Java security
(in a nutshell)




Outline

= components of Java
= Java security models

* main components of the Java security architecture
— class loaders
— byte code verification
— the Security Manager




Components of Java

" the development environment
— development lifecycle
— Java language features
— class files and bytecode

= the execution environment
— the Java Virtual Machine (JVM)

" interfaces and architectures
- e.g., Java beans, RMI, JDBC, etc.

©
>
(©
-
Y
@)
(7]
-+
C
)
C
@)
o
&
@)
@)




Development lifecycle

Y
R Java R compiler R Java
source code P bytecode
programmer

notes

— Javais a high-level programming language
—> source code is English-like (syntax is similar to C)

— Java is compiled and interpreted
* source code is compiled into bytecode (low-level, platform independent code)
* bytecode is interpreted (real machine code produced at run time)
—> fast and portable (“write once run anywhere”)

— dynamic linking (no link phase at compile time)
* program consists of class definitions
* each class is compiled into a separate class file
* classes may refer to each other, references are resolved at run-time

-
C
o
S
C
o

=
>
C

L

-
C
o
&
o

9
o
>
O

()
o

e

I_

~~
)
>
©

-

Y
o
(72}

-
C
()
C
o
o
&
O

@)




Java language features

= object-oriented

" multi-threaded

= strongly typed

= exception handling

= very similar to C/C++, but cleaner and simpler
— no more struct and union
— no more (stand alone) functions
— no more multiple inheritance

— no more operator overloading
— no more pointers

= garbage collection
— objects no longer in use are removed automatically from memory

-
C
o
S
C
o

=
>
C

L

-
C
o
&
o

9
o
>
O

()
o

e

I_

~~
)
>
©

-

Y
o
(72}

-
C
()
C
o
o
&
O

@)




Class files

= contain
— magic number (OxCAFEBABE)
— JVM major and minor version

— constant pool

* contains
— constants (e.g., strings) used by this class
— names of classes, fields, and methods that are referred to by this class

* used as a symbol table for linking purposes

* many bytecode instructions take as arguments numbers which are used as
indexes into the constant pool

— class information (e.g., name, super class, access flags, etc.)
— description of interfaces, fields, and methods

— attributes (name of the source file)

— bytecode

-
C
o
S
C
o

=
>
C

L

-
C
o
&
o

9
o
>
O

()
o

e

I_

~~
)
>
©

-

Y
o
(72}

-
C
()
C
o
o
&
O

@)




The Java Virtual Machine (JVM)

JVM
T
&) | class loader class file heap y . JIT
g network instance »  verifier >
o class 0
> area
C : . :
LL / local \ primordial > «» €execution
c " class loader engine
i®) untrusted classes
- A
> v
o trusted classes _ : _
2 native method native method Security
LL native methods > loader > area Manager
)
_C K / A
|_
- A 4 A 4
©
> :
© operating system
1
Y
@)
N
e
C :
O native code
C
8_ Java code
&
8




JVM cont’d

= class loaders
— locate and load classes into the JVM
— primordial class loader
* loads trusted classes (system classes found on the boot class path)
* integral part of the JVM
— class loader instances

* instances of java.net.URLClassLoader (which extends SecureClassLoader)

* load untrusted classes from the local file system or from the network and
passes them to the class file verifier

* application developers can implement their own class loaders

= class file verifier

— checks untrusted class files
* size and structure of the class file
* bytecode integrity (references, illegal operations, ...)
* some run-time characteristics (e.g., stack overflow)

— aclass is accepted only if it passes the test

g
(-
)
S
C
@)

=
>
(-

L
(-

O

e
)
@)
O
X

L
)

L

|_

S
©
>
()

-

Y
@)
(2]

-
(-
()
(-
@)
(OR
&
@)

@)




JVM cont’d

= native method loader

— native methods are needed to access some of the underlying operating
system functions (e.g., graphics and networking features)

— once loaded, native code is stored in the native method area for easy
access
" the heap
— memory used to store objects during execution
— how objects are stored is implementation specific

= execution engine
— avirtual processor that executes bytecode
— has virtual registers, stack, etc.

— performs memory management, thread management, calls to native
methods, etc.

-
(-
)
S
C
@)

=
>
c

L
C

O

—
>
@)
O
X

L
)

L

I_

S
©
>
()

-

Y
@)
(2]

—-—
C
()
C
@)
(OR
&
@)

@)




JVM cont’d

= Security Manager

— enforces access control at run-time (e.g., prevents applets from reading
or writing to the file system, accessing the network, printing, ...)

— application developers can implement their own Security Manager
— or use the policy based SM implementation provided by the JDK

= JIT - Just In Time compiler
— performance overhead due to interpreting bytecode

— translates bytecode into native code on-the-fly
* works on a method-by-method basis

* the first time a method is called, it is translated into native code and stored
in the class area

* future calls to the same method run the native code
— all this happens after the class has been loaded and verified

g
(-
)
S
C
@)

=
>
(-

L
(-

O

e
)
@)
O
X

L
)

L

|_

S
©
>
()

-

Y
@)
(2]

-
(-
()
(-
@)
(OR
&
@)

@)




Java security models

= the need for Java security

= the sandbox (Java 1.0)

= the concept of trusted code (Java 1.1)
= fine grained access control (Java 2)

0
)
©
)
S
=>
-
-
)
O
O
7))
©
>
(©
)




The need for Java security

= code mobility can be useful (though not indispensable)
— may reduce bandwidth requirements
— improve functionality of web services

= but downloaded executable content is dangerous
— the source may be unknown hence untrusted
— hostile applets may modify or destroy data in your file system
— hostile applets may read private data from your file system

— hostile applets may install other hostile code on your system (e.g.,
virus, back-door, keyboard sniffer, ...)

— hostile applets may try to attack someone else from your system
(making you appear as the responsible for the attack)

— hostile applets may use (up) the resources of your system (DoS)
— all this may happen without you knowing about it

0
)
©
)
S
=>
-
-
)
O
O
7))
©
>
(©
-




The sandbox

idea: limit the resources that can be accessed by applets

JVM

local code —— sandbox

remote code .
(applets) ‘.:..

resources

— introduced in Java 1.0

— local code had unrestricted access to resources

— downloaded code (applet) was restricted to the sandbox
* cannot access the local file system

* cannot access system resources,
* can establish a network connection only with its originating web server

0
)
©
)
S
=>
-
-
)
O
O
7))
©
>
(©
-




The concept of trusted code

idea: applets that originate from a trusted source could be trusted

9 JVM
local code ——» .
=

[signed and sandbox‘

remote code trusted
(applets) unsigned, or ‘,..'

signed and -
untrusted

resources

— introduced in Java 1.1
— applets could be digitally signed

— unsigned applets and applets signed by an untrusted principal were restricted
to the sandbox

— local applications and applets signed by a trusted principal had unrestricted
access to resources n

0
)
©
)
S
=>
-
-
)
O
O
7))
©
>
(©
-




Fine grained access control

idea: every code (remote or local) has access to the system resources based on what is
defined in a policy file

JVM
| )
local or remote code -
i : » class loaders
(signed or unsigned)
— ® -
i L\
policy [ |~
file
resources

— introduced in Java 2
— a protection domain is an association of a code source and the permissions granted
— the code source consists of a URL and an optional signature
— permissions granted to a code source are specified in the policy file
grant CodeBase “http://java.sun.com”, SignedBy “Sun” {
permission java.io.FilePermission “${user.home}${/}*”, “read, write”;
permission java.net.SocketPermission “localhost:1024-”, “listen”;}; n

0
)
©
)
S
=>
-
-
)
O
O
7))
©
>
(©
-




The three pillars of Java security

= the Security Manager
= class loaders
* the bytecode verifier

()
S
>
g
@)
)
5=
e
(®)
| S
©
>
e
-
-
®)
O
7))
©
>
(©
-
()
e
—
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




The Security Manager

= ensures that the permissions specified in the policy file are not
overridden

* implements a checkPermission() method, which
— takes a permission object as parameter, and
— returns a yes or a no (based on the code source and the permissions
granted for that code source in the policy file)
= checkPermission() is called from trusted system classes
- e.g., if you want to open a socket you need to create a Socket object
— the Socket class is a trusted system class that always invokes the
checkPermission() method
" this requires that
— all system resources are accessible only via trusted system classes

— trusted system classes cannot be overwritten (ensured by the class
loading mechanism)

()
| -
>
-
@)
)
5=
e
(®)
| -
©
>
e
-
-
&)
O
7))
©
>
(©
)
()
e
-
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




The Security Manager cont’d

= the JVM allows only one SM to be active at a time
= there is a default SM provided by the JDK

= Java programs (applications, applets, beans, ...) can replace
the default SM by their own SM only if they have permission to
do so

— two permissions are needed:
* create an instance of SecurityManager
* set an SM instance as active

— example:
grant CodeBase “...”, SignedBy “...” {
permission java.lang.RuntimePermission “createSecurityManager”;
permission java.lang.RuntimePermission “setSecurityManager”;};

— invoking the SecurityManager constructor or the setSecurityManager() method
will call the checkPermissions() method of the current SM and verify if the caller
has the needed permissions

()
S
>
g
@)
)
5=
e
(®)
| S
©
>
e
-
-
&)
O
7))
©
>
(©
-
()
e
—
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




Class loaders

= separate name spaces

— classes loaded by a class loader instance belong to the same name
space

— since classes with the same name may exist on different Web sites,
different Web sites are handled by different instances of the applet class
loader

— aclass in one name space cannot access a class in another name space
—> classes from different Web sites cannot access each other

= establish the protection domain (set of permissions) for a
loaded class

= enforce a search order that prevents trusted system classes
from being replaced by classes from less trusted sources
— see next two slide ...

()
S
>
g
@)
)
5=
e
(®)
| S
©
>
e
-
-
&)
O
7))
©
>
(©
-
()
e
—
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




Class loading process

when a class is referenced
= JVM: invokes the class loader associated with the requesting program
= class loader: has the class already been loaded?
— yes:
* does the program have permission to access the class?
— yes: return object reference
— no: security exception
- no:
* does the program have permission to create the requested class?
— yes:
» first delegate loading task to parent
» if parent returns success, then return (class is loaded)
» if parent returned failure, then load class and return
— no: security exception

()
| -
>
-
@)
)
5=
e
(®)
| -
©
>
e
-
-
®)
O
7))
©
>
(©
)
()
e
-
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




()
S
>
g
@)
)
5=
e
(®)
| S
©
>
e
-
-
&)
O
7))
©
>
(©
-
()
e
—
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)

Class loading task delegation

primordial class loader
(searches on
the boot class path)

4a  |oads class from
boot class path

A

3 4b | failure
a class loader instance
started at JVM startup 5a loads class from
>
(searches on class path
the class path)

A

2 ob| success / failure

4

a class loader instance 6

associatedwitha URL | | loads class from URL
(searches on the site

specified by the URL)

i

class request




Byte code verifier

= performs static analysis of the bytecode

— syntactic analysis

* all arguments to flow control instructions must cause branches to the start
of a valid instruction

* all references to local variables must be legal

* all references to the constant pool must be to an entry of appropriate type
* all opcodes must have the correct number of arguments

* exception handlers must start at the beginning of a valid instruction

— data flow analysis

* attempts to reconstruct the behavior of the code at run time without
actually running the code

* keeps track only of types not the actual values in the stack and in local
variables

— itis theoretically impossible to identify all problems that may occur at
run time with static analysis

()
S
>
g
@)
)
5=
e
(®)
| S
©
>
e
-
-
®)
O
7))
©
>
(©
-
()
e
—
Y
@)
(7]
-
C
)
C
@)
o
&
@)
@)




Comparison with ActiveX

= ActiveX controls contain native code

= security is based on the concept of trusted code
— ActiveX controls are signed
— if signer is trusted, then the control is trusted too
— once trusted, the control has full access to resources

= not suitable to run untrusted code
— no sandbox mechanism




