KAM for autonomous quasi-linear
perturbations of mKdV

Pietro Baldi, Massimiliano Berti, Riccardo Montalto

Abstract. We prove the existence of Cantor families of small amplitude, linearly stable,
quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamil-
tonian differentiable perturbations of the mKdV equation. The proof is based on a weak
version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The
analysis of the linearized operators at each step of the iteration is achieved by pseudo-
differential operator techniques and a linear KAM reducibility scheme.

Keywords: mKdV, KAM for PDEs, quasi-linear PDEs, Nash-Moser theory, quasi-periodic
solutions.

MSC 2010: 37K55, 35Q53.

1 Introduction and main result

In the paper [5] we proved the first existence result of quasi-periodic solutions for
autonomous quasi-linear PDEs (also called “strongly nonlinear” in [24]), in partic-
ular of small amplitude quasi-periodic solutions of the KdV equation subject to a
Hamiltonian quasi-linear perturbation. The approach developed in [5] (see also [4])
is of wide applicability for quasi-linear PDEs in 1 space dimension. In this paper we
take the opportunity to explain the general strategy of [5] applied to a model which
is slightly simpler than KdV.

We consider the cubic, focusing or defocusing, mKdV equation
g + Ugze + S Op(u3) + Ny(2, U, s, U, Ugez) =0, ¢ = £1, (1.1)
under periodic boundary conditions x € T := R/27Z, where
N2, U, g,y Ugg, Ugza) = =0 [(Ouf) (@, U, uz) — On((Buy f) (2, U, uz))] (1.2)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that Nj
contains as many derivatives as the linear vector field O.... It is a quasi-linear
perturbation because Ny depends linearly on the highest derivative ., multiplied
by a coefficient which is a nonlinear function of the lower order derivatives u, s, Uz
The equation is the Hamiltonian PDE

up = Xg(u), Xpg(u):=0,VH(u), (1.3)

where VH denotes the L?(T,) gradient of the Hamiltonian

H(u)—;/Tui,d:r—i/jru‘ldx%—/qrf(x,u,uw)dx (1.4)



on the real phase space

HY(T,) = {u(a:) € H'(T,R) : /

| u(a)de = o} (1.5)

endowed with the non-degenerate symplectic form
Qu,v) := /(@Elu)vdaz, Vu,v € Hi(T,), (1.6)
T

where 9, 1u is the periodic primitive of u with zero average. The phase space H} (T)
is invariant for the evolution of because the integral fT u(x)dx is a prime
integral (the mass). For simplicity we fix its value to [ u(x)dz = 0. We recall that
the Poisson bracket between two functions F, G : H}(T,) — R is defined as

{F,G}(u) := QXr(u), Xa(u)) = /EVF(’LL)&EVG(U)dﬂS. (1.7)

We assume that the “Hamiltonian density” f is of class C%(T x R x R;R) for
some ¢ large enough (otherwise, as it is well known, we cannot expect the existence
of smooth invariant KAM tori). We also assume that f vanishes of order five around
u = u; = 0, namely

|f(z,u,v)| < C(Jul + |v])° VY(u,v) € R, |u| + |v| < 1. (1.8)

As a consequence the nonlinearity Ny vanishes of order 4 at u = 0 and (1.1]) may be
seen, close to the origin, as a “small” perturbation of the cubic mKdV equation

Up + Ugppe + 3cu’uy = 0. (1.9)

Such equation is known to be completely integrable. Actually it is mapped into
KdV by a Miura transform, and it may be described by global analytic action-angle
variables, as it was proved by Kappeler-Topalov [20]. We also remark that, among
the generalized KAV equations u; + ugzy £ 0z(uP) = 0, p € N, the only known
completely integrable ones are the KdV p = 2 and the cubic mKdV p = 3.

It is a natural question to know whether the periodic, quasi-periodic or almost
periodic solutions of persist under small perturbations. This is the content of
KAM theory. It is a difficult problem because of small divisors resonance phenomena,
which are especially strong in presence of quasi-linear perturbations like Nj.

In this paper (as well as in [5]) we restrict the analysis to the search of small
amplitude solutions. It is also a very interesting question to investigate possible
extensions of this result to perturbations of finite gap solutions. A difficulty which
arises in the search of small amplitude solutions is that the mKdV equation is
a completely resonant PDE at u = 0, namely the linearized equation at the origin is
the linear Airy equation

Ut + Uz = 0

which possesses only the 2m-periodic in time, real solutions

u(t,z) = Z ujeijgteijx, U_j = Uj. (1.10)
JEZ\{0}



Thus the existence of small amplitude quasi-periodic solutions of is entirely
due to the nonlinearity. Indeed, the nonlinear term <0, (u?) is the one that pro-
duces the main modulation of the frequency vector of the solution with respect to
its amplitude (the well-known frequency-to-action map, or frequency-amplitude re-
lation, or “twist”, see ) and that allows to “tune” the action parameters £ so
that the frequencies becomes rationally independent and diophantine. Note that
the mKdV equation does not depend on other external parameters which may
influence the frequencies. This is a further difficulty in the study of autonomous
PDEs with respect to the forced cases studied in [3]. Actually, in [3] we consid-
ered non-autonomous quasi-linear (and fully nonlinear) perturbations of the Airy
equation and we used the forcing frequencies as independent parameters.

The core of the matter is to understand the perturbative effect of the quasi-linear
term Ny over infinite times. By , close to the origin, the quartic term Ny is
smaller than the pure cubic mKdV . Therefore, when we restrict the equation
to finitely many space-Fourier indices |j| < C, we essentially enter in the range of
applicability of finite dimensional KAM theory close to an elliptic equilibrium. The
new problem is to understand what happens to the dynamics on the high frequencies
|7] = 400, since Ny is a nonlinear differential operator of the same order (i.e. 3) as
the constant coefficient linear (and integrable) vector field Oyyy.

Does such a strongly nonlinear perturbation give rise to the formation of singu-
larities for a solution in finite time, as it happens for the quasi-linear wave equations
considered by Lax [I7] and Klainerman-Majda [21]? Or, on the contrary, does the
KAM phenomenon persist nevertheless for the mKdV equation ? The answer
to these questions has been controversial for several years. For example, Kappeler-
Poschel [19] (Remark 3, page 19) wrote: “It would be interesting to obtain pertur-
bation results which also include terms of higher order, at least in the region where
the KdV approximation is valid. However, results of this type are still out of reach,
if true at all”.

We think that these are very important dynamical questions to be investigated,
especially because many of the equations arising in Physics are quasi-linear or even
fully nonlinear.

The main result of this paper proves that the KAM phenomenon actually per-
sists, at least close to the origin, for quasi-linear Hamiltonian perturbations of mKdV
(the same result is proved in [5] for KdV). More precisely, Theorem proves the
existence of Cantor families of small amplitude, linearly stable, quasi-periodic solu-
tions of the mKdV equation subject to quasi-linear Hamiltonian perturbations.
It is not surprising that the same result applies for both the focusing and the de-
focusing mKdV because we are looking for small amplitude solutions. Thus the
different sign ¢ = 41 only affects the branch of the bifurcation.

From a dynamical point of view, note that the parameters £ selected by the
KAM Theorem give rise to solutions of — which are global in time.
This is interesting information because, as far as we know, there are no results of
global or even local solutions of the Cauchy problem for —, and such PDEs
are in general believed to be ill-posed in Sobolev spaces (for a rough result of local
well-posedness for (1.1)-(1.2) see [6]).

The iterative procedure we are going to present is able to select many parameters
¢ which give rise to quasi-periodic solutions (hence defined for all times). This



procedure works for parameters belonging to a finite dimensional Cantor like set
which becomes asymptotically dense at the origin.

How can this kind of result be achieved? The proof of Theorem — which we
shall discuss in more detail later — is based on an iterative Nash-Moser scheme. As
it is well known, the main step of this procedure is to invert the linearized opera-
tors obtained at each step of the iteration and to prove that the inverse operators,
albeit they lose derivatives (because of small divisors), satisfy tame estimates in
high Sobolev norms. The linearized equations are non-autonomous linear PDEs
which depend quasi-periodically on time. The key point of this paper (and [5]) is
that, using the symplectic decoupling of [10], some techniques of pseudo-differential
operators adapted to the symplectic structure, and a linear Birkhoff normal form
analysis, we are able to construct, for most diophantine frequencies, a time depen-
dent (quasi-periodic) change of variables which conjugates each linearized equation
into another one that is diagonal and has constant coefficients, that is, in “normal
form”. This means that, in the new coordinates, we have integrated the equations.
Then we easily invert the linearized operator (recall that the inverse loses derivatives
because of small divisors) and we conjugate it back to solve the linear equation in
the original set of variables. We remark that these quasi-periodic Floquet changes
of variable map Sobolev spaces of arbitrarily high norms into itself and satisfy tame
estimates. Hence the inverse operator also loses derivatives, but it satisfies tame
estimates as well.

In the dynamical systems literature, this strategy is called “reducibility” of the
equation and it is a quasi-periodic KAM perturbative extension of Floquet theory
(Floquet theory deals with periodic solutions of finite dimensional systems). The
difficulty to make it work in the present setting is due to the quasi-linear character
of the nonlinearity in .

Before stating precisely our main result we shortly present some related litera-
ture. In the last years a big interest has been devoted to understand the effect of
derivatives in the nonlinearity in KAM theory. For unbounded perturbations the
first KAM results have been proved by Kuksin [23] and Kappeler-Poschel [19] for
KdV (see also Bourgain [12]), and more recently by Liu-Yuan [I§], Zhang-Gao-Yuan
[29] for derivative NLS, and by Berti-Biasco-Procesi [7]-[8] for derivative NLW. For
a recent survey of known results for KAV, we refer to [14]. Actually all these results
still concern semi-linear perturbations.

The KAM theorems in [23], [19] prove the persistence of the finite-gap solutions
of the integrable KAV under semilinear Hamiltonian perturbations €0,(0,f)(z,u),
namely when the density f is independent of u,., so that is a differential operator
of order 1. The key idea in [23] is to exploit the fact that the frequencies of KAV
grow as ~ j° and the difference |53 — 3| > %(j2 +42), i # j, so that KAV gains
(outside the diagonal) two derivatives. This approach also works for Hamiltonian
pseudo-differential perturbations of order 2 (in space), using the improved Kuksin’s
lemma proved by Liu-Yuan in [18]. However it does not work for the general quasi-
linear perturbation in , which is a nonlinear differential operator of the same
order as the constant coefficient linear operator 9.

Now we state precisely the main result of the paper. The solutions we find are, at
the first order of amplitude, localized in Fourier space on finitely many “tangential



sites”
S+::{j1a'--7.71/}7 S::{:I:j:j65+}, 7 € NA{0} Vi=1,...,v. (111)

The set S is required to be even because the solutions u of (|1.1)) have to be real val-
ued. Moreover, we also assume the following explicit “non-degeneracy” hypothesis

on S:
2 < . . . .
= Y P kiR ke Z\S, j#£ k). (1.12)
i=1

Theorem 1.1 (KAM for quasi-linear perturbations of mKdV). Given v € N, let
f € C (with q := q(v) large enough) satisfy (1.8). Then, for all the tangential sites

S as in (1.11) satisfying (1.12), the mKdV equation (|L.1)) possesses small amplitude
quasi-periodic solutions with diophantine frequency vector w := w(§) = (wj)jes+ €

R¥ of the form

u(t,r) = Y 2\ cos(wjt + jx) + o(v/I€]), (1.13)

jest

where
wi=32+3¢[G—2( ) &)]j jest, (1.14)
j'es+

for a “Cantor-like” set of small amplitudes § € RY with density 1 at § = 0. The
term o(\/[€]) in is a function uy (t, x) = Gy (wt, x), with 4y in the Sobolev space
H*(T"*1 R) of periodic functions, and Sobolev norm |1 ||s = o(\/|€]) as & — 0, for
some s < q. These quasi-periodic solutions are linearly stable.

If the density f(u,uy) is independent on x, a similar result holds for all the
choices of the tangential sites, without assuming .

This result is deduced from Theorem It was announced also in [4]-[5] under
the stronger condition on the tangential sites

2 &
o Y i ¢z. (1.15)
=1

Let us make some comments.

1. In the case v = 1 (time-periodic solutions), the condition (1.12]) is always
satisfied. Indeed, suppose, by contradiction, that there exist integers 73 > 1,
7,k € Z such that

278 = j2 4 jk + K> (1.16)

Then j? + jk + k? is even, and therefore both j and k are even, say j = 2n,
k = 2m withn, m € Z. Hence 2j12 = 4(n®+nm+m?), and this implies that 7; is
even, say 71 = 2p for some positive integer p. It follows that 2p? = n?+nm+m?2,
namely p,n, m satisfy . Then, iterating the argument, we deduce that
71 can be divided by 2 infinitely many times in N, which is impossible.



2. When the density f(u,u,) is independent of z, the L?-norm

M(u) = /Tu2 dw = Jull2ar, (1.17)

is a prime integral of the Hamiltonian equation (1.1)). Hence the solutions of
(1.1) are in one-to-one correspondence with those of the Hamiltonian equation

vy =0, VK (v) with K:=H+AM?*, AcR. (1.18)

More precisely, if u(t, z) is a solution of , then v(t, x) := u(t,z — ct), with
¢ := —4\M(u), is a solution of . Vice versa, if v(t, z) solves , then
the function u(t,x) := v(t,x + ct), with ¢ := —4AM (v), is a solution of
(M (v) is also a prime integral of the equation (L.18)).

The advantage of looking for quasi-periodic solutions of ([1.18)) is that, for
A = 3¢/4, the fourth order Birkhoff normal form of K is diagonal (remark
and therefore no conditions on the tangential sites S are required (remark .

3. The diophantine frequency vector w(§) = (w;),es+ € R” of the quasi-periodic
solutions of Theorem is O([¢|)-close as & — 0 (see (1.14])) to the integer
vector of the unperturbed linear frequencies

w:=(3,...,7) eN. (1.19)

This makes perturbation theory more difficult. This is the difficulty due to
the fact that the mKdV equation ([1.1) is completely resonant at u = 0.

4. As shown by ([1.13)) the expected quasi-periodic solutions are mainly supported
in Fourier space on the tangential sites S. The dynamics of the Hamiltonian
PDE ({1.1)) restricted (and projected) to the symplectic subspaces

Hy = {o=Fuer}, = (o= T wer e i@} 020

jES jese

where S¢:= {j € Z\ {0} : j ¢ S}, is quite different. We call v the tangential
variable and z the normal one. On Hg the dynamics is mainly governed by
a finite dimensional integrable system (see Proposition , and we find it
convenient to describe the dynamics in this subspace by introducing action-
angle variable, see section On the infinite dimensional subspace H § the
solution will stay forever close to the elliptic equilibrium z = 0.

In Theorem it is stated that the quasi-periodic solutions are linearly stable.
This information is not only an important complement of the result, but also an
essential ingredient for the existence proof. Let us explain better what we mean.
By the general procedure in [10] we prove that, around each invariant torus, there
exist symplectic coordinates (see (6.13)))

(¥, n,w) € TV x R x Hg



in which the mKdV Hamiltonian (1.4 assumes the normal form

K(,n,w) =w-n+ %Kzo(@b)n -+ (K (¥)n, )Lz(T) + 2 (K02(¢) )Lz(T)
+ K>3(¢,n,w) (1.21)

where K>3 collects the terms at least cubic in the variables (7, w), see remark
In these coordinates the quasi-periodic solution reads ¢t — (wt,0,0) and the corre-
sponding linearized equations are
) = Kog(wt)n + KL (wt)w
=0 (1.22)
w — 8xK(]2(OJt)'UJ = 8$K11(wt)77
Thus the actions n(t) = 1(0) do not evolve in time and the third equation reduces

to the forced PDE
w = 8IK02((.U7§)[U)] + 8;,;K11(wt)[170] . (123)

Ignoring the forcing term 0, K71 (wt)[no] for a moment, we note that the equation
w = 0y Kp2(wt)[w] is, up to a finite dimensional remainder (Proposition |7.4]), the
restriction to H b% of the “variational equation”

he = 9, (0, VH) (u(wt, 2))[h] = Xk (h),

where X is the KAV Hamiltonian vector field with quadratic Hamiltonian K =
%((aUVH)(U)[h],h)LQ(Tx) = 2(OuuH)(u)[h,h]. This is a linecar PDE with quasi-
periodically time-dependent coefficients of the form

ht = Ozg(a1(wt, x)0zh) + 0z (ao(wt, z)h) . (1.24)

In section [8| we prove the reducibility of the linear operator w — 9, Ko2(wt)w, which

conjugates (1.23) to the diagonal system (see (8.64))
0pv = —iDv + f(wt) (1.25)

where Dy, := Op{,u;-’o}jegc is a Fourier multiplier operator acting in HY,
p® = i(—msj® + mij) +r5° €iR, je S°,

with mg = 14+0(e%), m1 = O(€?), sup;cge ree = 0(g?), see (8.61)), (8.62). The eigen-
values u;?o are the Floguet exponents of the quasi-periodic solution. The solutions
of the scalar non-homogeneous equations

1}j+u;?°vj:fj(wt), jese, ,U,?OEHR,

are

o f ! elw: At
vi(t) = cjel ' +9;(t), where Z ot
lezv MJ

(recall that the first Melnikov conditions (8.66)) hold at a solution). As a consequence,
the Sobolev norm of the solution of (1.25]) satisfies

[y < Cllo(0)||ag,  VEeR,



i.e. it does not increase in time.

We now describe in detail the strategy of proof of Theorem Many of the
arguments that we use are quite general and of wide applicability to other PDEs.
Nevertheless, we think that a unique abstract KAM theorem applicable to all quasi-
linear PDEs can not be expected. Indeed the suitable pseudo-differential operators
that are required to conjugate the highest order of the linearized operator to constant
coefficients highly depend on the PDE at hand, see the discussion after .

There are two main issues in the proof:

1. Bifurcation analysis. Find approximate quasi-periodic solutions of up
to a sufficiently small remainder (which, in our case, should be O(u*)). In
this step we also find the approximate “frequency-to-amplitude” modulation
of the frequency with respect to the amplitude, see . This is the goal of
sections Bl and [4l

2. Nash-Moser implicit function theorem. Prove that, close to the above
approximate solutions, there exist exact quasi-periodic solutions of . By
means of a Nash-Moser iteration, we construct a sequence of approximate
solutions that converges to a quasi-periodic solution of (sections .

The key step consists in proving the invertibility of the linearized operator and
tame estimates for its inverse. This is achieved in two main steps.

(a) SYMPLECTIC DECOUPLING PROCEDURE. The method in Berti-Bolle [10]
allows to approximately decouple the “tangential” and the “normal” dy-
namics around an approximate invariant torus (section @ It reduces the
problem to the one of inverting a quasi-periodically forced PDE restricted
to the normal subspace H é Its precise form is found in section

(b) ANALYSIS OF THE LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS.
In sections we reduce the linearized equations to constant coefficients.
This involves three steps:

i. Reduction in decreasing symbols, sections and
ii. Linear Birkhoff normal form, section [8.4]

iii. KAM reducibility, section [3.6]

All the changes of variables used in the steps i)-iii) are p-dependent families
of symplectic maps ®(p) which act on the phase space H3(T,). Therefore
they preserve the Hamiltonian dynamical systems structure of the conjugated
linear operators.

Let us discuss these issues in detail.

Weak Birkhoff normal form. According to the orthogonal splitting
HM(T,):= Hs ® Hg
into the symplectic subspaces defined in ([1.20), we decompose

u=v+z v=Igu ::Zuj el z:Hfg‘u = Zuj el (1.26)
jES jese



where 1lg, H§ denote the orthogonal projectors on Hg, H §

We perform a “weak” Birkhoff normal form (weak BNF'), whose goal is to find
an invariant manifold of solutions of the third order approximate mKdV equation
, on which the dynamics is completely integrable, see section |3l We construct
in Proposition [3.1] a symplectic map ®p such that the transformed Hamiltonian
‘H := H o g possesses the invariant subspace Hg (see ) To this purpose we
have to eliminate the term [v®zdx (which is linear in z). Then we check that its
dynamics on Hg is integrable and non-isocronous. For that we perform the classical
finite dimensional Birkhoff normalization of the Hamiltonian term [ v* dz which
turns out to be integrable and non-isocronous.

Since the present weak Birkhoff map has to remove only finitely many monomials,
it is the time 1-flow map of an Hamiltonian system whose Hamiltonian is supported
on only finitely many Fourier indices. Therefore it is close to the identity up to finite
dimensional operators, see Proposition The key advantage is that it modifies Ny
very mildly, only up to finite dimensional operators (see for example Lemma ,
and thus the spectral analysis of the linearized equations (that we shall perform in
section |§)) is essentially the same as if we were in the original coordinates.

The weak normal form does not remove (nor normalize) the monomials
O(2?). We point out that a stronger normal form that removes/normalizes the
monomials O(z2) is also well-defined (it is called “partial Birkhoff normal form” in
Kuksin-Poschel [25] and Pdschel [26]). However, we do not use it because, for such
a stronger normal form, the corresponding Birkhoff map is close to the identity only
up to an operator of order O(9; '), and so it would produce terms of order d,, and
0. For the same reason, we do not use the global nonlinear Fourier transform in
[20] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing
operators of order O(9;!) (this is explicitly proved for KdV).

We remark that mKdV is simpler than KdV because the nonlinearity in is
cubic and not only quadratic, and, as a consequence, less steps of Birkhoff normal
form are required to reach the sufficient smallness for the Nash-Moser scheme to
converge (see Remark [9.2)).

Action-angle and rescaling. At this point we introduce action-angle variables on the
tangential sites (section [4)) and, after the rescaling , we look for quasi-periodic
solutions of the Hamiltonian . Note that the coefficients of the normal form N
in depend on the angles 6, unlike the usual KAM theorems [26], [22], where
the whole normal form is reduced to constant coefficients. This is because the weak
BNF of section [3| did not normalize the quadratic terms O(z2). These terms are
dealt with the “linear Birkhoff normal form” (linear BNF) in section In some
sense the “partial” Birkhoff normal form of [26] is split into the weak BNF of section
Bl and the linear BNF of sections 8.4l

The present functional formulation with the introduction of the action-angle
variables allows to prove the stability of the solutions (unlike the Lyapunov-Schmdit
reduction approach).

Nonlinear functional setting and approximate inverse. We look for a zero of the
nonlinear operator , where the unknown is the torus embeddeding ¢ — i(¢p),
and where the frequency w is seen as an “external” parameter. This formulation is
convenient in order to verify the Melnikov non-resonance conditions required to in-
vert the linearized operators at each step. The solution is obtained by a Nash-Moser



iterative scheme in Sobolev scales. The key step is to construct (for w restricted to a
suitable Cantor-like set) an approximate inverse (a la Zehnder [30]) of the linearized
operator at any approximate solution. Roughly, this means to find a linear operator
which is an inverse at an exact solution. A major difficulty is that the tangential
and the normal dynamics near an invariant torus are strongly coupled.

Symplectic approximate decoupling. The above difficulty is overcome by implement-
ing the abstract procedure in Berti-Bolle [I0], which was developed in order to prove
the existence of quasi-periodic solutions for autonomous NLW (and NLS) with a mul-
tiplicative potential. This approach reduces the search of an approximate inverse
for to the invertibility of a quasi-periodically forced PDE restricted to the
normal directions. This method approximately decouples the tangential and the
normal dynamics around an approximate invariant torus, introducing a suitable set
of symplectic variables
(¥,n,w) € TV xR x Hg

near the torus, see . Note that, in the first line of , 1 is the “natural”
angle variable which coordinates the torus, and, in the third line, the normal variable
z is only translated by the component zo(1) of the torus. The second line completes
this transformation to a symplectic one. The canonicity of this map is proved in
[10] using the isotropy of the approximate invariant torus is, see Lemma In
these new variables the torus ¢ — is(¢) reads ¥ — (¢,0,0). The main advantage
of these coordinates is that the second equation in (which corresponds to the
action variables of the torus) can be immediately solved, see . Then it remains
to solve the third equation , i.e. to invert the linear operator L£,. This is a
quasi-periodic Hamiltonian perturbed linear Airy equation of the form

h Loh =105 (w-0yh + Opp(a10,h) + Oy (agh) + 0, Rh), Vh e Hy, (1.27)

where R is a finite dimensional remainder. The exact form of £, is obtained in
Proposition see ([7.23)).

Reduction to constant coefficients of the linearized operator in the normal directions.
In section [§] we conjugate the variable coefficients operator £, to a diagonal operator
with constant coefficients which describes infinitely many harmonic oscillators

b+ vy =0, = i(—mag® +mag) +rF €iR, j €S, (1.28)

where the constants m3 — 1, m; € R and sup; [r7°| are small, see Theorem
The main perturbative effect to the spectrum (and the eigenfunctions) of £, is due
to the term a1 (wt, x)0zzq (see (1.27))), and it is too strong for the usual reducibility
KAM techniques to work directly. The conjugacy of L, with is obtained in
several steps. The first task (obtained in sections is to conjugate L, to
another Hamiltonian operator of H § with constant coefficients

£5 = H§ (w . &p + m383:x:p + mlax + R5)H§ ,  M1,Mm3 € Ra (1'29)

up to a small bounded remainder R5 = O(dY), see . This expansion of L,
in “decreasing symbols” with constant coefficients follows [3], and it is somehow
in the spirit of the works of Iooss, Plotnikov and Toland [16]-[15] in water waves
theory, and Baldi [2] for Benjamin-Ono. It is obtained by transformations which

10



are very different from the usual KAM changes of variables. We underline that the
specific form of these transformations depend on the structure of mKdV. For other
quasi-linear PDEs the analogous reduction requires different transformations, see
for example Alazard-Baldi [I], Berti-Montalto [I1] for recent developments of these
techniques for gravity-capillary water waves, and Feola-Procesi [13] for quasi-linear
forced perturbations of Schrédinger equations.

The transformation of ((1.27)) into (1.29) is made in several steps.

1. Reduction of the highest order. The first step (section is to eliminate the
z-dependence from the coefficient aj(wt, )0y, of the Hamiltonian operator
L,,. In order to find a symplectic diffeomorphism of H g: near A , the starting
point is to observe that the diffeomorphism (see (8.1))

u = (Au)(p, 7)== (14 Bu(, 2))ulp, = + B(p, x)) ,

is, for each ¢ € TY, the time-one flow map of the time dependent Hamiltonian
transport linear PDE

Oru = 0y (b(p, 7 w)u), b, 7,) = % ’

Actually the flow of (1.30) is the path of symplectic diffeomorphisms

(1.30)

u(p, ) = (L+78:(p, 2))u(p, 2 + 78(p, x)), 7€ [0,1].

Thus, like in [5], we conjugate £, with the symplectic time 1 flow map of the
projected Hamiltonian equation

dru = &0, (b(7, 2)u) = 0y (b(7, 2)u) — Mgdy (b(,z)u), we Hs (1.31)

generated by the the quadratic Hamiltonian % Jp b(r, r)u?dx restricted to H §
By Lemma (which was proved in [5]) such symplectic map differs from
Al = HﬁAHﬁ only for finite dimensional operators.

This step may be seen as a quantitative application of the Egorov theorem, see
[28], which describes how the principal symbol of a pseudo-differential operator
(here a; (wt, £)Oyyy) transforms under the flow of a linear hyperbolic PDE (here
(T31).

Because of the Hamiltonian structure, the previous step also eliminates the
term O(0yz), see (8.13). In section we eliminate the time-dependence of
the coefficient at the order 0,.4.

2. Linear Birkhoff normal form. In section we eliminate the variable coef-
ficient terms at the order O(e?), which are present in the operator L, see
—7.24? . This is a consequence of the fact that the weak BNF procedure
of section [3| did not touch the quadratic terms O(z2). These terms cannot be
reduced to constants by the perturbative scheme in section (developed in
[3]) which applies to terms R such that Ry~! < 1 where « is the diophan-
tine constant of the frequency vector w (the case in [3] is simpler because the
diophantine constant is ¥ = O(1)). Here, as well as in [5], since mKdV is com-
pletely resonant, such v = o(g?), see . The terms of size €2 are reduced
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to constant coefficients in section by means of purely algebraic arguments
(linear BNF), which, ultimately, stem from the complete integrability of the
fourth order BNF of the mKdV equation . More general nonlinearities
should be dealt with the normal form arguments of Procesi-Procesi [27] for
generic choices of the tangential sites.

Complete diagonalization of . In section we apply the abstract KAM re-
ducibility Theorem 4.2 of [3], which completely diagonalizes the linearized operator,
obtaining . The required smallness condition for Rs holds, after that
the linear BNF of section has put into constant coefficients the unbounded terms
of nonperturbative size €2, and the conjugation procedure of sections and
has arrived to a bounded and small remainder Rs.

The Nash-Moser iteration to an invariant torus embedding. In section [9] we perform
the nonlinear Nash-Moser iteration which finally proves Theorem [5.1] and, therefore,
Theorem The smallness condition that is required for the convergence of the
scheme is 2||F(¢,0,0)|sy+,7 2 sufficiently small, see (9.5)). It is verified because
| Xp(p,0,0)|s <s €272 (Lemma and v = £2*% with @ > 0 small. See also

remark [9.2) for a comparison between the smallness condition required here with the
one in [5].

Notation. We shall use the notation
a<s;b <= a<C(s)b forsome constant C(s) > 0.

We denote by 7y the operator

1
=U— — dz . 1.32
ur— mo(u) == u 5 Tu x (1.32)

2 Functional setting

For a function u : Q, — E, w — u(w), where (E, || ||g) is a Banach space and €, is
a subset of R, we define the sup-norm and the Lipschitz semi-norm

lullz” = llullze, = sup [luw)le,
we (2.1)
Huth — Huth — sup |u(w1) — u(ws2) e '
w1Fw2 |w1 _w2|
and, for v > 0, the Lipschitz norm
Li L li
lul P = llull g5 = Il + vl (2.2)
If E = H* we simply denote |Ju| P = ||ul|5P.
Sobolev norms. We denote by
lulls == llull s (rory = llullag,, (2.3)

12



the Sobolev norm of functions u = u(p,r) in the Sobolev space H*(T**!). We
denote by || ||gs the Sobolev norm in the phase space of functions u := u(x) €
H*(T). Moreover || ||z denotes the Sobolev norm of scalar functions, like the
Fourier components u;(¢p).

We fix s := (v+2)/2 so that H%(T**1) — L>°(T**!) and any space H*(T"*!),
s > sg, is an algebra and satisfy the interpolation inequalities: for s > sq,

luvlls < C(so)llullslvllso + C(s)lullso lvlls, Y, v € H(T?).
)

The above inequalities also hold for the norms || ||I§ip(7 .
We also denote

ST = {ue HS (T @ u(p,-) € Hi Yy e T},
HE (T == {u e H(T"') : u(p, ) € Hs Vp € T"}.

Matrices with off-diagonal decay. A linear operator can be identified, as usual,
with its matrix representation. We recall the definition of the s-decay norm (intro-
duced in [9]) of an infinite dimensional matrix.

Definition 2.1. Let A := (Aii)il’izezb, b > 1, be an infinite dimensional matriz.
Its s-decay norm |Als is defined by

A2 =3 0 (sup |A2))% (2.4)

X 11 —i2=1
ZeZb 1 2

For parameter dependent matrices A := A(w), w € Q, C RY, the definitions (2.1))
and (2.2)) become

: A(wr) — A(wy)ls
JAS™ = sup [A(w)]s, |A"P = sup [Alwr) — Afwn)| : (2.5)
we, w1Fw2 ’wl - w2|

and |A[EPO) = | AR 4~ AP

Such a norm is modeled on the behavior of matrices representing the multipli-
cation operator by a function. Actually, given a function p € H*(T?), the mul-
tiplication operator h — ph is represented by the Toplitz matrix Tf = p;,—y and
|T|s = |Iplls- If p = p(w) is a Lipschitz family of functions, then

[T[0) = |lp|lsC) .

The s-norm satisfies classical algebra and interpolation inequalities proved in [3].

Lemma 2.1. Let A = A(w), B = B(w) be matrices depending in a Lipschitz way on
the parameter w € Q, C R”. Then for all s > so > b/2 there are C(s) > C(sg) > 1
such that

[ABSP0) < C(s)|A[7PO) BP0,
|AB|£4ip(’y) < C(S)|A’I;ip(v)|B|I;in(v) + C(SO)|A|£J;P(W)’B|ISJP(7)‘
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The s-decay norm controls the Sobolev norm, namely
[ARIEP) < O(s) (AT B[P 4| AP [P 0).

Let now b := v + 1. An important sub-algebra is formed by the Toplitz in time
matrices defined by

(l2:d2) ._ 7

Agriy = A =2,
whose decay norm (2.4) is

i 2,1 .25

AZ= )" ( sup [AZ0))) (5.

jezjezy N TI2=]

These matrices are identified with the ¢-dependent family of operators

._ } j e j il-
A@) = (A2(Q);, syenr AR =D ARDe"
which act on functions of the z-variable as
A(p) th(z) =) hje"™ s A(p)h(z) = D AZ(p)hj,e".
JEZL J1,J2€7Z

All the transformations that we construct in this paper are of this type (with
4,71, 72 # 0 because they act on the phase space Hg(Ty)).

Definition 2.2. We say that

1. an operator (Ah)(p,x) := A(p)h(p,x) is symplectic if each A(p), ¢ € T, is
a symplectic map of the phase space (or of a symplectic subspace like Hﬁ)

2. the operator w-0,—0;G(yp) is Hamiltonian if each G(g), ¢ € T, is symmetric;
3. an operator is real if it maps real-valued functions into real-valued functions.

A Hamiltonian operator is transformed, under a symplectic map, into another
Hamiltonian operator, see [3]-section 2.3.

We conclude this preliminary section recalling the following well known lemmata
about composition of functions (see, e.g., Appendix of [3]).

Lemma 2.2 (Composition). Assume f € C5(T¢ x By), By := {y € R™: |y| < 1}.
Then Yu € H*(T% R™) such that ||ul|p~ < 1, the composition operator f(u)(x) :=
f(x,u(x)) satisfies ||f(u)lls < C|fllcs(|ulls + 1) where the constant C depends on
s,d. If f € C*T2 and ||u + h||p~ < 1, then for k = 0,1

_ k FO) . i
| f(u+h) - Z 1 (2|, < Cllflles+2 1B oo (lAlls + 112l Loo [lulls).-

- 1
1=0

The statement also holds replacing || ||s with the norms | |sco of W*(T4).
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Lemma 2.3 (Change of variable). Let p € WS*(T% R?), s > 1, with ||p|y1.
< 1/2. Then the function f(x) = z+p(x) is invertible, with inverse f~1(y) = y+q(y)
where q € W*>(T4,RY, and [lllweme < Clpllweos.

If, moreover, p depends in a Lipschitz way on a parameter w € Q C RY, and
| Dypllre < 1/2 for all w, then HqHIIj‘I,Ii(zO) < C’HpHIIj‘I,Eﬂl)OO. The constant C := C(d, s)
1s independent of .

Ifu € H3(T%,C), then (uo f)(x) := u(x + p(x)) satisfies

luo flls < Cllulls + [lpllwse[ully),
[wo f —ulls < Cllpllzee lulls1 + llpllws o ull2),

Li L L Li
luo FIIEPO) < C (Jul 257 + [plia D ful 507,

The function wo f~1 satisfies the same bounds.

3 Weak Birkhoff normal form

In this section it is convenient to analize the mKdV equation in the Fourier repre-
sentation

u(z) = Zjez\{o}ujeijx, u(z) +— u = (uj)jenfoy, U—j = Uy, (3.1)

where the Fourier indices are nonzero integers j, by the definition (|1.5)) of the phase
space, and u_; = u; because u(z) is real-valued. The symplectic structure (|1.6)

writes
Z du] Adu_j, Z ujv_], (3.2)
J?éo 3750

the Hamiltonian vector field X in and the Poisson bracket {F, G} in (L.7)) are
respectively

[Xn(w)]; =1j0u_H(w), {F.GHu)==) 1j(0u;F)(w)(0,C)(u).  (33)
70
We shall sometimes identify v = (v;)jes and z = (z;) jese.

The Hamiltonian of the perturbed cubic mKdV equation (1.1) is H = Ho+ Hy+
H>5 (see (1.4)) where

u? u?
:/mdaz, Hy(u) := —g/ —dz, Hss(u /f T, u,ug)dx, (3.4)
T 2 T 4

¢ = £1 and f satisfies (1.8). According to the splitting (1.26)) u = v + z, where
v € Hg and z € Hg, we have Hy(u) = Ha(v) + Ha(z) and

H4(u):—fl/v4da:—g/v32da:—3;/11222da;—§/vz3dx—i/z4da:.
T T T T T

For a finite-dimensional space

E:= FEg:=span{’®: 0 < |j| < C}, C >0, (3.5)

15



let II denote the corresponding L?-projector on E.

In the next proposition we construct a symplectic map ®p such that the trans-
formed Hamiltonian H := H o ®p possesses the invariant subspace Hg defined in
, and its dynamics on Hg is integrable and non-isocronous. To this purpose we
have to eliminate the term [ 3z dx (which is linear in z) and to normalize the term
[v*dz (which is independent of z) in the quartic component of the Hamiltonian.

Proposition 3.1 (Weak Birkhoff normal form). There exists an analytic invertible
symplectic transformation of the phase space ®p : H}(T,) — H}(T,) of the form
Op(u) =u+¥Y(u), Y(u) =Ig¥(lgu), (3.6)

where E is a finite-dimensional space as in (3.5)), such that the transformed Hamil-
tonian is

H:=HoPp=Hy+Hs+H>s5, (3.7)
where Hy is defined in (3.4)),

M= (st = 3 JuPlugP) =5 [0

22 dx
T

JjES 7,J'€S (38)

—g/vzsdx—g/z4d:c,
T 4 Jr

and Hx5 collects all the terms of order at least five in (v, z).

Proof. In Fourier coordinates (3.1)) we have (see (3.4]))
1 ) S
Hy(u) = 5 > g, Ha(u) = ~1 > whupuug . (39)
j#0 Jit+j2+j3+7ja=0

We look for a symplectic transformation ® of the phase space which eliminates or
normalizes the monomials w;, uj,uj,u;, of Hy with at most one index outside S. By
the relation j; + jo + j3 + ja = 0, they are finitely many. Thus, we look for a map
D= ((I)%)Itﬂ which is the time 1-flow map of an auxiliary quartic Hamiltonian

F(u) = Z F o jsjathjy W Wi Uy -
Ji+j2+73+ja=0
The transformed Hamiltonian is
H:=Ho®=Hy+Hs+H>5, Ha={Ha F}+ Hu, (3.10)

where H>5 collects all the terms in # of order at least five. By (3.9) and (3.3) we
calculate

S ./ .3 .3 .3 .3
Hy = Z { 1 (J7 + J3 + J3 +J4)Fj1j2j3j4} Ujy Ugp Uz Uy -
Ji+j2+7i3+7a=0

In order to eliminate or normalize only the monomials with at most one index outside
S, we choose

i< if (1, jo. js, ja) € A
X X X N I (J1,72,73, 04 )
Fj1j2j3j4 = 4(«719’ +]g +«7§ +JZZ’) (3.11)
0 otherwise,
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where

A= {(j1, g2, 3, a) € (Z\A{OD*+ Gu+ijz+is+ia =0, 57 +35+75+7i #0,
and at least three among 71, jo, j3, j4 belong to 5’}.

We recall the following elementary identity (Lemma 13.4 in [19]).
Lemma 3.2. Let j1,j2,j3,ja € Z such that j1 + jo + j3 + ja = 0. Then

33 433 + 3 + 53 = =301 + 42) (1 + 53) (J2 + J3)-

By definition , H4 does not contain any monomial w;, uj,uj,u;, with three
indices in S and one outside, because there exist no integers ji,j2,j3 € S, ja € S¢
satisfying j1 + j2 + j3 + ja = 0 and j3 + j3 +j§ +43 =0, by Lemma and the fact
that S is symmetric.

By construction, the quartic monomials with at least two indices outside S are
not changed by ®. Also, by construction, the monomials w;, uj,u;,u;, in H4 with all
integers in S are those for which ji + jo + j3 + ju = 0 and j3 + 75 + 73 + j3 = 0. By
Lemma we split

Z Ujy Ujo UjaUjy = A1+ Az + A3

J1,J2,J3,J4€S
Jitj2+is+ja=0
JY+i3+i3+i3=0

where A; is given by the sum over ji,jo,J3, 54 € S, j1 + jo + j3 + ja = 0 with the
restriction j; + jo = 0, Ao with the restriction j; 4+ jo # 0 and j; + j3 = 0, and Aj
with the restriction j; + jo # 0, j1 + j3 # 0 and j2 + j3 = 0. We get

Ay = > fugPlupP = D7 g Plugl? =D uglt, A= fuyPlug
3.j'es J3'es jes J.3'es
7
Ay= ) lwPlugP = Y g Plugl® =2 Juyl?,
7.3'€S 4.3'€S jes
J'#E5
whence (3.8]) follows. O

Remark 3.3. In the Birkhoff normal form for the Hamiltonian K = H + \M?2
defined in ([1.18)), three additional terms appear in (3.8)), which are

A Plug]? 4+ 2AM (0) M (2) + AM?(2).
J,3'€esS

Then in (3.8) the sum (A—3¢) dojjes |uj|?lujr|? vanishes if we choose A := 3¢/4. O

4 Action-angle variables

We introduce action-angle variables on the tangential directions by the change of
coordinates

uj = \/& + 13|95 % for jEeS; uj = 2%; forjeSe, (4.1)
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where (recall that u_; = ;)

{N_jzfj, §j>0, ﬂ_j:ﬂj, é_jz—gj, Hj,ﬂjER, Vjes. (4.2)

To simplify notation, for the tangential sites St = {71,...,7,} we also denote
03—1 = 01', gjz = gi, é.]_z = 57;, Z = 1,. 7
The symplectic 2-form €2 in (3.2)) (i.e. (1.6)) becomes

| 1 s
W= Zd&i/\dyi—i- 5 > G dEG A = (Zd&i/\dyi) O Qg =dA (4.3)
i=1 j€S°\{0} i=1
where g1 denotes the restriction of  to Hg (see (1.20)) and A is the Liouville
1-form on T x R¥ x Hé: defined by A(égé) :RY x R” x Hé‘ — R,

~ o~ 14
AGs0l0,0,2] = —y-0+ 5(830 1z, Z)r2(T) - (4.4)

We rescale the “unperturbed actions” £ and the variables 9~, 9, Z as

E=e%, §=&"%y, z=c2, b>1 (4.5)

The symplectic 2-form in (4.3)) transforms into £2°)/). Hence the Hamiltonian system
generated by H in (3.7]) transforms into the new Hamiltonian system

é = (9yH5(9, Y, Z):
y=—0pH:(0,y, 2), H, =30 A, (4.6)
2=0,V,H:(0,y,z),

where

Ac(0,y.2) = 0 (0,y) + 2 ve(0y) = SO0 + 20D jly; T (4)
jES
We still denote by
AX'H5 = <8yH€7 _aGHa 8xvzHe)

the Hamiltonian vector field in the variables (6,y, z) € TV x RY x Hg.

We now write explicitly the Hamiltonian H.(6,y, z) defined in (4.6]). Recall the
expression of H given in (3.7). The quadratic Hamiltonian Hy in (3.4 transforms
into

1
—2b _ 3, 2
e “’Hyo A, = const + g jesd Vi + 5 /Tzzdx, (4.8)
and, by (), @7) we get (writing, in short, v, = v2(6,1))

1
HOp2) =@+ (@) y+ [ 2do- T [ 22
T T

2
1 . L.
pa (5 S P Y dndy) - [t
jes+ ji'es+ T
S / S+ e P Hog(ev.(0,y) +<2) (4.9)
T
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where e(§) is a constant, and « (&) € R is the vector of components
(&) =T +3e%G — 264+ +E)G, i=1,...,v.

This is the “frequency-to-amplitude” map which describes, at the main order, how
the tangential frequencies are shifted by the amplitudes & := (&1,...,§,). It can be
written in compact form as

a(f) =@ +e2AE, A :=3¢Dg(I —2U), (4.10)

where @ = (73,...,75) € N” (see (1.19)) is the vector of the unperturbed linear

frequencies of oscillations on the tangential sites, Dg is the diagonal matrix
Dg := diag(71,...,7,) € Mat(v x v),

I is the v x v identity matrix, and U is the v x v matrix with all entries equal to
1. The matrix A is often called the “twist” matrix . It turns out to be invertible.

Indeed, since U? = vU, one has (I —2U)(I — 525 U) = I, and therefore

_ 1 2 _
A 1:3—§<I—2V_1U)DSI. (4.11)

With this notation, one can also write

1 . . 1
3 > = Y dyidlyy = 5 (I =20)(Dsy) - (Dsy)- (4.12)
jest J,j'eST

Remark 4.1. By remark for the Hamiltonian K = H + AM?, \ := 3¢/4,
defined in ([1.18)) the twist matrix in the frequency-amplitude relation (4.10) becomes
A = 3¢Dg, which is diagonal. O

We write the Hamiltonian in (4.9)) (eliminating the constant e(£) which is irrel-
evant for the dynamics) as H. = N + P, where

N(G,y, Z) = O‘(é) Y+ %(N(a)za Z)L2('JI‘) )

(N(H)z,z)L2(T) :—/zidm—3§€2/vg(0,0)z2 dx,
T T

(4.13)

describes the linear dynamics, and P := H. — N, namely

_ 3
2

3

Pi= 5 (1 —20)(Dsy) - (Dsy) = 5 & [ [2(0.9) = 20,02 do

2

— et / v(0, )23 dx — i €2b/ Ade 4 e P Hss(cv:(0,y) + €°2), (4.14)
T T

collects the nonlinear perturbative effects.
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5 The nonlinear functional setting

We look for an embedded invariant torus

i:T" =T xR x Hy, ¢ i(p) = (0(¢),4(¢), 2()) (5.1)

of the Hamiltonian vector field Xg_ filled by quasi-periodic solutions with diophan-
tine frequency w € RY, that we regard as independent parameters. We require that
w belongs to the set

Q. = a([L,2)) = {al€) : € € [1,2]") (5.2)

where « is the affine diffeomorphism (4.10). Since any w € Q. is 2-close to the
integer vector w € N¥ (see , (1.19)), we require that the constant + in the
diophantine inequality

lw- 1| >~4(1)"", VI € Z"\ {0}, satisfies v =¢e>T* for some a > 0. (5.3)

Note that the definition of v in is slightly stronger than the minimal condition,

which is ¥ < c£? with ¢ small enough. In addition to we shall also require that

w satisfies the first and second order Melnikov-non-resonance conditions (8.63]).
We fiz the amplitude £ as a function of w and ¢, as

¢:=e A Hw —q], (5.4)

so that a(§) = w (see (4.10)).

Now we look for an embedded invariant torus of the modified Hamiltonian vector
field Xy, ., = Xu, +(0,¢,0), ¢ € R”, which is generated by the Hamiltonian

H57C(9,y, Z) = He(eaya Z) + C : 0? C cR”. (55)

Note that the vector field Xy, . is periodic in 6 (unlike the Hamiltonian H. ). We
introduce ¢ in order to adjust the average in the second equation of the linearized
system , see . The vector ¢ has however no dynamical consequences.
Indeed it turns out that an invariant torus for the Hamiltonian vector field X H..
is actually invariant for Xp_ itself, see Lemma Hence we look for zeros of the
nonlinear operator

F(i,¢) := F(i,(,w,e) :==Dyi(p) —
D,0(p) — Oy H:(i())
= | Du ()+39He(’t(<ﬂ)+C
Dyz(p) — 0.V He(i(p))

Xu.(i(p)) +(0,¢,0) (5.6)

I
&
<
—~
~
N[ =
&
—~
=
>
~—~ €

2(¢), 2(#)) 2y + 0 P(i(p)) + ¢
Dyz(p) — 0xN(0(9))2(p) — 0 V. P(i(p))

where O(p) := 6(¢) — ¢ is (2m)"-periodic and we use (here and everywhere in the
paper) the short notation
D, :=w-0,. (5.7)
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The Sobolev norm of the periodic component of the embedded torus

I(p) =i(p) — (¢,0,0) == (O(p),y(p), 2(¢)), O(p) :=0(p) — ¢, (5.8)

is 131, i= 1112 + lgllzs + 1211 where |12l := |}zl s . is defined in (23). We link
the rescaling (4.5 with the diophantine constant v = £2+¢ by choosing

y=et =2 h=1+(a/2), ac(0,1/6). (5.9)
Other choices are possible, see Remark

Theorem 5.1. Let the tangential sites S in (1.11)) satisfy (1.12)). For alle € (0,¢e0),
where €q is small enough, there exist a constant C' > 0 and a Cantor-like set C. C Q.,
with asympotically full measure as € — 0, namely

G|

] =
250 10|

1, (5.10)

such that, for allw € C., there exists a solution is(¢) 1= ioo(w,€)(p) of the equation
Flic,0,w,€) = 0 (the nonlinear operator F(i,(,w,¢) is defined in (5.6)). Hence
the embedded torus ¢ — ico(p) is invariant for the Hamiltonian vector field Xy_,
and it is filled by quasi-periodic solutions with frequency w. The torus is, satisfies

. Li —9p_ —2q
liso(2) = (2,0, 0) |52 < 27271 = (el (5.11)

for some p:= pu(v) > 0. Moreover, the torus i is linearly stable.

Theorem is proved in sections It implies Theorem where the ¢;
in (1.13) are the components of the vector A~![w — @]. By (5.11]), going back to

the variables before the rescaling (£.5), we get On = O(e5 %), foo = O(>2),
Zoo = O(7770).

Remark 5.2. The way to link the amplitude-rescaling with the diophantine
constant y = £27¢ in is not unique.

The choice €2 < 7 (i.e. “b > 1 large”) reduces to study the Hamiltonian H. in
(4.9) as a perturbation of an isochronous system (as in [22], [24], [26]). We can take
b = 4/3 in order to minimize the size of the perturbation P = O(¢7/3), estimating
uniformly all the terms in the last two lines of . As a counterpart we have
to regard in the constants a := a(§) € R” (or ¢ in (4.7)) as independent
variables. This is the perspective described for example in [I0]. Then the Nash-
Moser scheme produces iteratively a sequence of &, = £,(w) and embeddings ¢ —
in(@) = (0n(©), yn(p), zn(p)) at the same time.

The case €% > v (i.e. “b > 1 small”), in particular if b = 1, reduces to study
the Hamiltonian H. in as a perturbation of a non-isochronous system a la
Arnold-Kolmogorov (note that the quadratic Hamiltonian in satisfies the usual
Kolmorogov non-degeneracy condition). In this case, the constant &; in and
the average of |j|y;(¢) have the same size and therefore the same role. Then we may
consider ¢; as fixed, and tune the average of the action component y;(¢) in order to
solve the linear equation , which corresponds to the angle component. We use
the invertible (averaged) “twist”-matrix to impose that the right hand side

in (6.28) has zero average.
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The intermediate case €2 =, adopted in this paper (as well as in [5]), has the

advantage to avoid the introduction of the {(w) as an independent variable, but it
also enables to estimate uniformly the sizes of the components of (O(p), y(¢), z(¢))
with no distinctions. O

Now we prove tame estimates for the composition operator induced by the Hamil-
tonian vector fields Xy and Xp in , which are used in the next sections. Since
the functions y — /& + 2= |jly, § — € are analytic for ¢ small enough and
ly| < C, the composition Lemma implies that, for all ©,y € H*(T",R") with
19I5, lyllso < 1, setting () := ¢ + O(p), one has the tame estimate

[0=(0(¢), y(0)lls <s L+ [O1]s + [[ylls -

Hence the map A. in satisfies, for all HJHLlp <1 (see (5.8))
14=(0(), y (), 2())IFPT) <5 (1 + |3 7P). (5.12)

In the following lemma we collect tame estimates for the Hamiltonian vector fields
Xy, Xp, Xp. (see (4.13]), (4.14])) whose proof is a direct application of classical
tame product and composition estimates.

Lemma 5.3. Let J(¢) in (5.8) satisfy HJ||I;$E)_;) < Oyl = 054 Then,

writing in short || ||s to indicate || Hs ) one has
10, P(0)ls <5 €® + %[ Tls+3 100 P(@)lls <5 €% (1 + 1|7 543)
IV=P@)ls <s 7" + 73|54 IXp()lls <s €% +e®|Ts43
1060, P (i) s <s € + 72| T|s3 10, V=P @)lls <s €2+ ®)|T )54

10yy P (i) — 62bADS”s < ety ][

(A, Dg are defined in (4.10)) and, for all?:= (@,fy\, 2),

10,di Xp(D)[2)ls <s € (ITlls+3 + [T lls+317llso+3) (5.13)
1di X 11, (1)[2] + (0,0, Ouza ) s <s € ([T lls3 + 1353117l s0+3) (5.14)
14 X1, () (.7l <s ([T lls+3 0T llso+3 + 1T l]s43117 1%, +3) - (5.15)

In the sequel we also use that, by the diophantine condition (5.3, the operator
D! (see (5.7)) is defined for all functions u with zero p-average, and satisfies

_ — — L
ID5 ulls < Oy Hullosr, DS ullEP) < Oy lullgB7 (5.16)

6 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of
F(i,{) = 0, we now construct an approzimate right inverse (which satisfies tame
estimates) of the linearized operator

d;.c Flio, ()7, ] = Do — ds X 1. (io () il + (0, ¢, 0), (6.1)

see Theorem Note that d; ¢ F(io, (o) is independent of (g (see (5.6])).
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The notion of approximate right inverse is introduced in [30]. It denotes a linear
operator which is an ezact right inverse at a solution (ig, (o) of F(ip,{p) = 0. We
implement the general strategy in [I0] which reduces the search of an approximate
right inverse of to the search of an approximate inverse on the normal directions
only.

It is well known that an invariant torus ig with diophantine flow is isotropic (see
e.g. [10]), namely the pull-back 1-form A is closed, where A is the Liouville 1-form
in (4.4). This is tantamount to say that the 2-form W (see (4.3)) vanishes on the
torus ig(T"), because ifWV = ifdA = dijA. For an “approximately invariant” torus
io the 1-form ¢jA is only “approximately closed”. In order to make this statement
quantitative we consider

igA = Z v)doy

1 - (6.2)
ar(p) = — ([0,00(2)] " yo(0))r + = (asokzo(@) 9, 1ZO(¢))L2(T)
and we quantify how small is
ZSW = dZEk)A = Z Akj((p)d(pk A d(pj , Akj = &;kaj - &pjak. (63)

1<k<j<v

Along this section we will always assume the following hypothesis (which will be
verified at each step of the Nash-Moser iteration):

e ASSUMPTION. The map w — ig(w) is a Lipschitz function defined on some subset
Q, C Q, where ). is defined in (5.2)), and, for some p := pu(7,v) > 0,

Folleh) < 052yt = 074, | z) b0 < 05, (6.4)
y=e¥e =2 b:=1+(a/2), ac(0,1/6),

where Jo(p) :=ig(¢) — (¢,0,0), and

Z(p) := (21, Z2, Z3) () = F(io, o) () = w - Opio(¢) — Xn, . (io(p))  (6.5)
is the “error” function.

Lemma 6.1 (Lemma 6.1 in [5]). [¢o[MPO) < €| Z|5PD). If F(ig, o) = 0, then
Co =0, and the torus iy(p) is invariant for Xpg. .

Novy We estimate the size of ij)V in terms of Z. From (6.2]), (6.3) one has
HAijIs“lp <s HJ0||§f2’Y)' Moreover, Ay; also satisfies the following bound.

Lemma 6.2 (Lemma 6.2 in [5]). The coefficients A;(¢) in (6.3)) satisfy

_ L L L
AR 1P <, 4 2 (1Z 5B, + 12020 15012557, ,) - (6.6)

As in [I0], we first modify the approximate torus ip to obtain an isotropic torus
is which is still approximately invariant. We denote the Laplacian A, := >~/ _; éﬁk

Lemma 6.3 (Isotropic torus). The torus is(v) := (0o(¢),ys(p), z0(¢)) defined by
vs =y + 10000 o), pi(0) =AY 9o Ak(0)  (67)
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is isotropic. If (6.4) holds, then, for some o := o(v,T),

lys — ol PO <, [|Fol P57, (6.8)
llys — yol| PO sv—l{uzuifa + 1215|130 FEY (6.9)
1F (i, OIEP) <o 121520 + 130l 27121505 (6.10)

10:1i51llls <s I2s + 1 Tolls4oills - (6.11)

In the paper we denote equivalently the differential by 0; or d;. Moreover we
denote by o := o(v, 7) possibly different (larger) “loss of derivatives” constants.

Proof. 1t is sufficient to closely follow the proof of Lemma 6.3 of [5]. We men-
tion the only difference: equation (6.11) of [5] is || F( zg,Co)HLlp ™ <, HZHI;EQ
211|130 \|I;f07)||Z||I;;§r;), with a big factor £2='y~! = 71 more with respect

to the present bound - In ) there is no such a factor, because, by
the estimates for 9pdy P, 0yy P, 0,V . P in Lemma here we have |0, Xp(i)|ls <s

(1 + [|3]s+3). Hence (6.8), ., 6.4) imply that

1 Xp(is) — Xp(io)lls <s HZHs+a + 130l s+o 1 Zllso+o - (6.12)

Then the proof goes on as in [5], without the large factor ¢20=1y~1, O

In order to find an approximate inverse of the linearized operator d; ¢ F(is) we

introduce a suitable set of symplectic coordinates nearby the isotropic torus i5. We

consider the map Gs : (¢, n,w) — (0,y, z) of the phase space T” x R x H§ defined
by

0 ¥ 0o (1)
y| =G| n| = |ys®)+[0u00()] T+ [(B70)(Bo(v))] 0 w | (6.13)
z w 2(¥) +w

where %0(6) := 29(6, ' (9)). Tt is proved in [I0] that Gy is symplectic, using that the
torus 44 is isotropic (Lemma. In the new coordinates, ig is the trivial embedded
torus (¢, n,w) = (4,0,0). The transformed Hamiltonian K := K(¢,n,w,{y) is

(recall ((5.5))

K :=H.¢ oG5 (6.14)

= 0o(¥) - o + Koo(v) + K1o(¢) - 1+ (Ko1 (), w) p2(ry + 3K20(1)n -
+ (K11(¢)777 w) L2(T) + %(KOQ(w)w7 w) L2(T) + KZ?)(I/}? 7, w)

where K>3 collects the terms at least cubic in the variables (7, w). At any fixed 9,
the Taylor coefficient Koo(¢) € R, Kio(¢)) € RY, Ko1(¢)) € Hg (it is a function of
z € T), Kao(¥) is a v x v real matrix, Ko2(?) is a linear self-adjoint operator of Hz
and K11(¢) : RV - H Lé‘ Note that the above Taylor coefficients do not depend on

the parameter (p.
The Hamilton equations associated to (6.14]) are

() = K10() + Ka0()n + KT () w + 9y K>3(, 1, w)
—[0y00(¥)]" Co — By Koo (1) — [3¢Klo(¢)]T — [0y Ko1 (¥)]"w
— 0y {5 K20(¥)n - 0+ (K11 (¥)n, w) 2(my + 3 (Koa () w, w) p2(m (6.15)
+K>3(,m,w)}
W = 9y (Ko1 (v) + K11(¥)n + Ko2(¥)w + Vi K>3(¥, 1, w))
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where [0¢K10(¢)] is the v x v transposed matrix and the operators [8wK01(w)]T
and K7, (¢) : Hf — R” are defined by the duality relation (8¢K01(w)[1/1] w)re =
0 - [0y Ko1(¥)] T w, for all D ERY, we Hz, and similarly for Ky;. Explicitly, for all
weH é, and denoting e;, the k-th versor of RY,

v v

K1T1 (P)w = Z (K1T1 (V)w 'Qk)ék = Z (w, K11(¢)Qk)L2(T)§k €R”.

k=1 k=1

In the next lemma we estimate the coefficients Kgg, K19, Ko1 of the Taylor expansion
(6.14]). Note that on an exact solution we have Z = 0 and therefore Ko(¢)) = const,
Kip =w and Ky; = 0.

Lemma 6.4. Assume (6.4). Then there is 0 := o(7,v) such that

Li Li Li L L Li
18y Kool [0, [[ K10 — wl| 1P, | Koa [P0 <, | Z]1 5507 + 1 Z]15n 5 1305

Proof. Follow the proof of Lemma 6.4 in [5]. The fact that here there is no factor
£20=14=1 is a consequence of the better estimate (6.10]) for F(is, (o) compared to the
analogous estimate in [5]. O

Remark 6.5. If F(ip, (o) = 0 then (o = 0 by Lemma and Lemma implies
that (6.14]) simplifies to the normal form

1
K = const+w-n+ §K20(1/1)77 0+ (K (¥)n, w) 2y + 5 (Kog(w)w, w) 2y + K>3
O

We now estimate Kap, K11 in (6.14). The norm of Ky is the sum of the norms
of its matrix entries.

Lemma 6.6. Assume (6.4). Then

1K 20 — 2P ADg||LPO) <, €21 4 2|30 (6.16)
Li
1K1 |EP0) <, 572 pl| L) 4 2 36| L0 | PO (6.17)
b Li b Li Li
I EGw]| BP0 <, 52| B + 2|30 |5 w2 (6.18)

In particular || Koy — €2bADsH£;p(7) < Ce” %, and

Li
| EunldPO) < e 2 pl|lp™), || KT ]P0 < Ce™ 2wk

Proof. See the proof of Lemma 6.6 in [5]. O

Consider the linear change of variables (5, U,z) = DGs(¢,0,0) [12, N, w|, where
DGs(p,0,0) is obtained by linearizing Gs in (6.13]) at (¢, 0,0), and it is represented
by the matrix

Ap00(¢) 0 0
DG5(,0,0) = | Oypys(p)  [0pbo()]™"  —[(D0Z0)(Bo())]T 1 | . (6.19)
Oy zo(p) 0 I
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The linearized operator d; ¢ F(is, (o) transforms (approximately, see (6.40))) into

the operator obtained linearizing (6.15)) at (¢, n, w, () = (¢, 0,0, o) (with 0; ~ D,,),
which is the linear operator

=N =N Bl@i’ ﬁa wvg/:]
[w C] By [Q,/Z)\, ;\7’ ﬂ]\a C-',j )
BS[%@@; ]
where
By 1= Dutp — 0y K10 () [V] — Kao ()il — K1, (), (6.20)
By = D) + [0y00(2)]"C + 0 [0y00 (2)]" [, Go] + Dy Koo () 4]
+ [0y K10(0)]" 7 + [0y Ko ()] @,
B3 := Dyt — 8:{ 0y Ko1 () [¥] + K11(9)7) + Koz ()@}
Lemma 6.7 (Lemma 6.7 in [5]). Assume and let 7:= (¢, 7, @). Then
||DG5((P7 ) )[A]Hs + ”DGé(%O 0) HHS =s ‘ﬂ’s + HJOHS-FU”AHSm (6 21)
ID?G5(p,0,0) (1,72 ls <s [21lls172llso + 7 llso [2lls + [1Toll o171 156 22110

(€0)

for some o := o(v, 7). The same estimates hold for the || Hf;ip norm.

In order to construct an approximate inverse of (/6.20)) it is sufficient to solve the
equation

L D — Kaolp)i — K (p)@ 91
D[+, 7, w, (] : D7 + [000()] ¢ = | g (6.22)
D, — 0, K11(9)n — 0:Kp2(p)w 93

which is obtained by neglecting in By, B, B3 in (6.20) the terms 0y K10, OyyKoo,
Dy Koo, OpKor and 0y [0p00()] [, o] (these terms are naught at a solution by Lem-

mata and .

First we solve the second equation in ([6.22)), namely D,n = g2 — [8¢90(¢)]TE .
We choose ( so that the p-average of the right hand side is zero, namely

~

(= (g2) (6.23)

we denote (g) , 9(©0)dp). Note that the p-averaged matrix ([0y00]"
T Y

= (I 4 [0400]" ) = I because 90( ) = ¢+ Op(p) and Og(p) is a periodic function.

Therefore

=Dy (92 — [0u00()] (92)) + (W), (W) €RY, (6.24)
where the average (1) will be fixed below. Then we consider the third equation

L@ = g5+ 0 K11(9)71, Lo =w- 8y — 0uKoa() . (6.25)

e INVERSION ASSUMPTION. There exists a set Qoo C €y such that for all w € Q,
for every function g € Hgt“(']l"’“) there exists a solution h := L,'g € HE, (Tv+1)
of the linear equation L,h = g, which satisfies

i Li Li i
12519150 < Cs)y (gl + ey Folls 8 llgllet)) (6.26)
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for some p := p(r,v) > 0.

By the above assumption there exists a solution
W= ﬁ;l[gg + 8$K11(g0)fﬁ] (6.27)

of (6.25)). Finally, we solve the first equation in (6.22)), which, substituting (6.24]),
(6.27)), becomes

Dotp = g1 + Mi(0)(A) + Ma(0)g2 + M (0)gs — Ma(0)[000]" (g2) , (6.28)
where

Mi(p) := Kao(9) + Ki1(0) L5 0. K11(),  Ma(p) := Mi(9)D,",

6.29
Ms(p) == Ki)(9)L5" . (6.29)

To solve equation ([6.28]) we have to choose (1) such that the right hand side in (6.28))
has zero average. By Lemma and (6.4), the p-averaged matrix

(M) = e®ADg + O(°2). (6.30)

Therefore, for e small, (M) is invertible and (M1)™' = O(e=?*) = O(y~!) (recall
(5.9)). Thus we define

(@) == —(M1) " [(g1) + (M2g2) + (Mags) — (Ma[0y00]") (g2)]- (6.31)

With this choice of (7)), equation has the solution
V=D g1 + Mi(9) (i) + Ma(p)ga + Ms(p)gs — Ma(9)[0b0)" (g2)].  (6.32)
In conclusion, we have constructed a solution ({p\, n,w, 6 ) of the linear system .

Proposition 6 8. Assume cmd - Then, Vw € Qo, Vg := (91,92, 93),

the system (6.22)) has a solutwn D™ 'g := (¥, n,w,() where (Y, n,w,() are defined
in (6.32)), (6. 24|) (|6 31)), (6.27), (6. 23) and satisfy
_ ~ - Li 1y~ L Li
Il <oy (gl + 2 ol Iglh)). (6.33)
Proof. Recalling (6.29)), by Lemma (6.26), (6.4) We get HMthSO + [[M3hl|s,
< C||hl|sy+o- Then, by ( and ( M1> = 0™ = O(y7™), we deduce

~\ 1L _ Li Li _ Li
(@R < Oy 1|rgus;13) il -, imply (17577 <. 1(ngsfg
-|-HJOHS+U||gHL‘p 7)). The bound ( is sharp for @ because £'gs in is

estimated using (6.26). Finally ¢ satisﬁes (6.33) using (6.32), (6.29), (|6.26|), (|5.16|)
and Lemma [6.6 O

Let G54, m,w,¢) := (Ga(ib,mw),é). Let [|(¢,n,w,C) ¥ denote the maxi-
mum between ||(¢, 7, )||Llp and [¢|MP(Y), We prove that the operator

Ty := (DGs)(¢,0,0) o D' o (DGs)(¢,0,0) " (6.34)

is an approximate right inverse for d; ¢ F (i).
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Theorem 6.9. (Approximate inverse) Assume (6.4) and the inversion assump-
tion (6.26). Then there exists u := u(t,v) > 0 such that, for all w € Q, for all

g :=(91,92,93), the operator Ty defined in (6.34)) satisfies

Li Li —1y~ Li Li
IToglls™ ™ <3 v~ (g5 + €2y 135 gl (6.35)

The operator T is an approzimate inverse of d; ¢ F(ig), namely
[(di ¢ F (i) © To — I)g|[£P) (6.36)
<o 7 1 F (o, I gl E
9 {IF o, IS + €2y IFGio, o)l 13oll 57 Hlg s

Proof. In this proof we denote || ||S instead of || ||Llp . The bound (6.35) follows
from (6.34), (6.33)), (6.21). By (5.6 , since X does not depend on y, and is differs
from i only for the y component, we have

di ¢ F(i0)[% ] — di ¢ F(i5)[7.C] = di X plis)[7) — di X p(i0)[7] (6.37)

1 o~
= / Oyd; Xp(0o,y0 + s(ys — o), 20)[Ys — yo,2]ds =: &7, (.
0

By (5.13), (6-8), (6-9), (6.4), we estimate
||50[ ]”s =S ||Z||80+o|ﬂ|s+0 (HZHS+U + ||Z||50+0||30||S+U)Hﬂ|30+o (6-38)

where Z := F(i, (o) (recall (6.5)). Note that Eo[z’\,a is, in fact, independent of
(. Denote the set of variables (¢),n,w) =: u. Under the transformation Gs, the
nonlinear operator F in ([5.6) transforms into

F(Gs(u(p), ¢) = DGs(u(p)) (DPuwuly) — Xk (uly), (), (6.39)

where K = H,. o G, see ([6.14))-(6.15)). Differentiating (6.39) at the trivial torus
us() = Gy ' (is) () = (12,0,0), at ¢ = (o, in the direction (8, () = (DGs(us)'[7],¢) =
DGs(us) 77, ¢], we get

[7.¢] =DGis(us) (Dol — duc X (us, )@ 4]) + el[i
2.() :=DG5(u5) [DGs(us) "' F(is. o). DGis(ug) " [7]

di ¢ F (is) ¢l (6.40)
[ 21}

(6.41)
where dy Xk (us, (o) is expanded in (6.20). In fact, & is independent of C . We split
Dl — du ¢ Xic(u5, o)A, €] = D[&,¢] + Rz[8.C],

where D[u, Z] is defined in (6.22) and Rz [{b\, n, W, E] is defined by difference, so that
its first component is —0y K19(p)[¢], its second component is

0y [0p00(D)] T [, o] + By Koo (9)[¥] + [0y K10(0)] 77 + [0y Ko1 ()] @,

and its third component is —(930{(%](01((,0)[121\]} (in fact, Rz is independent of Z) B
(6.37) and (6.40),
d; ¢ F(io) = DGs(us) o D o DGs(us) "' + & + &1 + &,

~ (6.42)
£y := DGs(us) o Rz o DGs(us) ™.
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By Lemmatam7 -, u, 6.1, and (6.10] - . the terms &1, & satisfy the same bound
as &. Thus the sum £ := & + &1 + & satisfies - Applying T defined

in 6.34) to the right in (6.42), since D o D™! = I (see Proposition , we get

d; ¢ F(ip) o To — I = € o Ty. Then (6.36]) follows from (6.35) and the bound (6.38))
for &£. O

7 The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator L,
defined in , see Proposition|7.4] To this aim, we compute (Ko2(¢)w, w) L2(T)s
w € Hg, Which Collects all the terms of (H. o G5)(v,0,w) that are quadratic in w,
see . We first recall some preliminary lemmata.

Lemma 7.1 (Lemma 7.1-[5]). Let H be a Hamiltonian function of class C?(Hg(T;), R)
and consider a map ®(u) := u+V(u) satisfying ¥(u) = MgV (Ilgu), for all u, where
E is a finite dimensional subspace as in (3.5). Then

Ou[V(H o ®)(u)[h] = (0. VH)(®(u))[h] + R(u)[h], (7.1)

where R(u) has the “finite dimensional” form

R =32 (1 5(0) o yxs ) (7.2

with xj(u) = €97 or g;(u) = €. The remainder in is R(u) = Ro(u)+Rq(u)+
Ro(u) with
Ro(u) := (0, VH)(®(u)0¥(u),  Ri(u) = [0u{ V' (w) Y[, VH (@ (u))],
Ro() = (0,0 ()T (OuV H)(®(10)) 0D (u). (73

Lemma 7.2 (Lemma 7.3 in [5]). Let R be an operator of the form

Rh = Z/ (h 95(7)) oy s () (7.4)

jILc

where the functions g;(7), x;(7) € H®, 7 € [0,1] depend in a Lipschitz way on the
parameter w. Then its matriz s-decay norm (see (2.4)-(2.5)) satisfies

|R|HP() <, Z 81[10p1 (IIXj(T)III;ip”)Hg]( )HLIp + [Ix; (7 )IILlp ng(T)H?ip”))-
ljj<c "€

7.1 Composition with the map G;
In the sequel we use the fact that J5 := J5(p;w) := is(p;w) — (¢, 0,0) satisfies, by

and (0.4),

L _
19512200 < 052071 = 0B, (7.5)

In this section we study the Hamiltonian K := H.0Gs = e 27 0 A, o G5 defined

in - . Recalling (4.7 - A, o G has the form
A (Gs(1h,m,w)) = eve(00(v), ys(v) + L1($)n + La()w) + ”(20(¢) +w)  (7.6)
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where v, is defined in , and
La(w) = [0y00(¥)] ™", La(¥) == [(Bo20)(Bo(v))] " 05" (7.7)
By Taylor’s formula, we develop in w at (n,w) = (0,0), and we get
(A 0 G5)(¥,0,w) = T5(¥) + Ta(P)w + To () [w, w] + Tos(4h, w)
where

T5(¢) = A=(G5(1,0,0)) = evs(¥) +°20(), va(¥) == ve(0(¥), ys(¥))  (7.8)

is the approximate isotropic torus in the phase space Hol('ﬂ‘) (it corresponds to i5 in

Lemma ,
Ti(Y)w = e* U (Y)w + Pw,  Ta(y)[w, w] = e 3Us (1) [w, w]

1] [La(¢)w]; ellPo(®)ls

Ur(¥)w = v, (7.9)
15 20/ + 2207V |[ys ()]
32 [La(1p)w]? ellfo(l; o
Ua(@)lw,w] = =3 8{ + 62(b‘1)\;\[y5(¢)]j}3/2 e (7.10)

JES
and T>3(1, w) collects all the terms of order at least cubic in w. The terms Uy, Uy =

O(1) in e. Moreover, using that Ly(t)) in (|7.7) vanishes as zp = 0, they satisfy

1U1wlls <s 135llsllwllso + 13550 lw]ls » (7.11)
1U2[w, wllls <s 13515l Ts]lso l[wllZ, + 16112, w0l sollww]l s

and also in the || \]Igip(w—norm. We expand H by Taylor’s formula
H(u+h) =H(u) + (VH)(u), h) 2y + 5((0.VH)(w)[h], ) r2(r) + O(R?).

Specifying at u = T5(¢) and h = T1(¢Y)w + Ta () [w, w] + T>3(1p, w), we obtain that
the sum of all the components of K = e 2°(H o A. o0 G5) (1,0, w) that are quadratic
in w is . o
3 (Koow, w)2(ry = &~ ((VH)(T5), Ta[w, w]) r2 (T
+ 572b%((3uVH)(T5)[T1w], le)LQ(T) .
Inserting the expressions ([7.9)), (7.10]) in the last equality we get

Koo (¥)w = (0, VH)(T5)[w] + 2" (8, VH) (T5) U1 w] (7.12)
+ 207 DUT (0, VH) () [Urw] + 26* 3 Usfw, T (VH)(Ty).

Lemma 7.3. The operator Kgs reads

(Koz(¥)w,w) 2ty = ((0uVH)(Ts)[w], w) 21y + (R(Y)w, w) 2 (7) (7.13)
where R(1)w has the “finite dimensional” form
Rw =3 (0,9;(8)) 2y xi (¥). (7.14)
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The functions gj, x; satisfy, for some o := o(v,7) > 0,

i Li
1971572 3 [ 5P 4 g | LPO |y [5PO) < &b+ |35 20| (7.15)
185951l 1150 + 118951150 11X s + 11931150 1185 s + 119311511935 1o
<s 5b+1(”ﬂ’s+a + H35||s+a|m‘80+0) ) (7~16)

where i = (0,y,z) (see (5.1)) and 7= ((/9\, U, 2).
Proof. Since Uy = IllgU; and Uy = IIgUs, the last three terms in ([7.12)) have all the
form ([7.14]). We have to prove that they are also small in size.

By (#.8), (6.13)), (7.7), the only term in e =2 Hy(A-(Gs(v),n,w))) that is quadratic
inwis § [p w2 dz, so this is the only contribution to (7.12) coming from Hy.

It remains to consider all the terms coming from Hs4 1= Hy + H>5 = O(u?).
The term *=10,VH>4(T5)U1, the term & <b—1>UT(a VH>4)(T5)U;y and the term

e23UIVH>4(Ts) have all the form and, using the mequahty HT5||Llp " <

e(1 + ||Tg||5™® 7)) 7.11) and (6.4), the bound (7.15) holds. By (6.11) and using
explicit formulae (7.7)-(7.10) we get (7.16)). O

The conclusion of this section is that, after the composition with the action-angle
variables, the rescaling (4.5)), and the transformation G, the linearized operator to
analyze is w — (0, VH)(T5)[w], w € Hg, up to finite dimensional operators which

have the form (7.14)) and size ([7.15).

7.2 The linearized operator in the normal directions

In view of (7.13)) we now compute ((9,VH)(T5)[w], w) 2 (T), w € Hg, where H = Ho
@ and P is the Birkhoff map of Proposition [3.1 We recall that ®5(u) = u+ ¥ (u)
where W satisfies (3.6) and ¥(u) = O(u?®). It is convenient to estimate separately

the terms in
H=Ho®Pp=HyoPp+ HyjoPp+ H>50Pp (7.17)

where Ho, Hy, H>5 are defined in (3.4)).
We first consider H>5 o ®p. By (3.4) we get VH>5(u) = mo[(0uf)(x, u, uy)]
—02{(Ou, f)(x,u,u;)} where 7y is the operator defined in ([1.32)). Since ®p has the

form (3.6)), Lemma (at u = Ty, see (7.8)) implies that
0uV (Hz5 0 @) (Ts)[h] = (0uV H>5)(®5(T5))[h] + Rz (T5)[h]
= 0y (r1(T5)0xh) + 7ro(T5)h + RH25 (Ts)[h] (7.18)
where the multiplicative functions r¢(T5), 71 (T5) are
ro(Ts) := o0(®p(Tys)), ri(Ts):=o1(®p(Ty)), (7.19)
UO(U) = (auuf)(xa u, ux) - ax{(auuzf)(l'a u, um)}a
Ul(u) = _(auzuzf)(:v’ Uu, uﬂc)’
the remainder RHZS(U) has the form (7.2) with x; = e or g9; = €% and, using
(7.3)), it satisfies, for some o := o(v,7) > 0,
i i i i Li
g 5P 5P + g 1500 | [EP0) <q (1 + 1351535 7), (7.20)
10ig; [ ls[Ix5lls0 + 11959550 15 s + 115 lls010ix3 [l + g1l Oixs[a]ll s
<s 55(|m|8+0 + 11 Tslls+21[2l s0+2)-
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Now we consider the contributions from Hy o ®5 and Hy o ®5. By Lemma and
the expressions of Hs, Hy in (3.4]) we deduce that

0uV (Hz 0 @) (T5)[h] = —Buuh + R, (T5)[1], (7.21)
OuV (Ha 0 ©p)(T5)[h] = =3¢(®5(T5))*h + R, (T5) 1] (7.22)

where Ry, (u), Ry, (u) have the form (7.2). By (7.3), they have size Ry, (Ts) =
O(e?), Ru,(T5) = O(g*). More precisely, the functions g;, x; in R, (Ts) satisfy the
bounds in with € replaced by e*. Regarding Ry, (Ts), we need to find an
exact formula for the terms of order 2.

The sum of (7.18)), (7.21)) and (7.22) gives a formula for 8, VH(Ts)[h], where the
terms of form and order 2 are confined in Ry, (T5). On the other hand, recall-
ing , H = H2 +7‘[4+H25, and auVHg(T(g) = _8:10907 while 8UVH25(T5) = 0(63).
Therefore all the terms of order €2 in 9, VH(T5) can only come from 9, VH4(T5).
Using formula for H4, we calculate

15 (0, VH4(T5)[h]) = —3¢IIg(Tfh) Yhe HE. .

Hence all the terms of order 2 in I15(9,VH(Ts)[h]) are contained in the term
—3¢II&(T2h) (and the term —3¢IIS (T2h) is included in —3<IIE[(@5(Ts))%h] because
®p(T5) = Ts + U(T5)). As a consequence, IIER g, (T5) is of size O(e?), and its
functions g;, x; (see (|7.2))) satisfy with &5 replaced by 3.

By Lemma and the results of this section we deduce:

Proposition 7.4. Assume (7.5). Then the Hamiltonian operator L, has the form,
Vh e HS, (TV+H),

Loh = Dyh — 0, Kooh = IIg (Dyuh + 050 (a105h) + 9 (aoh) — 0, R4h)  (7.23)

where Ry := R, (Ts5) + Ru, (Ts) + R (Ts) + R(¥) (with R(y) defined in Lemma
and R, (T5), Ru,(Ts5), Russ(Ts) defined in (7.18), (7.21), (7.22)), the func-

tions
ap:=1-r(T5),  ao:=3s(®p(T5))* —ro(Ty), (7.24)
ro,m1 are defined in (7.19), and Ts in (7.8). They satisfy
lax = 1P + flag - BeTR[FPO) <, (1 + [35]13557) (7.25)
|1:ar A5 + 1103 (a0 = 3TH)[Alls <s €*([Tlls+0 + 1 Tslls0 [Tl s0+0) (7.26)

where T5(p) = (6o(¢) — v, ys(p), 20(p)) corresponds to Ts. The remainder R, has
the form (7.2), and its coefficients g;, x; satisfy bounds (7.15))-(|7.16)).
Remark 7.5. For K = H + AM?, X\ = 3¢/4, the coefficient ag in (7.24) becomes

ag = 370 [(®B(T5))*] — ro(Ty),
where g is defined in (1.32). Thus the space average of ag has size O(&3). O

Bound imply, by Lemma estimates for the s-decay norms of R,. The
linearized operator L, := L, (w,is(w)) depends on the parameter w both directly
and also through the dependence on the torus is(w). We have estimated also the
partial derivative 0; with respect to the variables i (see (b.1))) in order to control,
along the nonlinear Nash-Moser iteration, the Lipschitz variation of the eigenvalues
of L, with respect to w and the approximate solution is.
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8 Reduction of the linearized operator in the normal
directions

The goal of this section is to conjugate the Hamiltonian linear operator £, in ([7.23|)
to the constant coefficients linear operator L., defined in (8.64]). The proof is ob-
tained applying different kind of symplectic transformations. We shall always assume

[T5).

8.1 Space reduction at the order 0,,,

As a first step, we symplectically conjugate the operator £, in ((7.23) to £; in (8.13]),
which has the coefficient of 0., independent on the space variable. Because of the

Hamiltonian structure, this step also eliminates the terms O(0zz)-
We look for a ¢-dependent family of symplectic diffeomorphisms ®(p) of Hg
which differ from

AL = H%AH% s (.Ah)(SO, SU) = (1 + IBI(@’ $))h(90a T+ 5(907 l’)) ) (8'1)

up to a small “finite dimensional” remainder, see (8.3]). For each ¢ € T, the map
A(p) is a symplectic map of the phase space, see Remark 3.3 in [3]. If || 8|10 <
1/2, then A is invertible (see Lemma [2.3)), and its inverse and adjoint maps are

(A™'h) (0, y) = (14 Byle,y)h(e,y + Ble,y))
(ATR) (0, y) = hie,y + B(e,y))

where 2 = y 4+ B(p,y) is the inverse diffeomorphism (of T) of y = x + B(¢, z).

The restricted map A, (p) : H § — H é is not symplectic. We have already ob-
served in the introduction that A(¢p) is the time-1 flow map of the linear Hamiltonian
PDE ((1.30). The equation is a linear transport equation, whose charactheris-
tic curves are the solutions of the ODE

d

%x = —b(p, T, ).

To obtain a symplectic transformation close to A, we define a symplectic map
P of H§ as the time 1 flow of the Hamiltonian PDE (|1.31f). The linear operator
I1$ 0, (b(7, z)u) is the Hamiltonian vector field generated by the quadratic Hamil-
tonian 3 [1.b(7, z)u’dx restricted to Hg. The flow of is well defined in the
Sobolev spaces Hg, (T;) for b(¢, 7,x) smooth enough, by standard theory of linear
hyperbolic PDEs (see e.g. section 0.8 in [28]). The difference between the time 1
flow map ® and A is a “finite-dimensional” remainder of size O(f).

(8.2)

Lemma 8.1 (Lemma 8.1 of [5]). For ||B|lyyso+1.00 sSmall, there exists an invertible
symplectic transformation ® = A +Re of Hg, , where A, is defined in (8.1) and
Rae is a “finite-dimensional” remainder

1 ..
Raoh = Z/ (h,gj(T))LZ(T) Xj(T) dr + Z (h7 wj)Lz(T)euw (83)
jes 0 jes

for some functions x;(7),9;(7),v; € H® satisfying for all T € [0, 1]

[9ills + g5 (Tlls <s NBllwsrzoo s Ixs(T)lls <s 1+ [[Bllwstro0 - (8.4)
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Moreover

1@hl|s + @7 Alls <s [IAlls + 1 Bllws+zeollbllsy  Vh € H. . (8.5)

We conjugate L, in ([7.23)) via the symplectic map ® = A; + Rg of Lemma
Using the splitting IT4 = I — IIg, we compute

L,® = D, + Mg A(b30yyy + b20yy + b10y + bo) IS + Ry, (8.6)

where the coefficients b;(¢,y), i = 0,1,2,3, are

by = Alfar(1+ 52)°], b= AT [2(a)s (1 + B2)® + 6018 (1 + B)], (87)
2

bl = AT [(Dwﬁ) + ?aj_ﬁﬁzx + 4a15x:m: + G(GI)IB:E:J: + ((al)x:r + aO)(l + Bx)]a

bO = AT [1 4—1,8 (Dw/Bx + allngx:x + 2(a1)z/8xcm: + ((al)xcc + aO)/B:cz) + (CLO)x} ,

and the remainder
R[ = = Hé (alax:pw + 2(a1)xaxx + ((al)mx + (10)833 + (ao)x)HsAHé
—HE0,ReAL + [Du, Ra) + (L — Do) Ra - (8.8)

The commutator [D,, Re] has the form with D,g; or Dyx;j, Du1; instead of
Xj» 9j, ¥; respectively. Also the last term (£, — D,)Re in has the form ({8.3)
(note that £, — D, does not contain derivatives with respect to ¢). By , and
decomposing I = Ilg + H?, we get

L,® = (D, + b30yyy + b20y, + 010y + bo)IIg + Ry, (8.9)
Rir = {TI§(A — DIlg — R }(b30yyy + 020,y + b1, + bo)ITE + Ry . (8.10)

Now we choose the function 8 = (¢, x) such that

a1(p,2)(1 + Ba(p, ))° = b3() (8.11)

so that the coefficient b3 in (8.7) depends only on ¢ (note that A7 [b3(¢)] = b3(¢)).
The only solution of (8.11]) with zero space average is (see e.g. [3]-section 3.1) 5 :=
85 po, where po := b3 ()3 (a1 (p, 2))71/* — 1, and

) = (5 /T (m(p,2) V) (8.12)

Applying the symplectic map ®~! in we obtain the Hamiltonian operator (see

Definition
Ly:=0 L, =I5 (w- 0y + b3()Dyyy + b10y + bo) g + Ry (8.13)

where 1 := &R ;. Note that the term b20yy has disappeared from (8.13) because,
by the Hamiltonian nature of £;, the coefficient by = 2(b3), (see [3]-Remark 3.5)

and therefore, by (8.12), by = 2(b3), = 0.
Lemma 8.2 (Lemma 8.2 of [5]). The operator Ry in (8.13) has the form (7.4).
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Since a1 = 1+ O(e?) and ag = 3¢TZ + O(e?) (see (7.25)-(7.26)) for the precise
estimates), by the usual composition estimates we deduce the following lemma.

Lemma 8.3. There is 0 = o(1,v) > 0 such that

IBIEPO) + [y — 1[EPO) + by — BeTZ|[LP) + [lbg — 36(TF)]|LP)

<o (1 + ||35]2P0), (8.14)
10:80Ils + 110:b3 illls + 19:(b1 — 36T Ellls + 19:(bo — 3¢(T)2) |15
& (|llso + 135150 0), (8.15)

where Ty is defined in (7.8)). The transformations ®, ®~1 satisfy

i i Li ~ nLi Li
[ ®A|5PO) (| & ALY < (11| S0 4 |35 500 1 L) (8.16)
10:(@R) |5 + 10D B)@ls <s 1 ollstoFllsoto + el soto[Fllsso (8.17)

+ [ 3sllstollhllso+olellso+o -
Moreover the remainder R1 has the form (7.4), where the functions x;(7), ¢;(7)
satisfy the estimates (7.15)-(7.16|) uniformly in T € [0, 1].
8.2 Time reduction at the order 0,.,

The goal of this section is to get a constant coefficient in front of dy,,, using a
quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(p,y) == w(p +walp),y),  (BT'h)(0,y) == h( +wa(d),y), (8.18)

where T — T, ¥ — ¢ = 0 +wa(?) is the inverse diffeomorphism of ¥ = ¢ +wa(p)
in T¥. By conjugation, the differential operators become

B 'w-9,B=pW)w-0y, B '9B=09,, p:=B'1+w-0,q). (8.19)

By (8.13)), using also that B and B~! commute with Hé, the conjugate operator
B7'L,B is equal to

g [pw - Dy + (B7'03)0yyy + (B7101)0, + (B~ bo)|TII + B™1R, B. (8.20)

We choose a such that (B~1b3)(9) = mgp(¥9) for some constant mg € R, namely

b3(p) = m3(1 +w - dya(p)) (8.21)

(recall (8.19))). The unique solution with zero average of (8.21)) is
I by — = | by(p)de. 22
o) = ol 0) = ma)e). = [ (e, (322)

Hence, by (§8.20),
BilﬁlB = pLo, Lo := Hﬁ(w <Oy + mgayyy + Clay + Co)Hé‘ + Ry (8.23)
c1:=p H(B7), co:=p YB ), MRy:=p B B. (8.24)

The transformed operator Lo in (8.23) is still Hamiltonian, because the repara-
metrization of time preserves the Hamiltonian structure (see Section 2.2 and Remark
3.71in [3]).
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Lemma 8.4. There is 0 = o(v,7) > 0 (possibly larger than o in Lemma such
that
ms — 1[MP0) < b, |aimafil] < Ce*[isoro (8.25)
a2 <, 3711 + 13512 )
18ia@llls <s €y ([Ells+o + 1 Tslls+ol@llso+0)
i Li
lp = 1P <, 31+ 35]157)
||8ipm”s s € (Hﬂ|8+a + ||J5||s+a|m|50+a)

le = BT LD + fleo — 36(TP)a 4P <, 2371 (1 + [1F5[I507), (8.26)
19;(c1 = 3<TR)Als + [19:(co — 3¢(T5)2) s
<s 7 (llsto + 1Tslls4olllso+0)-

The transformations B, B! satisfy the estimates (8.16)), (8.17). The remainder Ro

has the form (7.4)), and the functions g;(7), x;(T) satisfy the estimates (7.15])-(7.16]
for all T € [0,1].

Proof. To estimate ||a||I§ip(7) we also differentiate with respect to the parame-
ter w. Note that ¢; —3¢B~1(T#) = O(¢%), and similarly co — 3¢B~1((T?),) = O(e?).
The factor e>y~! in the last two inequalities comes from the estimate of the difference
B(T2) - T2 = (T2)pa — O(25 ) 0

8.3 Translation of the space variable

In this section we remove the space average from the coefficient in front of J,.
Consider the change of the space variable z = y + p(¢) which induces on Hg, (T**')
the operators

(Tw)(®,y) = w@,y +p()), (T h)(V,2)=h(¥,z—p(¥)) (8.27)

(which are a particular case of those used in section . The differential operators
become T 'w-0yT = w- g+ {w-0yp(9)}0,, T 10, T = 9,. Since T,T ! commute
with Hé, we get

L3:=T LT =g (w -y +m30sz, + d10; + do)IIg + Rs, (8.28)
= (T te)) +w-0yp, do =T ‘e, Ry =T R, T. (8.29)
We choose
my = 1/ crdddy, p:=(w-0) " <m1 6 / cldy> (8.30)
’ (27T)V+1 Tv+1 ’ ' 271' T ’ ’

so that )
o d1 (¥,2)dz=m; V9 e T". (8.31)

™

Recalling (8.26]), we analyze the space average of ¢; in more detail. To avoid am-
biguity between the space variable y € T and the action ys : TV — R of (|7.§]),

36



we rename x € T the space variable, and ¢ € T" the variable on the torus (time

variable). Let
_ - il() ¢ i
x) g jeS\/fje e’?, (8.32)

where ¢ : S — ZV is the odd injective map (see (1.11))

03) =€, L=p)=—e, i=1...,v (8.33)
and e; = (0,...,1,...,0) denotes the i-th vector of the canonical basis of R”. In
view of the next linear Birkhoff normal form step (whose goal is to normalize the

term of size €2), we observe that the component of order € in T? (see (7.8)) is €202,

with

T2— 252 Lip(7) <, 2 Js Lip(y
[ [0 <, 3557, 83

10:(TF — 20*)[@lls <s ([llso + 1Tsllsro [T soo) -

Moreover, from (7.8)), since (vs, 20)r2(my = 0, and (6p)—; = —(o); for all j € S, we
have

/T(;Qd:c:z;-?/vgdx—i—e? /z dv =) &+ |il(ys); + € /zoda:.
T T

JES JES
We define ~ B
dy == dy — 3652, do = dy — 35e%(0?),, (8.35)
and note that, by (8.31]) and (8.32)),
S dda: m =3 [ 2w —m — 2¢(¢), =3¢ ¢, (8.36)
2T ! - 2 T 1 < J - .

JES

Using the explicit formulae above, and Lemma for the estimate of PR3, we get
the following bounds.

Lemma 8.5. There is o := o(v,7) > 0 (possibly larger than in Lemma such
that

my — e2¢(&)|PPM) < CBy Tt |0mmali]] < Ce2 (Al so o (8.37)
Li Lip(
Ip|[EPO) <, e9y2 + || 35 L) |
10ipllls <s [Tlsro + 272 TsllstolFllsoto
Idgl|5P0) <, Ty ~2 4 2||35]|520) )k =0,1, (8.38)

||8idkm||s s g’ v (|m|s+o + ||J6||s+a|m|80+o)v k=0,1.
The matriz s-decay norm (see (2.4)) of the operator Rs satisfies

i Li
91 <, L .
!31'9%3[7]% <s 51+b(”ﬂ|s+a + H35H8+0Hﬂ’50+0) :

The transformations T, T ' satisfy (8.16]), (8.17).
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Remark 8.6. When K = H + AM?, X\ = 3/4, the constant coefficient m; in (8.30)
becomes of size .
Imy [MPO) < 0Py, (8.40)

The inequality (8.40)) is the key difference between the cases H + (3¢/4)M? and H

(compare (8.40) with (8.37), where m; contains the non-perturbative term e2¢(¢)).
O

It is sufficient to estimate PR3 (which has the form ((7.4)) only in the s-decay
norm (see (8.39))) because the next transformations will preserve it. Such norms will
be used in the reducibility scheme of section

8.4 Linear Birkhoff normal form

Now we normalize the terms of order € of L£3. This step is different from the
reducibility steps that we shall perform in section the diophantine constant
v in is 7 = o(e?), and therefore the terms of order 2 are not perturbative,
because £2y~! is not small (in fact, it is big). The reduction of this section is possible
thanks to the special form of the term 2B defined in : the harmonics of e’B
corresponding to a possible small divisor are naught, except Bﬁ(()), see Lemma
Note that, since the previous linear transformations ®, B, T are O(gy~2)-close to
the identity, the terms of order €2 in L3 are the same as in the original linearized
operator.

First, we collect all the terms of order 2 in the operator £3 in . We have

where 671, Jo,i)‘{g are defined in (8.35)), (8.29) and (recall (8.32))
Bh := 3¢020,h + 3¢(0°).h = 0,(3s0%h). (8.41)

Note that B is the linear Hamiltonian vector field of H é generated by the Hamilto-
nian z — % Jr 0222 da.

We transform L3 by a symplectic operator ®y : Hg, (T**1) — HE, (T"*!) of the
form
2(k—2)

k!

S Ak, (8.42)

Dy := exp(e?A) = HE T S2A+ A, A= Z
k>2

where A(p)h = Zj,j,escA;:/(go)hj/eijx is a Hamiltonian vector field. The map P, is
symplectic, because it is the time 1 flow of a Hamiltonian vector field. We calculate

L3Py — BollE(Dyy + M3000) 13
= Y5 {B + (DL A) + m3[0pe, A|MIE + 15d10,115 + Rz (8.43)

where

Ry =TI {(Dy, A) + ms[0rea, A] + B(A + 2 A) {1 (8.44)
+ I dy 9,118 (Bo — 1) + (L dolLE + 9%3) @,

38



Remark 8.7. R3 has no longer the form (7.4). However Rz = O(99) because
A = 0(0;1) (see Lemma , and therefore @9 — IHé = 0(9;1). Moreover the

xT

matrix decay norm of Rz is o(¢?). O

In order to normalize the term of order €2 of (8.43)), we develop Agl(ga) =
Y ey Agl(l)eil'w, and for each j,j’ € S¢ | € Z", we choose
Bl (1)
., — J 'ff‘l+-/3_'3 0’
A0 = T Tty e
0 otherwise.

This definition is well posed. Indeed, by (8.41) and (8.32)),

Bl() =35 Y. V&G (8.46)

J1,J2€8
J1+je=j—j’
£(51)+€(52)=l

(8.45)

In particular Bgl(l) = 0 unless |I| < 2. For |[| <2and @-1+ 5% —j3 # 0, the
denominators in (8.45)) satisfy

43

w - L+m3(5? = %) = [mg(@ - 1+ 5 = 5%) + (w — maw) - 1]

> |mgl|@ -1+ 5" — 53| — |w — ms@]|l] >1/2 (8.47)

for ¢ small, because |@ -1+ j — 53| > 1 (@ -1+ j — 52 is a nonzero integer),

w=w+ 0(e?) and by (8.25).

Remark 8.8. The operator A defined in (8.45)) is Hamiltonian, because B is Hamil-
tonian. The reason is a general fact: the denominators & ;  := i(w -l +mgz(k3 — j3))
satisfy 0, ;5 = 011 and an operator G(yp) is self-adjoint if and only if its matrix

elements satisfy G;?(l) = G’i(—l), see [3]-Remark 4.5. Alternatively, we could solve
the homological equation of this Birkhoff step directly for the Hamiltonian function
whose flow generates ®. O

By the definition (8.45)), the term of order €2 in (8.43) is zero on the Fourier
indices (I, , j') such that @ - + j" — 52 # 0, while it is equal to 5265 (1) for (1, 4,7")
such that @ -1+ 52 — j3 = 0. Now we prove that the only nonzero components of B
that remain in (8.43) are B7(0).

Lemma 8.9. If@ -1+ % —j3 =0 and B (1) #0, then | = 0 and j = j'.

Proof. If Bgl (1) # 0, then, by (8.46)), there exist ji,jo € S such that j; + jo = j — 5’
and £(j1) + £(j2) = l. Hence, recalling (1.19)) and ({8.33),
3

0=w-1+j% =% =0 L) + & L(2) +5° = 5° = 3{ + 35 +5° = 5°.
This equality, together with j1+jo+7'—j = 0, implies that (j1+72)(j1+5")(j2+5") =0
by Lemma Since j1,j2 € S, j' € S¢, the set S is symmetric, and 0 ¢ S, we

deduce that the factors j; + 7' and js + j' are nonzero. Hence j; + jo = 0, and
therefore | = £(j1) + ¢(—j1) = 0. O
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Thus, the only nonzero term of order 2 in is B’ ). By -, we calculate
Bg(()) = ijc(§), where ¢(§) is defined in l) Hence, by (8.45), Lemma and
(8-36)), the term of order €2 in (8.43) is

IE{B + (DyA) + m3[0pza, A NI = £2¢(€)0, 115 . (8.48)

Remark 8.10. When K = H + AM?, A\ = 3¢/4, the operator in ) becomes
Bh = 0,(3sm(v?)h). Hence B]( ) = 0, and the right-hand side term in (8.48) is
zero, namely the first step of hnear Birkhoff normal form completely eliminates all
the terms of order 2. O

We now estimate the transformation A.

Lemma 8.11. (i) For alll € 7V, j,j' € S¢,
AT < (il + 17D AT < e 2 (] + 1) (8.49)

(i1) (Al)gl(l) =0 foralll € Z¥, j,j € S¢ such that |j — j'| > 2Cg, where Cg :=
max{|j| : j € S}.

Proof. (i) As already observed, for all |I|] > 2 one has le(l) = 0, and therefore
A;:/(l) =0. For |I| <2, j # j', one has (since |w| < |@| + 1)

-3

w - L+ ms (5" = 5°)| > |ma| | = 5% — lw - 1] > 1% + 5%) — 2w| > £(5” + 57

for ("2 + j2) > C, for some constant C. Since also ([8.47)) holds, we deduce that, for
alj£7,
AT A0 = Jw-l+ma(® = 5| = e(|j] +15)7 (8.50)

On the other hand, if j = j° € S and [ # 0, then Bgl(l) = 0, and therefore

A] (1)=0. For j = j' andl:OwealsohaveA] (I) = 0 because @ - [ + j"3 — j3 = 0.
Hence (8-50)) holds for all 4, ;. By (8.45), (8. 50|) (8.46]) we deduce the first bound in
(8.49). The Lipschitz bound follows similarly (use also |j — j'| < 2Cg). (i) follows

by (.19)-(E10). 0

The previous lemma means that A = O(|0,|~1). More precisely, we deduce the
following bound.

Lemma 8.12 (Lemma 8.19 of [5]). |A0, ]Llp M 4 |8xA]£ip(7) < C(s).

It follows that the symplectic map ®5 in (8.42)) is invertible for & small, with
inverse

2n—2
-1 _ 2 AV
(I)Q = exp( A) —1HZ +e A A= Zn>1 n! ( A) ’ (8.51)
|Aax’1;ip(v) + |8mA]I;1p ™ < C(s).
By (8.43]) and (8.48)) we get the Hamiltonian operator
Ly = (1)2_1»63(1)2 = Hg'_ (Dw + m30pz0 + (526(5) + Jl)ax)HJS_ + Ry, (852)
Ry = (07" — DI (2e(€) + d1)O, LS + 07 Ry (8.53)
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Lemma 8.13. There is o0 = o(v,7) > 0 (possibly larger than in Lemma such

that
(Rl <o T2 423511557 @)
0iR4[1]]s <s 51+b|m|s+a + 52‘|J5||s+0|m‘50+a .

Proof. Use (8.44]), (8.42)), (8.38)), (8.39), (8.25) and Lemma O

8.5 Space reduction at the order 0,

The goal of this section is to transform L5 in (8.52)) so that the coefficient of 0,
becomes constant. We conjugate L4 via a symplectic map of the form

S = exp(ITE (wd; ))ITE = 1§ (I + wd; VIS + S, (8.55)

where 8 := D k>2 HIIE (w1 and w : TV — R is a function. Note that
the linear operator HJ-(wa; )II& is the Hamiltonian vector field generated by the
Hamiltonian —§ [ w(9;'h)?dz, h € Hg. We calculate

L4S — Sné_(pw + m30pze + mlax)HJS_
= IIg (3maw, + e2¢(€) + dy — m1)0, 115 + R,
Hé{(3m3wzx ( 2 (5) + Jl - ml)Héw)ﬂ—O
+ (( ww) + M3Wyzr + (5 C(f) + Jl)HJS_wJ:)a’B_l
+ (DS) + M3 [Opaas S) + (£2¢(€) + d1)0:S — m1 89, + RySHIS
where R5 collects all the terms of order at most 80 By -, we solve 3msw,

+e2¢(€) + dy —my = 0 by choosing w := —(3m3)~ 18 L(e2¢(€) + dy —my). For e
small the operator S is invertible, and we get

Ls:= S_1£4S = Hé(’Dw + m30pze + ml&v)Hé + Rs, R;5:= S_1R5 . (8.56)
Slnce S is symplectic, L5 is Hamiltonian (recall Definition [2.2] E By -, -,
Li _ Li
(8-25), one has |Jw]|s™ ™) <s ey 2 +&%||Ts Hsfg

Lemma 8.14. There is 0 = o(v,7) > 0 (possibly larger than in Lemma such
that

S — 1P < Ty 4 2
laisilm‘s <5 e’ Hﬂ‘é‘-i-cr"‘g v sl s+0 7l s+ -

The remainder Ry satisfies the same estimates (8.54) as Ry.

8.6 KAM reducibility and inversion of L,

The coefficients mg, m1 of the operator L5 in are constants, and the remainder
Rj5 is a bounded operator of order 9 with small matrix decay norm, see . Then
we can diagonalize L5 by applying the iterative KAM reducibility Theorem 4.2 in
[3] along the sequence of scales

Ny =N}, n=0,1,2..., x:=3/2, Ng>0. (8.57)
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In section [9] the initial Np will (slightly) increase to infinity as ¢ — 0, see (9.5)). The
required smallness condition (see (4.14) in [3]) is (written in the present notations)

N§IRs Syt <1 (8.58)

where 3 := 7746 (see (4.1) in [3]), 7 is the diophantine exponent in (5.3]) and (8.63)),
and the constant Cp := Cp(7,v) > 0 is fixed in Theorem 4 2 in [3]. By Lemma 8.14]
the remainder R5 satisfies the bound ( -, and using we get (recall (5. 9#)

| Rs t;rjr(g <Oy 2 =032, |Rs |§;1:L(g Al < O3 = Cel—3e, (8.59)

We use that p in ((7.5) is assumed to satisfy pu > o + 8 where o := o(7,v) is given
in Lemma I8.14!

Theorem 8.15. (Reducibility) Assume that w +— is(w) is a Lipschitz function
defined on some subset Q, C . (recall ), satisfying with p > o+ B,
where o = o(T,v) is given in Lemma and B = 7t + 6. Then there exists
do € (0,1) such that, if

NGoeTA=3 = N{oel=3e < 5y, yi=e? =¥ ae€(0,1/6), (8.60)

then:
(i) (Eigenvalues). For all w € Q. there exists a sequence

(W) == pSP(w, is(w)) = i( — mg(w)j® + M1 (w)j) + r°(w), j €S, (8.61)

where M3, my coincide with the coefficients ms,my of L5 in (8.56) for all w € £,

and )
g — 1[MP0) < OB, i — (€)M < Oy,

\r}?o\Lip(V) < Ce¥ vjese

for some C' > 0 (and c(€) is defined in (8.36)). All the eigenvalues u3° are purely

imaginary. We define, for convenience, ug®(w) := 0.

(8.62)

(7i) (Conjugacy). For all w in the set

2915° — K|
{07
VieZ’, Vi ke SU {0}} (8.63)

020 = 02 (i) == {w €0 fiw- 14 1 (w) — p(w)| >

there is a real, bounded, invertible linear operator ®o(w) : H, (Tv+1) — HE, (Tv+1),
with bounded inverse ®(w), that conjugates Lg in (8.56) to constant coefficients,
namely

Loo(w) = &t (w) 0 L5(w) 0 Poo(w) = w - Dy + Doo(w),
Do () 1= dingyese (1)}

The transformations ®s, P are close to the identity in matriz decay norm, with

(8.64)

Li _ Li _ Li
oo — 115200 4103 — 120 <, TSy Y (8.65)

Moreover ®,, @} are symplectic, and Lo, is a Hamiltonian operator.
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Proof. The proof closely follows the one of Theorem 4.1 in [3], which is based on
Theorem 4.2, Corollaries 4.1, 4.2 and Lemmata 4.1, 4.2 of [3]. Here w € R”, while
in [3] the parameter A € R, but Kirszbraun’s Theorem on Lipschitz extension also
holds in R”. The bound follows by Corollary 4.1 of [3] and the estimate of Rj
in Lemma B.14] above.

To adapt the proof of [3] to the present case, the only changes in the statement
of Theorem 4.2 of [3] are: £372¢ instead of € in (4.18) of [3], and £'*? instead of € in
(4.23), (4.25) and (4.26) of [3]. The factor e1*® comes from the bound for 9;R5, see

Lemma and (8.54)). O

Remark 8.16. Theorem 4.2 in [3] also provides the Lipschitz dependence of the
(approximate) eigenvalues yj with respect to the unknown ig(¢), which is used for
the measure estimate (Lemma [9.3)). O

All the parameters w € Q2 satisfy (specialize (8.63) for k = 0)
liw- L+ pPW) = 29107, ez, jese, (8.66)

and the diagonal operator L is invertible.
In the following theorem we verify the inversion assumption ((6.26|) for £,,.

Theorem 8.17. (Inversion of L,) Assume the hypotheses of Theorem and
(8.60). Then there exists o1 := o1(r,v) > 0 such that, Yw € QX (i5) (see -)
for any function g € H;‘Im (TY*1) the equation L,h = g has a solution h = L;'g €
HgL(T”“), satisfying

_ i Li —1y~ nLi i
1E5 glIEPD) <, 47 (lgllEET) + ey M TollsEry gl L) (8.67)

s+o1

Proof. See the proof of Theorem 8.16 in [5]. O

9 The Nash-Moser nonlinear iteration

In this section we prove Theorem It will be a consequence of the Nash-Moser
Theorem below.
Consider the finite-dimensional subspaces

Ep:={3(p) = (0,y,2)(p) : © =10, y =y, z =1,2}

where N, := Nac” are introduced in (8.57), and II,, are the projectors (which, with
a small abuse of notation, we denote with the same symbol)

= Z 0%, I,z(p,x) := Z zljei(l'“"+jz), (9.1)

1| <N, [(Li)<Nn

where O() = Yz O16? and z(p, z) = > lezv jese 21 (9H9) (for T,y () sim-
ilar definition as for 11,,0(y)). We define II;> := I — II,,. The classical smoothing
properties hold: for all a;, s > 0,

ITL,3|[5P0) < Nea|be™) vi(w) e B,

I3]0 < Nalle” va(w) € Hete

(9.2)
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We define the constants

w1 :=3u+9, a:=3u +1, ap = (a—3u)/2, (9.3)
1-—3a

=3 41 =6 3p71+3 0 <——""" (94

ki=3(m+p ") +1,  Pr:=06u+3p " +3, <P i@t 3a) (9.4)

where p := (7, v) is the “loss of regularity” defined in Theorem [6.9] (see (6.35))) and
C is fixed below.

Theorem 9.1. (Nash-Moser) Assume that f € C? with ¢ > so + 1 + n+ 3. Let
T > v+ 2. Then there exist C1 > max{u; + a,Co} (where Cy := Co(7,v) is the one
in Theorem , 0o := 0o(1,v) > 0 such that, if

]\fglsb*ﬂff2 <8y, vi=etr=¢® Ny:= ( ey, byi=5-2b, (9.5)

then, for alln > 0:

(P1),, there ezists a function (Jp,C(n) 1 Gn C Qe = Ep1 X R, w — ( n(W), Cn(w)),
(30,0) =0, E_y = {0}, satisfying |a|"P0) < C||F(Un) 57,

L b* Li bs
1952 < Oty ™t FUL)ER0), < Cue (9.6)

where Uy, := (in, Gu) with in(@) = (©,0,0) + T,(p). The sets G, are defined
inductively by:

= :w 2r v
go.—{weﬁg el = g Ve \{0}},
. ) 2 n -3_k3
i i= {0 € G i 4 15°(0a) — )] = 21 =

Vi ke Seufo}, e Z”} . (9.7)

where vy, 1= (1427") and p3°(w) = p3°(w, in(w)) are defined in (and
g (w) =0).

The difference En =T, — Jp—1 (where we set /jo :=0) is defined on Gy, and
it satisfies

Lip(y

[RIY sk

< Cheby™t, HJM@SE’}Z < CuebyTINTY Wn > 1. (9.8)

(P2), ||F(U )HLIP(7 < C.e> N % where we set N_y := 1.
(P3), (High norms). [[3,]10%) < Cueby'NE_, and ||F(U)IIEG) < Cueb* Ni_y
(P4), (Measure). The measure of the “Cantor-like” sets G, satisfies

10\ Go| < Cue® "y, 1Gn \ G| < Coe?=DyN—1 (9.9)

SO = e

All the Lip norms are defined on G,, namely || ||s 5.Gn
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Proof. To simplify notations, in this proof we denote || ||“P() by || ||.

STEP 1: Proof of (P1,2,3)p. Recalling (5.6 we have ||F(Up)l||s = || F(¥,0,0,0)|s
= | Xp(p,0,0)||ls <s €572 by Lemma Hence (recall that b, := 5 — 2b) the
smallness conditions in (P1)p-(P3)¢ hold taking C, := Ci(sp + 1) large enough.

STEP 2: Assume that (P1,2,3), hold for some n > 0, and prove (P1,2,3),+1.
The proof of this step closely follows Step 2 in the proof of Theorem 9.1 of [5]. We
just mention the main changes: here it is convenient to define

wn = Y FUn)llso s Bn =y Tnllsgrs + V2N FUn)llsors »  (9-10)

while the corresponding quantities defined in (9.18) of [5] have € instead of €2 (and
then, with definition (9.10), the bounds (9.19) of [5] are also valid here without
changes). In the present case, the estimates (9.20)-(9.21) of [5] for the quadratic
Taylor remainder have to be adapted by replacing the factor e with 2. The reason
for this improvement is that the nonlinearity in the mKdV equation is cubic, whereas
in the KdV equation considered in [5] the nonlinearity is just quadratic.

Remark 9.2. Since the KdV, respectively mKdV, nonlinearity is quadratic, re-
spectively cubic, the smallness condition required in [5] for the convergence of the
Nash-Moser scheme is stronger than for Theorem|9.1} it is e[| F (¢, 0, 0) || s+, 2 < 1
instead of €2 F (¢, 0,0) | sg+,7 2 < 1. As a consequence less steps of Birkhoff normal
form are required (namely less monomials to work out in the original Hamiltonian)
to reach the sufficient smallness F(Up) = O(£572%) to make the Nash-Moser scheme
to converge (in [5] it is needed F(Up) = O(572)). O

STEP 3: Prove (P4), for alln > 0. For all n > 0, the difference G,, \ G,,+1 is the
union over [ € Z¥, j, k € S¢U {0} of the sets Ry;i(in), where

Riji(in) = {w € Gn ¢ |iw - 1+ p5°(in) — p3(in)| < 2i® = K3 ()77}, (9.11)

Since Ry (in) = 0 for j = k, in the sequel we assume that j # k.

Lemma 9.3. Forn > 1, |l| < Ny_1, one has the inclusion Ryji(in) € Rijk(in—1).

Proof. The proof closely follows the one of Lemma 5.2 in [3]. The differences are that
here the vector w is not confined along a fixed direction, here we have INV,,_; instead
of N,,, and the factor ¢ in (5.28) and (5.33) of [3] is replaced here by e7y~2 = 3722,

In the proof we use (9.8), (8.-59), (8-2F)), (8-37), and the bounds (4.25), (4.26),
(4.34) of [3] adapted to the present case (the bounds (4.25), (4.26) of [3] hold here
with e!7? instead of ¢, as already pointed out in the proof of Theorem the
bound (4.34) of [3] holds here with no change). O

By definition, Ryjx(in) € Gp (see (9.11))). By Lemma forn > 1 and || <
Ny—1 we also have Ryj;(in) € Ryjg(in—1). On the other hand, Ryj;(in—1) NGp =0
see (9.7)). As a consequence, Ryji(in) = 0 for all |I| < N,,—1, and

j,keScu{0}
|l|>Nn71
Lemma 9.4. Let n > 0. If Riji(in) # 0, then [I| > C1[5% — k3| > 1C1(5% + k%) for
some constant Cy > 0 (independent of 1,7, k,n,in,w).
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Proof. Follow the proof of Lemma 5.3 of [3], also using (8.62)). Note that |w| < 2|@]
for all w € )., for € small enough, by (5.2) and (4.10]). O

Now we study the measure of the resonant sets Ry (in) defined in (9.11). We
have to analyze in more details the sublevels of the function

w = p(w) = iw - T+ p3°(w) — g (w), (9.13)

appearing in (9.11)) (¢ also depends on I, j, k, iy,).

Lemma 9.5. There exists Co > 0 such that for all j # k, with j2 + k? > Cp, the
set Ryji.(in) has Lebesque measure |Ryjy(in)| < Ce2=Dy(1)~7.

Proof. For | # 0, decompose w = sl + v, where [ :=/|l], s € R, and [ - v = 0 (so
that w -1 = s|l|). Let 1(s) := ¢(sl +v). The eigenvalues p3° are given in (8.61). By
(8.36) and (5.4)), €2|c(¢)|" < Cy for some constant Co > 0 depending only on the
set S of the tangential sites. Then, by (8.62)) and (2.2)),

[ms(s1) — ma(s2)] < Ce®y sy — sal,

[M1(s1) — ma(s2)] < (Ca + Ce®y72)|s1 — 5| < 2Css1 — 2],

[75°(s1) = % (s2)] < Ce¥*9 7 s1 — s

for some C' > 0 and ¢ small enough, where, with a slight abuse of notations, we have
written

mi(s) = mi(sl+v), i=1,3 and r‘?o(s)zré?o(siva), jese.

J
By (8.61) and Lemma

[W(s1) = ¢(s2)| > (JI| = Oy 75 = k°| = 2Calj — k| — 20>y 1) [s1 — s
205|7 — k| 20e372a471
Fow - e e

> \jg — k?’\ <Cl — 083’}/_1 —
LG

7% = K?||s1 — s2

for £ small enough and j2 + k% + jk > Cpy := 12C5/Cy. As a consequence, the set
Apjk(in) == {s : sl + v € Ry, (in)} has Lebesgue measure

3 13
<_ 2 Ali” — K7 Cy
Cili* =k ()7 (07

| Ak (i)

for some C' > 0. The lemma follows by Fubini’s Theorem. O
Remark 9.6. When K = H+AM?, \ = 3/4, using (8.40)), the conclusion of Lemma
holds without restrictions on j, k. O

It remains to estimate the measure of the finitely many resonant sets lek(in)
for j2 + k* < Cp. Recalling (8.36) and the parity £_; = &;, we write ¢(§) = 6¢1 - £
where 1 is the vector (1,...,1) € R” and § = (§;)jes+ € R”. Hence, by (5.4),

—

e2e(§) =661 - A Mw — 0] = 66A™TT - [w — & (9.14)
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where AT is the transpose of A~!. We write the function ¢(w) in (9.13) as
P(w) = ajk + bijk - w + gjr(w) ,
where

ajr = —i(5® — k> +6¢(j — k)1 - A™'w),
biji == 1(1 + 65(j — k)A™TT),
gjr(w) = —i(mz — 1)(5° = k) +i(in —2e(€))(j — k) +715° —13°
(and g, m1, &, 3%, ri° all depend on w). By (8.62) and since j2+ k% < Cy we deduce
that |qjk]Lip(7) < Og3722, Recalling (2.2) we get

i < ¥, g™ < gD < et (9.15)

so that ¢(w) is a small perturbation of the affine function w — aji + by, - w. By
the next lemma, the hypothesis ((1.12) on the tangential sites S allows to verify that
such function does not vanish identically.

Lemma 9.7. Assume (1.12). Then, for all j # k, j2 + k? < Cy it results aji # 0.
Proof. Using formulae ([1.19) and (4.11]), we calculate

- 1 =
O TS S o )
YT T - 1) ;JZ

Hence v
i . . 2 _
ajr = —i(j — k)(f ik k= Z]f) #0
i=1
by assumption (1.12)) on the set S. O

Lemmaimplies that 0 := min{|a;y| (2 + k< Cy, jAKY>0.
Lemma 9.8. Assume ([.12)). If j2 + k? < Co, then |Ryji(in)| < Ce2=DA (1),

Proof. Denote b := byj;, for brevity. For j* 4+ k* < Cp, w € Ryjk(in), one has, by

p11), @.19),
bl = agel — [6(w)] — lqj(@)] 2 6 = 2915 = K1) — O3 > §/2

for € small enough. On the other hand, [b- w| < 2|@||b|] because |w| < 2|w| (see
(p-2) and (4.10)). Hence [b| > 01 where 61 := §/(4|w[) > 0. Split w = sb+ v where

b:=0b/|bl and v-b=0. Let ¢(s) := ¢(sb+v). By (9.15)), for € small enough, we get

. J
[W(s1) = $(s2)] = (bl = lagel ®)ls1 = s2] > T [s1 = 5ol

Then we proceed similarly as in the proof of Lemma [9.5 0
The proof of follows from the lemmata el proceeding like in [3]
(see the conclusion of the proof of Theorem 5.1 in [3]). O
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Proof of Theorem concluded. The conclusion of the proof of Theorem
follows exactly like in [5] (see “Proof of Theorem 5.1 concluded” in [5]).

Remark 9.9. By remark Lemma (which is the only point in the paper
where assumption ([1.12]) is used) is not needed any more. Thus Theorem applies
to K = H + (3¢/4)M? without assuming hypothesis (T.12). O
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