based on what is
defined in a policy file

– introduced in Java 2
– a protection domain is an association of a code source and the permissions granted
– the code source consists of a URL and an optional signature
– permissions granted to a code source are specified in the policy file

grant CodeBase “http://java.sun.com”, SignedBy “Sun” {
 permission java.io.FilePermission “${user.home}${/}*”, “read, write”;
 permission java.net.SocketPermission “localhost:1024-”, “listen”;};

JVM

resources

local or remote code
(signed or unsigned) class loaders

policy
file

Ja
va

 s
ec

ur
ity

 m
od

el
s

16

The three pillars of Java security

 the Security Manager
 class loaders
 the bytecode verifier

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

17

The Security Manager

 ensures that the permissions specified in the policy file are not
overridden

 implements a checkPermission() method, which
– takes a permission object as parameter, and
– returns a yes or a no (based on the code source and the permissions

granted for that code source in the policy file)

 checkPermission() is called from trusted system classes
– e.g., if you want to open a socket you need to create a Socket object
– the Socket class is a trusted system class that always invokes the

checkPermission() method

 this requires that
– all system resources are accessible only via trusted system classes
– trusted system classes cannot be overwritten (ensured by the class

loading mechanism)

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

18

The Security Manager cont’d

 the JVM allows only one SM to be active at a time
 there is a default SM provided by the JDK
 Java programs (applications, applets, beans, …) can replace

the default SM by their own SM only if they have permission to
do so
– two permissions are needed:

• create an instance of SecurityManager
• set an SM instance as active

– example:
grant CodeBase “…”, SignedBy “…” {

 permission java.lang.RuntimePermission “createSecurityManager”;

 permission java.lang.RuntimePermission “setSecurityManager”;};
– invoking the SecurityManager constructor or the setSecurityManager() method

will call the checkPermissions() method of the current SM and verify if the caller
has the needed permissions

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

19

Class loaders

 separate name spaces
– classes loaded by a class loader instance belong to the same name

space
– since classes with the same name may exist on different Web sites,

different Web sites are handled by different instances of the applet class
loader

– a class in one name space cannot access a class in another name space

 classes from different Web sites cannot access each other

 establish the protection domain (set of permissions) for a
loaded class

 enforce a search order that prevents trusted system classes
from being replaced by classes from less trusted sources
– see next two slide …

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

20

Class loading process

when a class is referenced
 JVM: invokes the class loader associated with the requesting program
 class loader: has the class already been loaded?

– yes:
• does the program have permission to access the class?

– yes: return object reference
– no: security exception

– no:
• does the program have permission to create the requested class?

– yes:
» first delegate loading task to parent
» if parent returns success, then return (class is loaded)
» if parent returned failure, then load class and return

– no: security exception

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

21

Class loading task delegation

primordial class loader
(searches on

the boot class path)

a class loader instance
started at JVM startup

(searches on
the class path)

a class loader instance
associated with a URL
(searches on the site
specified by the URL)

class request
1

2

3

loads class from
boot class path

4a

failure4b

loads class from
class path

5a

success / failure5b

loads class from URL
6

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

22

Byte code verifier

 performs static analysis of the bytecode
– syntactic analysis

• all arguments to flow control instructions must cause branches to the start
of a valid instruction

• all references to local variables must be legal
• all references to the constant pool must be to an entry of appropriate type
• all opcodes must have the correct number of arguments
• exception handlers must start at the beginning of a valid instruction
• …

– data flow analysis
• attempts to reconstruct the behavior of the code at run time without

actually running the code
• keeps track only of types not the actual values in the stack and in local

variables
– it is theoretically impossible to identify all problems that may occur at

run time with static analysis

C
om

po
ne

nt
s

of
 th

e
Ja

va
 s

ec
ur

ity
 a

rc
hi

te
ct

ur
e

23

Comparison with ActiveX

 ActiveX controls contain native code
 security is based on the concept of trusted code

– ActiveX controls are signed
– if signer is trusted, then the control is trusted too
– once trusted, the control has full access to resources

 not suitable to run untrusted code
– no sandbox mechanism

