
KAM for autonomous quasi-linear

perturbations of mKdV

Pietro Baldi, Massimiliano Berti, Riccardo Montalto

Abstract. We prove the existence of Cantor families of small amplitude, linearly stable,
quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamil-
tonian differentiable perturbations of the mKdV equation. The proof is based on a weak
version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The
analysis of the linearized operators at each step of the iteration is achieved by pseudo-
differential operator techniques and a linear KAM reducibility scheme.

Keywords: mKdV, KAM for PDEs, quasi-linear PDEs, Nash-Moser theory, quasi-periodic
solutions.

MSC 2010: 37K55, 35Q53.

1 Introduction and main result

In the paper [5] we proved the first existence result of quasi-periodic solutions for
autonomous quasi-linear PDEs (also called “strongly nonlinear” in [24]), in partic-
ular of small amplitude quasi-periodic solutions of the KdV equation subject to a
Hamiltonian quasi-linear perturbation. The approach developed in [5] (see also [4])
is of wide applicability for quasi-linear PDEs in 1 space dimension. In this paper we
take the opportunity to explain the general strategy of [5] applied to a model which
is slightly simpler than KdV.

We consider the cubic, focusing or defocusing, mKdV equation

ut + uxxx + ς ∂x(u3) +N4(x, u, ux, uxx, uxxx) = 0 , ς = ±1, (1.1)

under periodic boundary conditions x ∈ T := R/2πZ, where

N4(x, u, ux, uxx, uxxx) := −∂x
[
(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))

]
(1.2)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that N4

contains as many derivatives as the linear vector field ∂xxx. It is a quasi-linear
perturbation because N4 depends linearly on the highest derivative uxxx multiplied
by a coefficient which is a nonlinear function of the lower order derivatives u, ux, uxx.
The equation (1.1) is the Hamiltonian PDE

ut = XH(u) , XH(u) := ∂x∇H(u) , (1.3)

where ∇H denotes the L2(Tx) gradient of the Hamiltonian

H(u) =
1

2

∫
T
u2
x dx−

ς

4

∫
T
u4 dx+

∫
T
f(x, u, ux) dx (1.4)
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on the real phase space

H1
0 (Tx) :=

{
u(x) ∈ H1(T,R) :

∫
T
u(x) dx = 0

}
(1.5)

endowed with the non-degenerate symplectic form

Ω(u, v) :=

∫
T
(∂−1
x u) v dx , ∀u, v ∈ H1

0 (Tx) , (1.6)

where ∂−1
x u is the periodic primitive of u with zero average. The phase space H1

0 (Tx)
is invariant for the evolution of (1.1) because the integral

∫
T u(x) dx is a prime

integral (the mass). For simplicity we fix its value to
∫
T u(x) dx = 0. We recall that

the Poisson bracket between two functions F , G : H1
0 (Tx)→ R is defined as

{F,G}(u) := Ω(XF (u), XG(u)) =

∫
T
∇F (u)∂x∇G(u)dx . (1.7)

We assume that the “Hamiltonian density” f is of class Cq(T × R × R;R) for
some q large enough (otherwise, as it is well known, we cannot expect the existence
of smooth invariant KAM tori). We also assume that f vanishes of order five around
u = ux = 0, namely

|f(x, u, v)| ≤ C(|u|+ |v|)5 ∀(u, v) ∈ R2 , |u|+ |v| ≤ 1. (1.8)

As a consequence the nonlinearity N4 vanishes of order 4 at u = 0 and (1.1) may be
seen, close to the origin, as a “small” perturbation of the cubic mKdV equation

ut + uxxx + 3ςu2ux = 0 . (1.9)

Such equation is known to be completely integrable. Actually it is mapped into
KdV by a Miura transform, and it may be described by global analytic action-angle
variables, as it was proved by Kappeler-Topalov [20]. We also remark that, among
the generalized KdV equations ut + uxxx ± ∂x(up) = 0, p ∈ N, the only known
completely integrable ones are the KdV p = 2 and the cubic mKdV p = 3.

It is a natural question to know whether the periodic, quasi-periodic or almost
periodic solutions of (1.9) persist under small perturbations. This is the content of
KAM theory. It is a difficult problem because of small divisors resonance phenomena,
which are especially strong in presence of quasi-linear perturbations like N4.

In this paper (as well as in [5]) we restrict the analysis to the search of small
amplitude solutions. It is also a very interesting question to investigate possible
extensions of this result to perturbations of finite gap solutions. A difficulty which
arises in the search of small amplitude solutions is that the mKdV equation (1.1) is
a completely resonant PDE at u = 0, namely the linearized equation at the origin is
the linear Airy equation

ut + uxxx = 0

which possesses only the 2π-periodic in time, real solutions

u(t, x) =
∑

j∈Z\{0}

uje
ij3teijx, u−j = ūj . (1.10)
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Thus the existence of small amplitude quasi-periodic solutions of (1.1) is entirely
due to the nonlinearity. Indeed, the nonlinear term ς∂x(u3) is the one that pro-
duces the main modulation of the frequency vector of the solution with respect to
its amplitude (the well-known frequency-to-action map, or frequency-amplitude re-
lation, or “twist”, see (4.10)) and that allows to “tune” the action parameters ξ so
that the frequencies becomes rationally independent and diophantine. Note that
the mKdV equation (1.1) does not depend on other external parameters which may
influence the frequencies. This is a further difficulty in the study of autonomous
PDEs with respect to the forced cases studied in [3]. Actually, in [3] we consid-
ered non-autonomous quasi-linear (and fully nonlinear) perturbations of the Airy
equation and we used the forcing frequencies as independent parameters.

The core of the matter is to understand the perturbative effect of the quasi-linear
term N4 over infinite times. By (1.8), close to the origin, the quartic term N4 is
smaller than the pure cubic mKdV (1.9). Therefore, when we restrict the equation
to finitely many space-Fourier indices |j| ≤ C, we essentially enter in the range of
applicability of finite dimensional KAM theory close to an elliptic equilibrium. The
new problem is to understand what happens to the dynamics on the high frequencies
|j| → +∞, since N4 is a nonlinear differential operator of the same order (i.e. 3) as
the constant coefficient linear (and integrable) vector field ∂xxx.

Does such a strongly nonlinear perturbation give rise to the formation of singu-
larities for a solution in finite time, as it happens for the quasi-linear wave equations
considered by Lax [17] and Klainerman-Majda [21]? Or, on the contrary, does the
KAM phenomenon persist nevertheless for the mKdV equation (1.1)? The answer
to these questions has been controversial for several years. For example, Kappeler-
Pöschel [19] (Remark 3, page 19) wrote: “It would be interesting to obtain pertur-
bation results which also include terms of higher order, at least in the region where
the KdV approximation is valid. However, results of this type are still out of reach,
if true at all”.

We think that these are very important dynamical questions to be investigated,
especially because many of the equations arising in Physics are quasi-linear or even
fully nonlinear.

The main result of this paper proves that the KAM phenomenon actually per-
sists, at least close to the origin, for quasi-linear Hamiltonian perturbations of mKdV
(the same result is proved in [5] for KdV). More precisely, Theorem 1.1 proves the
existence of Cantor families of small amplitude, linearly stable, quasi-periodic solu-
tions of the mKdV equation (1.1) subject to quasi-linear Hamiltonian perturbations.
It is not surprising that the same result applies for both the focusing and the de-
focusing mKdV because we are looking for small amplitude solutions. Thus the
different sign ς = ±1 only affects the branch of the bifurcation.

From a dynamical point of view, note that the parameters ξ selected by the
KAM Theorem 1.1 give rise to solutions of (1.1)-(1.2) which are global in time.
This is interesting information because, as far as we know, there are no results of
global or even local solutions of the Cauchy problem for (1.1)-(1.2), and such PDEs
are in general believed to be ill-posed in Sobolev spaces (for a rough result of local
well-posedness for (1.1)-(1.2) see [6]).

The iterative procedure we are going to present is able to select many parameters
ξ which give rise to quasi-periodic solutions (hence defined for all times). This
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procedure works for parameters belonging to a finite dimensional Cantor like set
which becomes asymptotically dense at the origin.

How can this kind of result be achieved? The proof of Theorem 1.1 – which we
shall discuss in more detail later – is based on an iterative Nash-Moser scheme. As
it is well known, the main step of this procedure is to invert the linearized opera-
tors obtained at each step of the iteration and to prove that the inverse operators,
albeit they lose derivatives (because of small divisors), satisfy tame estimates in
high Sobolev norms. The linearized equations are non-autonomous linear PDEs
which depend quasi-periodically on time. The key point of this paper (and [5]) is
that, using the symplectic decoupling of [10], some techniques of pseudo-differential
operators adapted to the symplectic structure, and a linear Birkhoff normal form
analysis, we are able to construct, for most diophantine frequencies, a time depen-
dent (quasi-periodic) change of variables which conjugates each linearized equation
into another one that is diagonal and has constant coefficients, that is, in “normal
form”. This means that, in the new coordinates, we have integrated the equations.
Then we easily invert the linearized operator (recall that the inverse loses derivatives
because of small divisors) and we conjugate it back to solve the linear equation in
the original set of variables. We remark that these quasi-periodic Floquet changes
of variable map Sobolev spaces of arbitrarily high norms into itself and satisfy tame
estimates. Hence the inverse operator also loses derivatives, but it satisfies tame
estimates as well.

In the dynamical systems literature, this strategy is called “reducibility” of the
equation and it is a quasi-periodic KAM perturbative extension of Floquet theory
(Floquet theory deals with periodic solutions of finite dimensional systems). The
difficulty to make it work in the present setting is due to the quasi-linear character
of the nonlinearity in (1.1).

Before stating precisely our main result we shortly present some related litera-
ture. In the last years a big interest has been devoted to understand the effect of
derivatives in the nonlinearity in KAM theory. For unbounded perturbations the
first KAM results have been proved by Kuksin [23] and Kappeler-Pöschel [19] for
KdV (see also Bourgain [12]), and more recently by Liu-Yuan [18], Zhang-Gao-Yuan
[29] for derivative NLS, and by Berti-Biasco-Procesi [7]-[8] for derivative NLW. For
a recent survey of known results for KdV, we refer to [14]. Actually all these results
still concern semi-linear perturbations.

The KAM theorems in [23], [19] prove the persistence of the finite-gap solutions
of the integrable KdV under semilinear Hamiltonian perturbations ε∂x(∂uf)(x, u),
namely when the density f is independent of ux, so that (1.2) is a differential operator
of order 1. The key idea in [23] is to exploit the fact that the frequencies of KdV
grow as ∼ j3 and the difference |j3 − i3| ≥ 1

2(j2 + i2), i 6= j, so that KdV gains
(outside the diagonal) two derivatives. This approach also works for Hamiltonian
pseudo-differential perturbations of order 2 (in space), using the improved Kuksin’s
lemma proved by Liu-Yuan in [18]. However it does not work for the general quasi-
linear perturbation in (1.2), which is a nonlinear differential operator of the same
order as the constant coefficient linear operator ∂xxx.

Now we state precisely the main result of the paper. The solutions we find are, at
the first order of amplitude, localized in Fourier space on finitely many “tangential
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sites”

S+ := {̄1, . . . , ̄ν} , S := {±j : j ∈ S+} , ̄i ∈ N \ {0} ∀i = 1, . . . , ν. (1.11)

The set S is required to be even because the solutions u of (1.1) have to be real val-
ued. Moreover, we also assume the following explicit “non-degeneracy” hypothesis
on S:

2

2ν − 1

ν∑
i=1

̄ 2
i /∈

{
j2 + kj + k2 : j, k ∈ Z \ S, j 6= k

}
. (1.12)

Theorem 1.1 (KAM for quasi-linear perturbations of mKdV). Given ν ∈ N, let
f ∈ Cq (with q := q(ν) large enough) satisfy (1.8). Then, for all the tangential sites
S as in (1.11) satisfying (1.12), the mKdV equation (1.1) possesses small amplitude
quasi-periodic solutions with diophantine frequency vector ω := ω(ξ) = (ωj)j∈S+ ∈
Rν of the form

u(t, x) =
∑
j∈S+

2
√
ξj cos(ωjt+ jx) + o(

√
|ξ|), (1.13)

where
ωj := j3 + 3ς

[
ξj − 2

( ∑
j′∈S+

ξj′
)]
j, j ∈ S+, (1.14)

for a “Cantor-like” set of small amplitudes ξ ∈ Rν+ with density 1 at ξ = 0. The

term o(
√
|ξ|) in (1.13) is a function u1(t, x) = ũ1(ωt, x), with ũ1 in the Sobolev space

Hs(Tν+1,R) of periodic functions, and Sobolev norm ‖ũ1‖s = o(
√
|ξ|) as ξ → 0, for

some s < q. These quasi-periodic solutions are linearly stable.
If the density f(u, ux) is independent on x, a similar result holds for all the

choices of the tangential sites, without assuming (1.12).

This result is deduced from Theorem 5.1. It was announced also in [4]-[5] under
the stronger condition on the tangential sites

2

2ν − 1

ν∑
i=1

̄ 2
i /∈ Z . (1.15)

Let us make some comments.

1. In the case ν = 1 (time-periodic solutions), the condition (1.12) is always
satisfied. Indeed, suppose, by contradiction, that there exist integers ̄1 ≥ 1,
j, k ∈ Z such that

2̄ 2
1 = j2 + jk + k2. (1.16)

Then j2 + jk + k2 is even, and therefore both j and k are even, say j = 2n,
k = 2m with n,m ∈ Z. Hence 2̄ 2

1 = 4(n2+nm+m2), and this implies that ̄1 is
even, say ̄1 = 2p for some positive integer p. It follows that 2p2 = n2+nm+m2,
namely p, n,m satisfy (1.16). Then, iterating the argument, we deduce that
̄1 can be divided by 2 infinitely many times in N, which is impossible.
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2. When the density f(u, ux) is independent of x, the L2-norm

M(u) :=

∫
T
u2 dx = ‖u‖2L2(T) (1.17)

is a prime integral of the Hamiltonian equation (1.1). Hence the solutions of
(1.1) are in one-to-one correspondence with those of the Hamiltonian equation

vt = ∂x∇K(v) with K := H + λM2 , λ ∈ R . (1.18)

More precisely, if u(t, x) is a solution of (1.1), then v(t, x) := u(t, x− ct), with
c := −4λM(u), is a solution of (1.18). Vice versa, if v(t, x) solves (1.18), then
the function u(t, x) := v(t, x + ct), with c := −4λM(v), is a solution of (1.1)
(M(v) is also a prime integral of the equation (1.18)).

The advantage of looking for quasi-periodic solutions of (1.18) is that, for
λ = 3ς/4, the fourth order Birkhoff normal form of K is diagonal (remark 3.3)
and therefore no conditions on the tangential sites S are required (remark 9.9).

3. The diophantine frequency vector ω(ξ) = (ωj)j∈S+ ∈ Rν of the quasi-periodic
solutions of Theorem 1.1 is O(|ξ|)-close as ξ → 0 (see (1.14)) to the integer
vector of the unperturbed linear frequencies

ω̄ := (̄31, . . . , ̄
3
ν) ∈ Nν . (1.19)

This makes perturbation theory more difficult. This is the difficulty due to
the fact that the mKdV equation (1.1) is completely resonant at u = 0.

4. As shown by (1.13) the expected quasi-periodic solutions are mainly supported
in Fourier space on the tangential sites S. The dynamics of the Hamiltonian
PDE (1.1) restricted (and projected) to the symplectic subspaces

HS :=
{
v =

∑
j∈S

uje
ijx
}
, H⊥S :=

{
z =

∑
j∈Sc

uje
ijx ∈ H1

0 (Tx)
}
, (1.20)

where Sc := {j ∈ Z \ {0} : j /∈ S}, is quite different. We call v the tangential
variable and z the normal one. On HS the dynamics is mainly governed by
a finite dimensional integrable system (see Proposition 3.1), and we find it
convenient to describe the dynamics in this subspace by introducing action-
angle variable, see section 4. On the infinite dimensional subspace H⊥S the
solution will stay forever close to the elliptic equilibrium z = 0.

In Theorem 1.1 it is stated that the quasi-periodic solutions are linearly stable.
This information is not only an important complement of the result, but also an
essential ingredient for the existence proof. Let us explain better what we mean.
By the general procedure in [10] we prove that, around each invariant torus, there
exist symplectic coordinates (see (6.13))

(ψ, η, w) ∈ Tν × Rν ×H⊥S
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in which the mKdV Hamiltonian (1.4) assumes the normal form

K(ψ, η, w) = ω · η +
1

2
K20(ψ)η · η +

(
K11(ψ)η, w

)
L2(T)

+
1

2

(
K02(ψ)w,w

)
L2(T)

+K≥3(ψ, η, w) (1.21)

where K≥3 collects the terms at least cubic in the variables (η, w), see remark 6.5.
In these coordinates the quasi-periodic solution reads t 7→ (ωt, 0, 0) and the corre-
sponding linearized equations are

ψ̇ = K20(ωt)η +KT
11(ωt)w

η̇ = 0

ẇ − ∂xK02(ωt)w = ∂xK11(ωt)η .

(1.22)

Thus the actions η(t) = η(0) do not evolve in time and the third equation reduces
to the forced PDE

ẇ = ∂xK02(ωt)[w] + ∂xK11(ωt)[η0] . (1.23)

Ignoring the forcing term ∂xK11(ωt)[η0] for a moment, we note that the equation
ẇ = ∂xK02(ωt)[w] is, up to a finite dimensional remainder (Proposition 7.4), the
restriction to H⊥S of the “variational equation”

ht = ∂x (∂u∇H)(u(ωt, x))[h] = XK(h) ,

where XK is the KdV Hamiltonian vector field with quadratic Hamiltonian K =
1
2((∂u∇H)(u)[h], h)L2(Tx) = 1

2(∂uuH)(u)[h, h]. This is a linear PDE with quasi-
periodically time-dependent coefficients of the form

ht = ∂xx(a1(ωt, x)∂xh) + ∂x(a0(ωt, x)h) . (1.24)

In section 8 we prove the reducibility of the linear operator ẇ− ∂xK02(ωt)w, which
conjugates (1.23) to the diagonal system (see (8.64))

∂tv = −iD∞v + f(ωt) (1.25)

where D∞ := Op{µ∞j }j∈Sc is a Fourier multiplier operator acting in Hs
⊥,

µ∞j := i(−m3j
3 +m1j) + r∞j ∈ iR , j ∈ Sc ,

with m3 = 1+O(ε3), m1 = O(ε2), supj∈Sc r
∞
j = o(ε2), see (8.61), (8.62). The eigen-

values µ∞j are the Floquet exponents of the quasi-periodic solution. The solutions
of the scalar non-homogeneous equations

v̇j + µ∞j vj = fj(ωt) , j ∈ Sc , µ∞j ∈ iR ,

are

vj(t) = cje
µ∞j t + ṽj(t) , where ṽj(t) :=

∑
l∈Zν

fjl e
iω·lt

iω · l + µ∞j

(recall that the first Melnikov conditions (8.66) hold at a solution). As a consequence,
the Sobolev norm of the solution of (1.25) satisfies

‖v(t)‖Hs
x
≤ C‖v(0)‖Hs

x
, ∀t ∈ R ,
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i.e. it does not increase in time.

We now describe in detail the strategy of proof of Theorem 1.1. Many of the
arguments that we use are quite general and of wide applicability to other PDEs.
Nevertheless, we think that a unique abstract KAM theorem applicable to all quasi-
linear PDEs can not be expected. Indeed the suitable pseudo-differential operators
that are required to conjugate the highest order of the linearized operator to constant
coefficients highly depend on the PDE at hand, see the discussion after (1.29).

There are two main issues in the proof:

1. Bifurcation analysis. Find approximate quasi-periodic solutions of (1.1) up
to a sufficiently small remainder (which, in our case, should be O(u4)). In
this step we also find the approximate “frequency-to-amplitude” modulation
of the frequency with respect to the amplitude, see (4.10). This is the goal of
sections 3 and 4.

2. Nash-Moser implicit function theorem. Prove that, close to the above
approximate solutions, there exist exact quasi-periodic solutions of (1.1). By
means of a Nash-Moser iteration, we construct a sequence of approximate
solutions that converges to a quasi-periodic solution of (1.1) (sections 5-9).

The key step consists in proving the invertibility of the linearized operator and
tame estimates for its inverse. This is achieved in two main steps.

(a) Symplectic decoupling procedure. The method in Berti-Bolle [10]
allows to approximately decouple the “tangential” and the “normal” dy-
namics around an approximate invariant torus (section 6). It reduces the
problem to the one of inverting a quasi-periodically forced PDE restricted
to the normal subspace H⊥S . Its precise form is found in section 7.2.

(b) Analysis of the linearized operator in the normal directions.
In sections 7, 8 we reduce the linearized equations to constant coefficients.
This involves three steps:

i. Reduction in decreasing symbols, sections 8.1-8.3 and 8.5,

ii. Linear Birkhoff normal form, section 8.4,

iii. KAM reducibility, section 8.6.

All the changes of variables used in the steps i)-iii) are ϕ-dependent families
of symplectic maps Φ(ϕ) which act on the phase space H1

0 (Tx). Therefore
they preserve the Hamiltonian dynamical systems structure of the conjugated
linear operators.

Let us discuss these issues in detail.

Weak Birkhoff normal form. According to the orthogonal splitting

H1
0 (Tx) := HS ⊕H⊥S

into the symplectic subspaces defined in (1.20), we decompose

u = v + z, v = ΠSu :=
∑
j∈S

uj e
ijx, z = Π⊥S u :=

∑
j∈Sc

uj e
ijx, (1.26)
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where ΠS , Π⊥S denote the orthogonal projectors on HS , H⊥S .
We perform a “weak” Birkhoff normal form (weak BNF), whose goal is to find

an invariant manifold of solutions of the third order approximate mKdV equation
(1.1), on which the dynamics is completely integrable, see section 3. We construct
in Proposition 3.1 a symplectic map ΦB such that the transformed Hamiltonian
H := H ◦ ΦB possesses the invariant subspace HS (see (1.20)). To this purpose we
have to eliminate the term

∫
v3z dx (which is linear in z). Then we check that its

dynamics on HS is integrable and non-isocronous. For that we perform the classical
finite dimensional Birkhoff normalization of the Hamiltonian term

∫
v4 dx which

turns out to be integrable and non-isocronous.
Since the present weak Birkhoff map has to remove only finitely many monomials,

it is the time 1-flow map of an Hamiltonian system whose Hamiltonian is supported
on only finitely many Fourier indices. Therefore it is close to the identity up to finite
dimensional operators, see Proposition 3.1. The key advantage is that it modifies N4

very mildly, only up to finite dimensional operators (see for example Lemma 7.1),
and thus the spectral analysis of the linearized equations (that we shall perform in
section 8) is essentially the same as if we were in the original coordinates.

The weak normal form (3.7) does not remove (nor normalize) the monomials
O(z2). We point out that a stronger normal form that removes/normalizes the
monomials O(z2) is also well-defined (it is called “partial Birkhoff normal form” in
Kuksin-Pöschel [25] and Pöschel [26]). However, we do not use it because, for such
a stronger normal form, the corresponding Birkhoff map is close to the identity only
up to an operator of order O(∂−1

x ), and so it would produce terms of order ∂xx and
∂x. For the same reason, we do not use the global nonlinear Fourier transform in
[20] (Birkhoff coordinates), which is close to the Fourier transform up to smoothing
operators of order O(∂−1

x ) (this is explicitly proved for KdV).
We remark that mKdV is simpler than KdV because the nonlinearity in (1.1) is

cubic and not only quadratic, and, as a consequence, less steps of Birkhoff normal
form are required to reach the sufficient smallness for the Nash-Moser scheme to
converge (see Remark 9.2).

Action-angle and rescaling. At this point we introduce action-angle variables on the
tangential sites (section 4) and, after the rescaling (4.5), we look for quasi-periodic
solutions of the Hamiltonian (4.9). Note that the coefficients of the normal form N
in (4.13) depend on the angles θ, unlike the usual KAM theorems [26], [22], where
the whole normal form is reduced to constant coefficients. This is because the weak
BNF of section 3 did not normalize the quadratic terms O(z2). These terms are
dealt with the “linear Birkhoff normal form” (linear BNF) in section 8.4. In some
sense the “partial” Birkhoff normal form of [26] is split into the weak BNF of section
3 and the linear BNF of sections 8.4.

The present functional formulation with the introduction of the action-angle
variables allows to prove the stability of the solutions (unlike the Lyapunov-Schmdit
reduction approach).

Nonlinear functional setting and approximate inverse. We look for a zero of the
nonlinear operator (5.6), where the unknown is the torus embeddeding ϕ 7→ i(ϕ),
and where the frequency ω is seen as an “external” parameter. This formulation is
convenient in order to verify the Melnikov non-resonance conditions required to in-
vert the linearized operators at each step. The solution is obtained by a Nash-Moser
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iterative scheme in Sobolev scales. The key step is to construct (for ω restricted to a
suitable Cantor-like set) an approximate inverse (à la Zehnder [30]) of the linearized
operator at any approximate solution. Roughly, this means to find a linear operator
which is an inverse at an exact solution. A major difficulty is that the tangential
and the normal dynamics near an invariant torus are strongly coupled.

Symplectic approximate decoupling. The above difficulty is overcome by implement-
ing the abstract procedure in Berti-Bolle [10], which was developed in order to prove
the existence of quasi-periodic solutions for autonomous NLW (and NLS) with a mul-
tiplicative potential. This approach reduces the search of an approximate inverse
for (5.6) to the invertibility of a quasi-periodically forced PDE restricted to the
normal directions. This method approximately decouples the tangential and the
normal dynamics around an approximate invariant torus, introducing a suitable set
of symplectic variables

(ψ, η, w) ∈ Tν × Rν ×H⊥S
near the torus, see (6.13). Note that, in the first line of (6.13), ψ is the “natural”
angle variable which coordinates the torus, and, in the third line, the normal variable
z is only translated by the component z0(ψ) of the torus. The second line completes
this transformation to a symplectic one. The canonicity of this map is proved in
[10] using the isotropy of the approximate invariant torus iδ, see Lemma 6.3. In
these new variables the torus ψ 7→ iδ(ψ) reads ψ 7→ (ψ, 0, 0). The main advantage
of these coordinates is that the second equation in (6.22) (which corresponds to the
action variables of the torus) can be immediately solved, see (6.24). Then it remains
to solve the third equation (6.25), i.e. to invert the linear operator Lω. This is a
quasi-periodic Hamiltonian perturbed linear Airy equation of the form

h 7→ Lωh := Π⊥S
(
ω ·∂ϕh+ ∂xx(a1∂xh) + ∂x(a0h) + ∂xRh

)
, ∀h ∈ H⊥S , (1.27)

where R is a finite dimensional remainder. The exact form of Lω is obtained in
Proposition 7.4, see (7.23).

Reduction to constant coefficients of the linearized operator in the normal directions.
In section 8 we conjugate the variable coefficients operator Lω to a diagonal operator
with constant coefficients which describes infinitely many harmonic oscillators

v̇j + µ∞j vj = 0 , µ∞j := i(−m3j
3 +m1j) + r∞j ∈ iR , j /∈ S , (1.28)

where the constants m3 − 1, m1 ∈ R and supj |r∞j | are small, see Theorem 8.15.
The main perturbative effect to the spectrum (and the eigenfunctions) of Lω is due
to the term a1(ωt, x)∂xxx (see (1.27)), and it is too strong for the usual reducibility
KAM techniques to work directly. The conjugacy of Lω with (1.28) is obtained in
several steps. The first task (obtained in sections 8.1-8.5) is to conjugate Lω to
another Hamiltonian operator of H⊥S with constant coefficients

L5 := Π⊥S
(
ω · ∂ϕ +m3∂xxx +m1∂x +R5

)
Π⊥S , m1,m3 ∈ R , (1.29)

up to a small bounded remainder R5 = O(∂0
x), see (8.56). This expansion of Lω

in “decreasing symbols” with constant coefficients follows [3], and it is somehow
in the spirit of the works of Iooss, Plotnikov and Toland [16]-[15] in water waves
theory, and Baldi [2] for Benjamin-Ono. It is obtained by transformations which
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are very different from the usual KAM changes of variables. We underline that the
specific form of these transformations depend on the structure of mKdV. For other
quasi-linear PDEs the analogous reduction requires different transformations, see
for example Alazard-Baldi [1], Berti-Montalto [11] for recent developments of these
techniques for gravity-capillary water waves, and Feola-Procesi [13] for quasi-linear
forced perturbations of Schrödinger equations.

The transformation of (1.27) into (1.29) is made in several steps.

1. Reduction of the highest order. The first step (section 8.1) is to eliminate the
x-dependence from the coefficient a1(ωt, x)∂xxx of the Hamiltonian operator
Lω. In order to find a symplectic diffeomorphism of H⊥S near A⊥, the starting
point is to observe that the diffeomorphism (see (8.1))

u 7→ (Au)(ϕ, x) := (1 + βx(ϕ, x))u(ϕ, x+ β(ϕ, x)) ,

is, for each ϕ ∈ Tν , the time-one flow map of the time dependent Hamiltonian
transport linear PDE

∂τu = ∂x(b(ϕ, τ, x)u) , b(ϕ, τ, x) :=
β(ϕ, x)

1 + τβx(ϕ, x)
, (1.30)

Actually the flow of (1.30) is the path of symplectic diffeomorphisms

u(ϕ, x) 7→ (1 + τβx(ϕ, x))u(ϕ, x+ τβ(ϕ, x)) , τ ∈ [0, 1] .

Thus, like in [5], we conjugate Lω with the symplectic time 1 flow map of the
projected Hamiltonian equation

∂τu = Π⊥S ∂x(b(τ, x)u) = ∂x(b(τ, x)u)−ΠS∂x(b(τ, x)u) , u ∈ H⊥S (1.31)

generated by the the quadratic Hamiltonian 1
2

∫
T b(τ, x)u2dx restricted to H⊥S .

By Lemma 8.1 (which was proved in [5]) such symplectic map differs from
A⊥ := Π⊥SAΠ⊥S only for finite dimensional operators.

This step may be seen as a quantitative application of the Egorov theorem, see
[28], which describes how the principal symbol of a pseudo-differential operator
(here a1(ωt, x)∂xxx) transforms under the flow of a linear hyperbolic PDE (here
(1.31)).

Because of the Hamiltonian structure, the previous step also eliminates the
term O(∂xx), see (8.13). In section 8.2 we eliminate the time-dependence of
the coefficient at the order ∂xxx.

2. Linear Birkhoff normal form. In section 8.4 we eliminate the variable coef-
ficient terms at the order O(ε2), which are present in the operator Lω, see
(7.23)-(7.24). This is a consequence of the fact that the weak BNF procedure
of section 3 did not touch the quadratic terms O(z2). These terms cannot be
reduced to constants by the perturbative scheme in section 8.6 (developed in
[3]) which applies to terms R such that Rγ−1 � 1 where γ is the diophan-
tine constant of the frequency vector ω (the case in [3] is simpler because the
diophantine constant is γ = O(1)). Here, as well as in [5], since mKdV is com-
pletely resonant, such γ = o(ε2), see (5.3). The terms of size ε2 are reduced
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to constant coefficients in section 8.4 by means of purely algebraic arguments
(linear BNF), which, ultimately, stem from the complete integrability of the
fourth order BNF of the mKdV equation (1.9). More general nonlinearities
should be dealt with the normal form arguments of Procesi-Procesi [27] for
generic choices of the tangential sites.

Complete diagonalization of (1.29). In section 8.6 we apply the abstract KAM re-
ducibility Theorem 4.2 of [3], which completely diagonalizes the linearized operator,
obtaining (1.28). The required smallness condition (8.58) for R5 holds, after that
the linear BNF of section 8.4 has put into constant coefficients the unbounded terms
of nonperturbative size ε2, and the conjugation procedure of sections 8.1-8.3 and 8.5
has arrived to a bounded and small remainder R5.

The Nash-Moser iteration to an invariant torus embedding. In section 9 we perform
the nonlinear Nash-Moser iteration which finally proves Theorem 5.1 and, therefore,
Theorem 1.1. The smallness condition that is required for the convergence of the
scheme is ε2‖F(ϕ, 0, 0)‖s0+µγ

−2 sufficiently small, see (9.5). It is verified because
‖XP (ϕ, 0, 0)‖s ≤s ε5−2b (Lemma 5.3) and γ = ε2+a with a > 0 small. See also
remark 9.2 for a comparison between the smallness condition required here with the
one in [5].

Notation. We shall use the notation

a ≤s b ⇐⇒ a ≤ C(s)b for some constant C(s) > 0 .

We denote by π0 the operator

u 7→ π0(u) := u− 1

2π

∫
T
u dx . (1.32)

2 Functional setting

For a function u : Ωo → E, ω 7→ u(ω), where (E, ‖ ‖E) is a Banach space and Ωo is
a subset of Rν , we define the sup-norm and the Lipschitz semi-norm

‖u‖sup
E := ‖u‖sup

E,Ωo
:= sup

ω∈Ωo

‖u(ω)‖E ,

‖u‖lipE := ‖u‖lipE,Ωo := sup
ω1 6=ω2

‖u(ω1)− u(ω2)‖E
|ω1 − ω2|

,
(2.1)

and, for γ > 0, the Lipschitz norm

‖u‖Lip(γ)
E := ‖u‖Lip(γ)

E,Ωo
:= ‖u‖sup

E + γ‖u‖lipE . (2.2)

If E = Hs we simply denote ‖u‖Lip(γ)
Hs := ‖u‖Lip(γ)

s .

Sobolev norms. We denote by

‖u‖s := ‖u‖Hs(Tν+1) := ‖u‖Hs
ϕ,x

(2.3)
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the Sobolev norm of functions u = u(ϕ, x) in the Sobolev space Hs(Tν+1). We
denote by ‖ ‖Hs

x
the Sobolev norm in the phase space of functions u := u(x) ∈

Hs(T). Moreover ‖ ‖Hs
ϕ

denotes the Sobolev norm of scalar functions, like the
Fourier components uj(ϕ).

We fix s0 := (ν+2)/2 so that Hs0(Tν+1) ↪→ L∞(Tν+1) and any space Hs(Tν+1),
s ≥ s0, is an algebra and satisfy the interpolation inequalities: for s ≥ s0,

‖uv‖s ≤ C(s0)‖u‖s‖v‖s0 + C(s)‖u‖s0‖v‖s , ∀u, v ∈ Hs(Td) .

The above inequalities also hold for the norms ‖ ‖Lip(γ)
s .

We also denote

Hs
S⊥(Tν+1) :=

{
u ∈ Hs(Tν+1) : u(ϕ, ·) ∈ H⊥S ∀ϕ ∈ Tν

}
,

Hs
S(Tν+1) :=

{
u ∈ Hs(Tν+1) : u(ϕ, ·) ∈ HS ∀ϕ ∈ Tν

}
.

Matrices with off-diagonal decay. A linear operator can be identified, as usual,
with its matrix representation. We recall the definition of the s-decay norm (intro-
duced in [9]) of an infinite dimensional matrix.

Definition 2.1. Let A := (Ai2i1)i1,i2∈Zb, b ≥ 1, be an infinite dimensional matrix.
Its s-decay norm |A|s is defined by

|A|2s :=
∑
i∈Zb
〈i〉2s

(
sup

i1−i2=i
|Ai2i1 |

)2
. (2.4)

For parameter dependent matrices A := A(ω), ω ∈ Ωo ⊆ Rν , the definitions (2.1)
and (2.2) become

|A|sup
s := sup

ω∈Ωo

|A(ω)|s, |A|lips := sup
ω1 6=ω2

|A(ω1)−A(ω2)|s
|ω1 − ω2|

, (2.5)

and |A|Lip(γ)
s := |A|sup

s + γ|A|lips .

Such a norm is modeled on the behavior of matrices representing the multipli-
cation operator by a function. Actually, given a function p ∈ Hs(Tb), the mul-
tiplication operator h 7→ ph is represented by the Töplitz matrix T i

′
i = pi−i′ and

|T |s = ‖p‖s. If p = p(ω) is a Lipschitz family of functions, then

|T |Lip(γ)
s = ‖p‖Lip(γ)

s .

The s-norm satisfies classical algebra and interpolation inequalities proved in [3].

Lemma 2.1. Let A = A(ω), B = B(ω) be matrices depending in a Lipschitz way on
the parameter ω ∈ Ωo ⊂ Rν . Then for all s ≥ s0 > b/2 there are C(s) ≥ C(s0) ≥ 1
such that

|AB|Lip(γ)
s ≤ C(s)|A|Lip(γ)

s |B|Lip(γ)
s ,

|AB|Lip(γ)
s ≤ C(s)|A|Lip(γ)

s |B|Lip(γ)
s0 + C(s0)|A|Lip(γ)

s0 |B|Lip(γ)
s .
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The s-decay norm controls the Sobolev norm, namely

‖Ah‖Lip(γ)
s ≤ C(s)

(
|A|Lip(γ)

s0 ‖h‖Lip(γ)
s + |A|Lip(γ)

s ‖h‖Lip(γ)
s0

)
.

Let now b := ν + 1. An important sub-algebra is formed by the Töplitz in time
matrices defined by

A
(l2,j2)
(l1,j1) := Aj2j1(l1 − l2) ,

whose decay norm (2.4) is

|A|2s =
∑

j∈Z,l∈Zν

(
sup

j1−j2=j
|Aj2j1(l)|

)2〈l, j〉2s .
These matrices are identified with the ϕ-dependent family of operators

A(ϕ) :=
(
Aj2j1(ϕ)

)
j1,j2∈Z , Aj2j1(ϕ) :=

∑
l∈Zν

Aj2j1(l)eil·ϕ

which act on functions of the x-variable as

A(ϕ) : h(x) =
∑
j∈Z

hje
ijx 7→ A(ϕ)h(x) =

∑
j1,j2∈Z

Aj2j1(ϕ)hj2e
ij1x .

All the transformations that we construct in this paper are of this type (with
j, j1, j2 6= 0 because they act on the phase space H1

0 (Tx)).

Definition 2.2. We say that

1. an operator (Ah)(ϕ, x) := A(ϕ)h(ϕ, x) is symplectic if each A(ϕ), ϕ ∈ Tν , is
a symplectic map of the phase space (or of a symplectic subspace like H⊥S )

2. the operator ω·∂ϕ−∂xG(ϕ) is Hamiltonian if each G(ϕ), ϕ ∈ Tν , is symmetric;

3. an operator is real if it maps real-valued functions into real-valued functions.

A Hamiltonian operator is transformed, under a symplectic map, into another
Hamiltonian operator, see [3]-section 2.3.

We conclude this preliminary section recalling the following well known lemmata
about composition of functions (see, e.g., Appendix of [3]).

Lemma 2.2 (Composition). Assume f ∈ Cs(Td × B1), B1 := {y ∈ Rm : |y| ≤ 1}.
Then ∀u ∈ Hs(Td,Rm) such that ‖u‖L∞ < 1, the composition operator f̃(u)(x) :=
f(x, u(x)) satisfies ‖f̃(u)‖s ≤ C‖f‖Cs(‖u‖s + 1) where the constant C depends on
s, d. If f ∈ Cs+2 and ‖u+ h‖L∞ < 1, then for k = 0, 1

∥∥f̃(u+ h)−
k∑
i=0

f̃ (i)(u)

i!
[hi]
∥∥
s
≤ C‖f‖Cs+2 ‖h‖kL∞(‖h‖s + ‖h‖L∞‖u‖s).

The statement also holds replacing ‖ ‖s with the norms | |s,∞ of W s,∞(Td).
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Lemma 2.3 (Change of variable). Let p ∈ W s,∞(Td,Rd), s ≥ 1, with ‖p‖W 1,∞

≤ 1/2. Then the function f(x) = x+p(x) is invertible, with inverse f−1(y) = y+q(y)
where q ∈W s,∞(Td,Rd), and ‖q‖W s,∞ ≤ C‖p‖W s,∞.

If, moreover, p depends in a Lipschitz way on a parameter ω ∈ Ω ⊂ Rν , and

‖Dxp‖L∞ ≤ 1/2 for all ω, then ‖q‖Lip(γ)
W s,∞ ≤ C‖p‖Lip(γ)

W s+1,∞. The constant C := C(d, s)
is independent of γ.

If u ∈ Hs(Td,C), then (u ◦ f)(x) := u(x+ p(x)) satisfies

‖u ◦ f‖s ≤ C(‖u‖s + ‖p‖W s,∞‖u‖1),

‖u ◦ f − u‖s ≤ C(‖p‖L∞‖u‖s+1 + ‖p‖W s,∞‖u‖2),

‖u ◦ f‖Lip(γ)
s ≤ C

(
‖u‖Lip(γ)

s+1 + ‖p‖Lip(γ)
W s,∞ ‖u‖Lip(γ)

2

)
.

The function u ◦ f−1 satisfies the same bounds.

3 Weak Birkhoff normal form

In this section it is convenient to analize the mKdV equation in the Fourier repre-
sentation

u(x) =
∑

j∈Z\{0}
uje

ijx, u(x)←→ u := (uj)j∈Z\{0}, u−j = uj , (3.1)

where the Fourier indices are nonzero integers j, by the definition (1.5) of the phase
space, and u−j = uj because u(x) is real-valued. The symplectic structure (1.6)
writes

Ω =
1

2

∑
j 6=0

1

ij
duj ∧ du−j , Ω(u, v) =

∑
j 6=0

1

ij
ujv−j , (3.2)

the Hamiltonian vector field XH in (1.3) and the Poisson bracket {F,G} in (1.7) are
respectively

[XH(u)]j = ij∂u−jH(u), {F,G}(u) = −
∑
j 6=0

ij(∂u−jF )(u)(∂ujG)(u). (3.3)

We shall sometimes identify v ≡ (vj)j∈S and z ≡ (zj)j∈Sc .

The Hamiltonian of the perturbed cubic mKdV equation (1.1) is H = H2 +H4 +
H≥5 (see (1.4)) where

H2(u) :=

∫
T

u2
x

2
dx, H4(u) := −ς

∫
T

u4

4
dx, H≥5(u) :=

∫
T
f(x, u, ux)dx, (3.4)

ς = ±1 and f satisfies (1.8). According to the splitting (1.26) u = v + z, where
v ∈ HS and z ∈ H⊥S , we have H2(u) = H2(v) +H2(z) and

H4(u) = − ς
4

∫
T
v4 dx− ς

∫
T
v3z dx− 3ς

2

∫
T
v2z2 dx− ς

∫
T
vz3 dx− ς

4

∫
T
z4 dx.

For a finite-dimensional space

E := EC := span{eijx : 0 < |j| ≤ C}, C > 0, (3.5)
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let ΠE denote the corresponding L2-projector on E.
In the next proposition we construct a symplectic map ΦB such that the trans-

formed Hamiltonian H := H ◦ ΦB possesses the invariant subspace HS defined in
(1.20), and its dynamics on HS is integrable and non-isocronous. To this purpose we
have to eliminate the term

∫
v3z dx (which is linear in z) and to normalize the term∫

v4 dx (which is independent of z) in the quartic component of the Hamiltonian.

Proposition 3.1 (Weak Birkhoff normal form). There exists an analytic invertible
symplectic transformation of the phase space ΦB : H1

0 (Tx)→ H1
0 (Tx) of the form

ΦB(u) = u+ Ψ(u), Ψ(u) = ΠEΨ(ΠEu), (3.6)

where E is a finite-dimensional space as in (3.5), such that the transformed Hamil-
tonian is

H := H ◦ ΦB = H2 +H4 +H≥5 , (3.7)

where H2 is defined in (3.4),

H4 :=
3ς

4

(∑
j∈S
|uj |4 −

∑
j,j′∈S

|uj |2|uj′ |2
)
− 3ς

2

∫
T
v2z2 dx

− ς
∫
T
vz3 dx− ς

4

∫
T
z4 dx,

(3.8)

and H≥5 collects all the terms of order at least five in (v, z).

Proof. In Fourier coordinates (3.1) we have (see (3.4))

H2(u) =
1

2

∑
j 6=0

j2|uj |2, H4(u) = − ς
4

∑
j1+j2+j3+j4=0

uj1uj2uj3uj4 . (3.9)

We look for a symplectic transformation Φ of the phase space which eliminates or
normalizes the monomials uj1uj2uj3uj4 of H4 with at most one index outside S. By
the relation j1 + j2 + j3 + j4 = 0, they are finitely many. Thus, we look for a map
Φ := (Φt

F )|t=1 which is the time 1-flow map of an auxiliary quartic Hamiltonian

F (u) :=
∑

j1+j2+j3+j4=0

Fj1j2j3j4uj1uj2uj3uj4 .

The transformed Hamiltonian is

H := H ◦ Φ = H2 +H4 +H≥5, H4 = {H2, F}+H4, (3.10)

where H≥5 collects all the terms in H of order at least five. By (3.9) and (3.3) we
calculate

H4 =
∑

j1+j2+j3+j4=0

{
− ς

4
− i(j3

1 + j3
2 + j3

3 + j3
4)Fj1j2j3j4

}
uj1uj2uj3uj4 .

In order to eliminate or normalize only the monomials with at most one index outside
S, we choose

Fj1j2j3j4 :=


iς

4(j3
1 + j3

2 + j3
3 + j3

4)
if (j1, j2, j3, j4) ∈ A ,

0 otherwise,
(3.11)
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where

A :=
{

(j1, j2, j3, j4) ∈ (Z \ {0})4 : j1 + j2 + j3 + j4 = 0, j3
1 + j3

2 + j3
3 + j3

4 6= 0,

and at least three among j1, j2, j3, j4 belong to S
}
.

We recall the following elementary identity (Lemma 13.4 in [19]).

Lemma 3.2. Let j1, j2, j3, j4 ∈ Z such that j1 + j2 + j3 + j4 = 0. Then

j3
1 + j3

2 + j3
3 + j3

4 = −3(j1 + j2)(j1 + j3)(j2 + j3).

By definition (3.11), H4 does not contain any monomial uj1uj2uj3uj4 with three
indices in S and one outside, because there exist no integers j1, j2, j3 ∈ S, j4 ∈ Sc
satisfying j1 + j2 + j3 + j4 = 0 and j3

1 + j3
2 + j3

3 + j3
4 = 0, by Lemma 3.2 and the fact

that S is symmetric.
By construction, the quartic monomials with at least two indices outside S are

not changed by Φ. Also, by construction, the monomials uj1uj2uj3uj4 in H4 with all
integers in S are those for which j1 + j2 + j3 + j4 = 0 and j3

1 + j3
2 + j4

3 + j3
4 = 0. By

Lemma 3.2, we split ∑
j1,j2,j3,j4∈S

j1+j2+j3+j4=0
j31+j32+j33+j34=0

uj1uj2uj3uj4 = A1 +A2 +A3

where A1 is given by the sum over j1, j2, j3, j4 ∈ S, j1 + j2 + j3 + j4 = 0 with the
restriction j1 + j2 = 0, A2 with the restriction j1 + j2 6= 0 and j1 + j3 = 0, and A3

with the restriction j1 + j2 6= 0, j1 + j3 6= 0 and j2 + j3 = 0. We get

A2 =
∑
j,j′∈S
j′ 6=−j

|uj |2|uj′ |2 =
∑
j,j′∈S

|uj |2|uj′ |2 −
∑
j∈S
|uj |4 , A1 =

∑
j,j′∈S

|uj |2|uj′ |2 ,

A3 =
∑
j,j′∈S
j′ 6=±j

|uj |2|uj′ |2 =
∑
j,j′∈S

|uj |2|uj′ |2 − 2
∑
j∈S
|uj |4 ,

whence (3.8) follows.

Remark 3.3. In the Birkhoff normal form for the Hamiltonian K = H + λM2

defined in (1.18), three additional terms appear in (3.8), which are

λ
∑
j,j′∈S

|uj |2|uj′ |2 + 2λM(v)M(z) + λM2(z).

Then in (3.8) the sum (λ− 3ς
4 )
∑

j,j′∈S |uj |2|uj′ |2 vanishes if we choose λ := 3ς/4.

4 Action-angle variables

We introduce action-angle variables on the tangential directions by the change of
coordinates

uj :=

√
ξ̃j + |j|ỹj eiθ̃j for j ∈ S ; uj := z̃j for j ∈ Sc , (4.1)
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where (recall that u−j = uj)

ξ̃−j = ξ̃j , ξ̃j > 0 , ỹ−j = ỹj , θ̃−j = −θ̃j , θ̃j , ỹj ∈ R , ∀j ∈ S . (4.2)

To simplify notation, for the tangential sites S+ := {̄1, . . . , ̄ν} we also denote
θ̃̄i := θ̃i, ỹ̄i := ỹi, ξ̃̄i := ξ̃i, i = 1, . . . ν.

The symplectic 2-form Ω in (3.2) (i.e. (1.6)) becomes

W :=
ν∑
i=1

dθ̃i ∧ dỹi +
1

2

∑
j∈Sc\{0}

1

ij
dz̃j ∧ dz̃−j =

( ν∑
i=1

dθ̃i ∧ dỹi
)
⊕ ΩS⊥ = dΛ (4.3)

where ΩS⊥ denotes the restriction of Ω to H⊥S (see (1.20)) and Λ is the Liouville
1-form on Tν × Rν ×H⊥S defined by Λ(θ̃,ỹ,z̃) : Rν × Rν ×H⊥S → R,

Λ(θ̃,ỹ,z̃)[θ̂, ŷ, ẑ] := −ỹ · θ̂ +
1

2
(∂−1
x z̃, ẑ)L2(T) . (4.4)

We rescale the “unperturbed actions” ξ and the variables θ̃, ỹ, z̃ as

ξ̃ = ε2ξ , ỹ = ε2by , z̃ = εbz , b > 1. (4.5)

The symplectic 2-form in (4.3) transforms into ε2bW. Hence the Hamiltonian system
generated by H in (3.7) transforms into the new Hamiltonian system

θ̇ = ∂yHε(θ, y, z),

ẏ = −∂θHε(θ, y, z),

ż = ∂x∇zHε(θ, y, z),

Hε := ε−2bH ◦Aε, (4.6)

where

Aε(θ, y, z) := εvε(θ, y) + εbz, vε(θ, y) :=
∑
j∈S

√
ξj + ε2(b−1)|j|yj eiθjeijx. (4.7)

We still denote by
XHε = (∂yHε,−∂θHε, ∂x∇zHε)

the Hamiltonian vector field in the variables (θ, y, z) ∈ Tν × Rν ×H⊥S .
We now write explicitly the Hamiltonian Hε(θ, y, z) defined in (4.6). Recall the

expression of H given in (3.7). The quadratic Hamiltonian H2 in (3.4) transforms
into

ε−2bH2 ◦Aε = const+
∑

j∈S+
j3yj +

1

2

∫
T
z2
x dx , (4.8)

and, by (3.8), (3.7) we get (writing, in short, vε := vε(θ, y))

Hε(θ, y, z) = e(ξ) + α(ξ) · y +
1

2

∫
T
z2
x dx−

3ς

2
ε2

∫
T
v2
εz

2 dx

+ 3ςε2b
(1

2

∑
j∈S+

j2y2
j −

∑
j,j′∈S+

jyjj
′yj′
)
− ςε1+b

∫
T
vεz

3 dx

− ς

4
ε2b

∫
T
z4 dx+ ε−2bH≥5(εvε(θ, y) + εbz) (4.9)
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where e(ξ) is a constant, and α(ξ) ∈ Rν is the vector of components

αi(ξ) := ̄3i + 3ςε2[ξi − 2(ξ1 + . . .+ ξν)]̄i , i = 1, . . . , ν .

This is the “frequency-to-amplitude” map which describes, at the main order, how
the tangential frequencies are shifted by the amplitudes ξ := (ξ1, . . . , ξν). It can be
written in compact form as

α(ξ) := ω̄ + ε2Aξ , A := 3ςDS(I − 2U), (4.10)

where ω̄ := (̄31, . . . , ̄
3
ν) ∈ Nν (see (1.19)) is the vector of the unperturbed linear

frequencies of oscillations on the tangential sites, DS is the diagonal matrix

DS := diag(̄1, . . . , ̄ν) ∈ Mat(ν × ν) ,

I is the ν × ν identity matrix, and U is the ν × ν matrix with all entries equal to
1. The matrix A is often called the “twist” matrix . It turns out to be invertible.
Indeed, since U2 = νU , one has (I − 2U)(I − 2

2ν−1 U) = I, and therefore

A−1 =
1

3ς

(
I − 2

2ν − 1
U
)
D−1
S . (4.11)

With this notation, one can also write

1

2

∑
j∈S+

j2y2
j −

∑
j,j′∈S+

jyjj
′yj′ =

1

2
(I − 2U)(DSy) · (DSy). (4.12)

Remark 4.1. By remark 3.3, for the Hamiltonian K = H + λM2, λ := 3ς/4,
defined in (1.18) the twist matrix in the frequency-amplitude relation (4.10) becomes
A = 3ςDS , which is diagonal.

We write the Hamiltonian in (4.9) (eliminating the constant e(ξ) which is irrel-
evant for the dynamics) as Hε = N + P , where

N (θ, y, z) = α(ξ) · y +
1

2

(
N(θ)z, z

)
L2(T)

,(
N(θ)z, z

)
L2(T)

:=

∫
T
z2
xdx− 3ςε2

∫
T
v2
ε(θ, 0)z2 dx ,

(4.13)

describes the linear dynamics, and P := Hε −N , namely

P :=
3ς

2
ε2b(I − 2U)(DSy) · (DSy)− 3ς

2
ε2

∫
T
[v2
ε(θ, y)− v2

ε(θ, 0)]z2 dx

− ςε1+b

∫
T
vε(θ, y)z3 dx− ς

4
ε2b

∫
T
z4 dx+ ε−2bH≥5(εvε(θ, y) + εbz) , (4.14)

collects the nonlinear perturbative effects.
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5 The nonlinear functional setting

We look for an embedded invariant torus

i : Tν → Tν × Rν ×H⊥S , ϕ 7→ i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ)) (5.1)

of the Hamiltonian vector field XHε filled by quasi-periodic solutions with diophan-
tine frequency ω ∈ Rν , that we regard as independent parameters. We require that
ω belongs to the set

Ωε := α([1, 2]ν) = {α(ξ) : ξ ∈ [1, 2]ν} (5.2)

where α is the affine diffeomorphism (4.10). Since any ω ∈ Ωε is ε2-close to the
integer vector ω̄ ∈ Nν (see (4.10), (1.19)), we require that the constant γ in the
diophantine inequality

|ω · l| ≥ γ〈l〉−τ , ∀l ∈ Zν \ {0} , satisfies γ = ε2+a for some a > 0 . (5.3)

Note that the definition of γ in (5.3) is slightly stronger than the minimal condition,
which is γ ≤ cε2 with c small enough. In addition to (5.3) we shall also require that
ω satisfies the first and second order Melnikov-non-resonance conditions (8.63).

We fix the amplitude ξ as a function of ω and ε, as

ξ := ε−2A−1[ω − ω̄] , (5.4)

so that α(ξ) = ω (see (4.10)).

Now we look for an embedded invariant torus of the modified Hamiltonian vector
field XHε,ζ = XHε + (0, ζ, 0), ζ ∈ Rν , which is generated by the Hamiltonian

Hε,ζ(θ, y, z) := Hε(θ, y, z) + ζ · θ , ζ ∈ Rν . (5.5)

Note that the vector field XHε,ζ is periodic in θ (unlike the Hamiltonian Hε,ζ). We
introduce ζ in order to adjust the average in the second equation of the linearized
system (6.22), see (6.23). The vector ζ has however no dynamical consequences.
Indeed it turns out that an invariant torus for the Hamiltonian vector field XHε,ζ

is actually invariant for XHε itself, see Lemma 6.1. Hence we look for zeros of the
nonlinear operator

F(i, ζ) := F(i, ζ, ω, ε) := Dωi(ϕ)−XHε(i(ϕ)) + (0, ζ, 0) (5.6)

=

 Dωθ(ϕ)− ∂yHε(i(ϕ))
Dωy(ϕ) + ∂θHε(i(ϕ)) + ζ
Dωz(ϕ)− ∂x∇zHε(i(ϕ))


=

 DωΘ(ϕ)− ∂yP (i(ϕ))
Dωy(ϕ) + 1

2∂θ(N(θ(ϕ))z(ϕ), z(ϕ))L2(T) + ∂θP (i(ϕ)) + ζ

Dωz(ϕ)− ∂xN(θ(ϕ))z(ϕ)− ∂x∇zP (i(ϕ))


where Θ(ϕ) := θ(ϕ) − ϕ is (2π)ν-periodic and we use (here and everywhere in the
paper) the short notation

Dω := ω · ∂ϕ . (5.7)
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The Sobolev norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ)− (ϕ, 0, 0) := (Θ(ϕ), y(ϕ), z(ϕ)) , Θ(ϕ) := θ(ϕ)− ϕ , (5.8)

is ‖I‖s := ‖Θ‖Hs
ϕ

+ ‖y‖Hs
ϕ

+ ‖z‖s where ‖z‖s := ‖z‖Hs
ϕ,x

is defined in (2.3). We link

the rescaling (4.5) with the diophantine constant γ = ε2+a by choosing

γ = ε2+a = ε2b , b = 1 + (a/2) , a ∈ (0, 1/6). (5.9)

Other choices are possible, see Remark 5.2.

Theorem 5.1. Let the tangential sites S in (1.11) satisfy (1.12). For all ε ∈ (0, ε0),
where ε0 is small enough, there exist a constant C > 0 and a Cantor-like set Cε ⊂ Ωε,
with asympotically full measure as ε→ 0, namely

lim
ε→0

|Cε|
|Ωε|

= 1 , (5.10)

such that, for all ω ∈ Cε, there exists a solution i∞(ϕ) := i∞(ω, ε)(ϕ) of the equation
F(i∞, 0, ω, ε) = 0 (the nonlinear operator F(i, ζ, ω, ε) is defined in (5.6)). Hence
the embedded torus ϕ 7→ i∞(ϕ) is invariant for the Hamiltonian vector field XHε,
and it is filled by quasi-periodic solutions with frequency ω. The torus i∞ satisfies

‖i∞(ϕ)− (ϕ, 0, 0)‖Lip(γ)
s0+µ ≤ Cε5−2bγ−1 = Cε1−2a (5.11)

for some µ := µ(ν) > 0. Moreover, the torus i∞ is linearly stable.

Theorem 5.1 is proved in sections 6-9. It implies Theorem 1.1 where the ξj
in (1.13) are the components of the vector A−1[ω − ω̄]. By (5.11), going back to
the variables before the rescaling (4.5), we get Θ̃∞ = O(ε5−4b), ỹ∞ = O(ε5−2b),
z̃∞ = O(ε5−3b).

Remark 5.2. The way to link the amplitude-rescaling (4.5) with the diophantine
constant γ = ε2+a in (5.3) is not unique.

The choice ε2b < γ (i.e. “b > 1 large”) reduces to study the Hamiltonian Hε in
(4.9) as a perturbation of an isochronous system (as in [22], [24], [26]). We can take
b = 4/3 in order to minimize the size of the perturbation P = O(ε7/3), estimating
uniformly all the terms in the last two lines of (4.9). As a counterpart we have
to regard in (4.9) the constants α := α(ξ) ∈ Rν (or ξ in (4.7)) as independent
variables. This is the perspective described for example in [10]. Then the Nash-
Moser scheme produces iteratively a sequence of ξn = ξn(ω) and embeddings ϕ 7→
in(ϕ) := (θn(ϕ), yn(ϕ), zn(ϕ)) at the same time.

The case ε2b > γ (i.e. “b ≥ 1 small”), in particular if b = 1, reduces to study
the Hamiltonian Hε in (4.9) as a perturbation of a non-isochronous system à la
Arnold-Kolmogorov (note that the quadratic Hamiltonian in (4.12) satisfies the usual
Kolmorogov non-degeneracy condition). In this case, the constant ξj in (4.7) and
the average of |j|yj(ϕ) have the same size and therefore the same role. Then we may
consider ξj as fixed, and tune the average of the action component yj(ϕ) in order to
solve the linear equation (6.28), which corresponds to the angle component. We use
the invertible (averaged) “twist”-matrix (6.30) to impose that the right hand side
in (6.28) has zero average.
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The intermediate case ε2b = γ, adopted in this paper (as well as in [5]), has the
advantage to avoid the introduction of the ξ(ω) as an independent variable, but it
also enables to estimate uniformly the sizes of the components of (Θ(ϕ), y(ϕ), z(ϕ))
with no distinctions.

Now we prove tame estimates for the composition operator induced by the Hamil-
tonian vector fields XN and XP in (5.6), which are used in the next sections. Since
the functions y 7→

√
ξ + ε2(b−1)|j|y, θ 7→ eiθ are analytic for ε small enough and

|y| ≤ C, the composition Lemma 2.2 implies that, for all Θ, y ∈ Hs(Tν ,Rν) with
‖Θ‖s0 , ‖y‖s0 ≤ 1, setting θ(ϕ) := ϕ+ Θ(ϕ), one has the tame estimate

‖vε(θ(ϕ), y(ϕ))‖s ≤s 1 + ‖Θ‖s + ‖y‖s .

Hence the map Aε in (4.7) satisfies, for all ‖I‖Lip(γ)
s0 ≤ 1 (see (5.8))

‖Aε(θ(ϕ), y(ϕ), z(ϕ))‖Lip(γ)
s ≤s ε(1 + ‖I‖Lip(γ)

s ) . (5.12)

In the following lemma we collect tame estimates for the Hamiltonian vector fields
XN , XP , XHε (see (4.13), (4.14)) whose proof is a direct application of classical
tame product and composition estimates.

Lemma 5.3. Let I(ϕ) in (5.8) satisfy ‖I‖Lip(γ)
s0+3 ≤ Cε5−2bγ−1 = Cε5−4b. Then,

writing in short ‖ ‖s to indicate ‖ ‖Lip(γ)
s , one has

‖∂yP (i)‖s ≤s ε3 + ε2b‖I‖s+3 ‖∂θP (i)‖s ≤s ε5−2b(1 + ‖I‖s+3)

‖∇zP (i)‖s ≤s ε4−b + ε6−3b‖I‖s+3 ‖XP (i)‖s ≤s ε5−2b + ε2b‖I‖s+3

‖∂θ∂yP (i)‖s ≤s ε3 + ε5−2b‖I‖s+3 ‖∂y∇zP (i)‖s ≤s ε2+b + ε2b‖I‖s+3

‖∂yyP (i)− ε2bADS‖s ≤s ε1+2b + ε3‖I‖s+3

(A, DS are defined in (4.10)) and, for all ı̂ := (Θ̂, ŷ, ẑ),

‖∂ydiXP (i)[̂ı ]‖s ≤s ε2b
(
‖̂ı ‖s+3 + ‖I‖s+3‖̂ı ‖s0+3

)
(5.13)

‖diXHε(i)[̂ı ] + (0, 0, ∂xxxẑ)‖s ≤s ε2
(
‖̂ı ‖s+3 + ‖I‖s+3‖̂ı ‖s0+3

)
(5.14)

‖d2
iXHε(i)[̂ı, ı̂ ]‖s ≤s ε2

(
‖̂ı ‖s+3‖̂ı ‖s0+3 + ‖I‖s+3‖̂ı ‖2s0+3

)
. (5.15)

In the sequel we also use that, by the diophantine condition (5.3), the operator
D−1
ω (see (5.7)) is defined for all functions u with zero ϕ-average, and satisfies

‖D−1
ω u‖s ≤ Cγ−1‖u‖s+τ , ‖D−1

ω u‖Lip(γ)
s ≤ Cγ−1‖u‖Lip(γ)

s+2τ+1 . (5.16)

6 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of
F(i, ζ) = 0, we now construct an approximate right inverse (which satisfies tame
estimates) of the linearized operator

di,ζF(i0, ζ0)[̂ı , ζ̂] = Dω ı̂− diXHε(i0(ϕ))[̂ı] + (0, ζ̂, 0) , (6.1)

see Theorem 6.9. Note that di,ζF(i0, ζ0) is independent of ζ0 (see (5.6)).
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The notion of approximate right inverse is introduced in [30]. It denotes a linear
operator which is an exact right inverse at a solution (i0, ζ0) of F(i0, ζ0) = 0. We
implement the general strategy in [10] which reduces the search of an approximate
right inverse of (6.1) to the search of an approximate inverse on the normal directions
only.

It is well known that an invariant torus i0 with diophantine flow is isotropic (see
e.g. [10]), namely the pull-back 1-form i∗0Λ is closed, where Λ is the Liouville 1-form
in (4.4). This is tantamount to say that the 2-form W (see (4.3)) vanishes on the
torus i0(Tν), because i∗0W = i∗0dΛ = di∗0Λ. For an “approximately invariant” torus
i0 the 1-form i∗0Λ is only “approximately closed”. In order to make this statement
quantitative we consider

i∗0Λ =
∑ν

k=1
ak(ϕ)dϕk ,

ak(ϕ) := − ([∂ϕθ0(ϕ)]T y0(ϕ))k +
1

2

(
∂ϕkz0(ϕ), ∂−1

x z0(ϕ)
)
L2(T)

(6.2)

and we quantify how small is

i∗0W = d i∗0Λ =
∑

1≤k<j≤ν
Akj(ϕ)dϕk ∧ dϕj , Akj := ∂ϕkaj − ∂ϕjak. (6.3)

Along this section we will always assume the following hypothesis (which will be
verified at each step of the Nash-Moser iteration):

• Assumption. The map ω 7→ i0(ω) is a Lipschitz function defined on some subset
Ωo ⊂ Ωε, where Ωε is defined in (5.2), and, for some µ := µ(τ, ν) > 0,

‖I0‖Lip(γ)
s0+µ ≤ Cε5−2bγ−1 = Cε5−4b, ‖Z‖Lip(γ)

s0+µ ≤ Cε5−2b, (6.4)

γ = ε2+a = ε2b , b := 1 + (a/2) , a ∈ (0, 1/6),

where I0(ϕ) := i0(ϕ)− (ϕ, 0, 0), and

Z(ϕ) := (Z1, Z2, Z3)(ϕ) := F(i0, ζ0)(ϕ) = ω · ∂ϕi0(ϕ)−XHε,ζ0
(i0(ϕ)) (6.5)

is the “error” function.

Lemma 6.1 (Lemma 6.1 in [5]). |ζ0|Lip(γ) ≤ C‖Z‖Lip(γ)
s0 . If F(i0, ζ0) = 0, then

ζ0 = 0, and the torus i0(ϕ) is invariant for XHε.

Now we estimate the size of i∗0W in terms of Z. From (6.2), (6.3) one has

‖Akj‖
Lip(γ)
s ≤s ‖I0‖Lip(γ)

s+2 . Moreover, Akj also satisfies the following bound.

Lemma 6.2 (Lemma 6.2 in [5]). The coefficients Akj(ϕ) in (6.3) satisfy

‖Akj‖Lip(γ)
s ≤s γ−1

(
‖Z‖Lip(γ)

s+2τ+2 + ‖Z‖Lip(γ)
s0+1 ‖I0‖Lip(γ)

s+2τ+2

)
. (6.6)

As in [10], we first modify the approximate torus i0 to obtain an isotropic torus
iδ which is still approximately invariant. We denote the Laplacian ∆ϕ :=

∑ν
k=1 ∂

2
ϕk

.

Lemma 6.3 (Isotropic torus). The torus iδ(ϕ) := (θ0(ϕ), yδ(ϕ), z0(ϕ)) defined by

yδ := y0 + [∂ϕθ0(ϕ)]−Tρ(ϕ) , ρj(ϕ) := ∆−1
ϕ

∑ν

k=1
∂ϕjAkj(ϕ) (6.7)
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is isotropic. If (6.4) holds, then, for some σ := σ(ν, τ),

‖yδ − y0‖Lip(γ)
s ≤s ‖I0‖Lip(γ)

s+σ , (6.8)

‖yδ − y0‖Lip(γ)
s ≤s γ−1

{
‖Z‖Lip(γ)

s+σ + ‖Z‖Lip(γ)
s0+σ ‖I0‖Lip(γ)

s+σ

}
, (6.9)

‖F(iδ, ζ0)‖Lip(γ)
s ≤s ‖Z‖Lip(γ)

s+σ + ‖I0‖Lip(γ)
s+σ ‖Z‖

Lip(γ)
s0+σ , (6.10)

‖∂i[iδ][̂ı]‖s ≤s ‖̂ı‖s + ‖I0‖s+σ‖̂ı‖s . (6.11)

In the paper we denote equivalently the differential by ∂i or di. Moreover we
denote by σ := σ(ν, τ) possibly different (larger) “loss of derivatives” constants.

Proof. It is sufficient to closely follow the proof of Lemma 6.3 of [5]. We men-

tion the only difference: equation (6.11) of [5] is ‖F(iδ, ζ0)‖Lip(γ)
s ≤s ‖Z‖Lip(γ)

s+σ +

ε2b−1γ−1‖I0‖Lip(γ)
s+σ ‖Z‖

Lip(γ)
s0+σ , with a big factor ε2b−1γ−1 = ε−1 more with respect

to the present bound (6.10). In (6.10) there is no such a factor, because, by
the estimates for ∂θ∂yP, ∂yyP, ∂y∇zP in Lemma 5.3, here we have ‖∂yXP (i)‖s ≤s
ε2b(1 + ‖I‖s+3). Hence (6.8), (6.9), (6.4) imply that

‖XP (iδ)−XP (i0)‖s ≤s ‖Z‖s+σ + ‖I0‖s+σ‖Z‖s0+σ . (6.12)

Then the proof goes on as in [5], without the large factor ε2b−1γ−1.

In order to find an approximate inverse of the linearized operator di,ζF(iδ) we
introduce a suitable set of symplectic coordinates nearby the isotropic torus iδ. We
consider the map Gδ : (ψ, η, w)→ (θ, y, z) of the phase space Tν ×Rν ×H⊥S defined
by θy

z

 := Gδ

ψη
w

 :=

 θ0(ψ)

yδ(ψ) + [∂ψθ0(ψ)]−T η +
[
(∂θz̃0)(θ0(ψ))

]T
∂−1
x w

z0(ψ) + w

 (6.13)

where z̃0(θ) := z0(θ−1
0 (θ)). It is proved in [10] that Gδ is symplectic, using that the

torus iδ is isotropic (Lemma 6.3). In the new coordinates, iδ is the trivial embedded
torus (ψ, η, w) = (ψ, 0, 0). The transformed Hamiltonian K := K(ψ, η, w, ζ0) is
(recall (5.5))

K := Hε,ζ0 ◦Gδ (6.14)

= θ0(ψ) · ζ0 +K00(ψ) +K10(ψ) · η + (K01(ψ), w)L2(T) + 1
2K20(ψ)η · η

+
(
K11(ψ)η, w

)
L2(T)

+ 1
2

(
K02(ψ)w,w

)
L2(T)

+K≥3(ψ, η, w)

where K≥3 collects the terms at least cubic in the variables (η, w). At any fixed ψ,
the Taylor coefficient K00(ψ) ∈ R, K10(ψ) ∈ Rν , K01(ψ) ∈ H⊥S (it is a function of
x ∈ T), K20(ψ) is a ν× ν real matrix, K02(ψ) is a linear self-adjoint operator of H⊥S
and K11(ψ) : Rν → H⊥S . Note that the above Taylor coefficients do not depend on
the parameter ζ0.

The Hamilton equations associated to (6.14) are

ψ̇ = K10(ψ) +K20(ψ)η +KT
11(ψ)w + ∂ηK≥3(ψ, η, w)

η̇ = −[∂ψθ0(ψ)]T ζ0 − ∂ψK00(ψ)− [∂ψK10(ψ)]T η − [∂ψK01(ψ)]Tw

−∂ψ{1
2K20(ψ)η · η + (K11(ψ)η, w)L2(T) + 1

2(K02(ψ)w,w)L2(T)

+K≥3(ψ, η, w)}
ẇ = ∂x

(
K01(ψ) +K11(ψ)η +K02(ψ)w +∇wK≥3(ψ, η, w)

)
(6.15)
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where [∂ψK10(ψ)]T is the ν × ν transposed matrix and the operators [∂ψK01(ψ)]T

and KT
11(ψ) : H⊥S → Rν are defined by the duality relation (∂ψK01(ψ)[ψ̂], w)L2 =

ψ̂ · [∂ψK01(ψ)]Tw, for all ψ̂ ∈ Rν , w ∈ H⊥S , and similarly for K11. Explicitly, for all
w ∈ H⊥S , and denoting ek the k-th versor of Rν ,

KT
11(ψ)w =

ν∑
k=1

(
KT

11(ψ)w · ek
)
ek =

ν∑
k=1

(
w,K11(ψ)ek

)
L2(T)

ek ∈ Rν .

In the next lemma we estimate the coefficients K00,K10,K01 of the Taylor expansion
(6.14). Note that on an exact solution we have Z = 0 and therefore K00(ψ) = const,
K10 = ω and K01 = 0.

Lemma 6.4. Assume (6.4). Then there is σ := σ(τ, ν) such that

‖∂ψK00‖Lip(γ)
s , ‖K10 − ω‖Lip(γ)

s , ‖K01‖Lip(γ)
s ≤s ‖Z‖Lip(γ)

s+σ + ‖Z‖Lip(γ)
s0+σ ‖I0‖Lip(γ)

s+σ .

Proof. Follow the proof of Lemma 6.4 in [5]. The fact that here there is no factor
ε2b−1γ−1 is a consequence of the better estimate (6.10) for F(iδ, ζ0) compared to the
analogous estimate in [5].

Remark 6.5. If F(i0, ζ0) = 0 then ζ0 = 0 by Lemma 6.1, and Lemma 6.4 implies
that (6.14) simplifies to the normal form

K = const+ω · η+
1

2
K20(ψ)η · η+ (K11(ψ)η, w)L2(T) +

1

2
(K02(ψ)w,w)L2(T) +K≥3 .

We now estimate K20,K11 in (6.14). The norm of K20 is the sum of the norms
of its matrix entries.

Lemma 6.6. Assume (6.4). Then

‖K20 − ε2bADS‖Lip(γ)
s ≤s ε2b+1 + ε2b‖I0‖Lip(γ)

s+σ , (6.16)

‖K11η‖Lip(γ)
s ≤s ε5−2b‖η‖Lip(γ)

s + ε2b‖I0‖Lip(γ)
s+σ ‖η‖Lip(γ)

s0 , (6.17)

‖KT
11w‖Lip(γ)

s ≤s ε5−2b‖w‖Lip(γ)
s+2 + ε2b‖I0‖Lip(γ)

s+σ ‖w‖
Lip(γ)
s0+2 . (6.18)

In particular ‖K20 − ε2bADS‖Lip(γ)
s0 ≤ Cε5−2b, and

‖K11η‖Lip(γ)
s0 ≤ Cε5−2b‖η‖Lip(γ)

s0 , ‖KT
11w‖Lip(γ)

s0 ≤ Cε5−2b‖w‖Lip(γ)
s0+2 .

Proof. See the proof of Lemma 6.6 in [5].

Consider the linear change of variables (θ̂, ŷ, ẑ) = DGδ(ϕ, 0, 0)[ψ̂, η̂, ŵ], where
DGδ(ϕ, 0, 0) is obtained by linearizing Gδ in (6.13) at (ϕ, 0, 0), and it is represented
by the matrix

DGδ(ϕ, 0, 0) =

∂ψθ0(ϕ) 0 0
∂ψyδ(ϕ) [∂ψθ0(ϕ)]−T −[(∂θz̃0)(θ0(ϕ))]T∂−1

x

∂ψz0(ϕ) 0 I

 . (6.19)
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The linearized operator di,ζF(iδ, ζ0) transforms (approximately, see (6.40)) into
the operator obtained linearizing (6.15) at (ψ, η, w, ζ) = (ϕ, 0, 0, ζ0) (with ∂t  Dω),
which is the linear operator

B[ψ̂, η̂, ŵ, ζ̂] =

B1[ψ̂, η̂, ŵ, ζ̂]

B2[ψ̂, η̂, ŵ, ζ̂]

B3[ψ̂, η̂, ŵ, ζ̂]

 ,

where

B1 := Dωψ̂ − ∂ψK10(ϕ)[ψ̂ ]−K20(ϕ)η̂ −KT
11(ϕ)ŵ, (6.20)

B2 := Dωη̂ + [∂ψθ0(ϕ)]T ζ̂ + ∂ψ[∂ψθ0(ϕ)]T [ψ̂, ζ0] + ∂ψψK00(ϕ)[ψ̂]

+ [∂ψK10(ϕ)]T η̂ + [∂ψK01(ϕ)]T ŵ,

B3 := Dωŵ − ∂x{∂ψK01(ϕ)[ψ̂] +K11(ϕ)η̂ +K02(ϕ)ŵ}.

Lemma 6.7 (Lemma 6.7 in [5]). Assume (6.4) and let ı̂ := (ψ̂, η̂, ŵ). Then

‖DGδ(ϕ, 0, 0)[̂ı]‖s + ‖DGδ(ϕ, 0, 0)−1 [̂ı]‖s ≤s ‖̂ı‖s + ‖I0‖s+σ‖̂ı‖s0 , (6.21)

‖D2Gδ(ϕ, 0, 0)[̂ı1, ı̂2]‖s ≤s ‖̂ı1‖s‖̂ı2‖s0 + ‖̂ı1‖s0 ‖̂ı2‖s + ‖I0‖s+σ‖̂ı1‖s0 ‖̂ı2‖s0

for some σ := σ(ν, τ). The same estimates hold for the ‖ ‖Lip(γ)
s norm.

In order to construct an approximate inverse of (6.20) it is sufficient to solve the
equation

D[ψ̂, η̂, ŵ, ζ̂] :=

 Dωψ̂ −K20(ϕ)η̂ −KT
11(ϕ)ŵ

Dωη̂ + [∂ψθ0(ϕ)]T ζ̂
Dωŵ − ∂xK11(ϕ)η̂ − ∂xK02(ϕ)ŵ

 =

g1

g2

g3

 (6.22)

which is obtained by neglecting in B1, B2, B3 in (6.20) the terms ∂ψK10, ∂ψψK00,
∂ψK00, ∂ψK01 and ∂ψ[∂ψθ0(ϕ)]T [·, ζ0] (these terms are naught at a solution by Lem-
mata 6.4 and 6.1).

First we solve the second equation in (6.22), namely Dωη̂ = g2 − [∂ψθ0(ϕ)]T ζ̂.

We choose ζ̂ so that the ϕ-average of the right hand side is zero, namely

ζ̂ = 〈g2〉 (6.23)

(we denote 〈g〉 := (2π)−ν
∫
Tν g(ϕ)dϕ). Note that the ϕ-averaged matrix 〈[∂ψθ0]T 〉

= 〈I + [∂ψΘ0]T 〉 = I because θ0(ϕ) = ϕ + Θ0(ϕ) and Θ0(ϕ) is a periodic function.
Therefore

η̂ := D−1
ω

(
g2 − [∂ψθ0(ϕ)]T 〈g2〉

)
+ 〈η̂〉 , 〈η̂〉 ∈ Rν , (6.24)

where the average 〈η̂〉 will be fixed below. Then we consider the third equation

Lωŵ = g3 + ∂xK11(ϕ)η̂ , Lω := ω · ∂ϕ − ∂xK02(ϕ) . (6.25)

• Inversion assumption. There exists a set Ω∞ ⊂ Ωo such that for all ω ∈ Ω∞,
for every function g ∈ Hs+µ

S⊥
(Tν+1) there exists a solution h := L−1

ω g ∈ Hs
S⊥

(Tν+1)
of the linear equation Lωh = g, which satisfies

‖L−1
ω g‖Lip(γ)

s ≤ C(s)γ−1
(
‖g‖Lip(γ)

s+µ + ε2γ−1‖I0‖Lip(γ)
s+µ ‖g‖Lip(γ)

s0

)
(6.26)
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for some µ := µ(τ, ν) > 0.

By the above assumption there exists a solution

ŵ := L−1
ω [g3 + ∂xK11(ϕ)η̂ ] (6.27)

of (6.25). Finally, we solve the first equation in (6.22), which, substituting (6.24),
(6.27), becomes

Dωψ̂ = g1 +M1(ϕ)〈η̂〉+M2(ϕ)g2 +M3(ϕ)g3 −M2(ϕ)[∂ψθ0]T 〈g2〉 , (6.28)

where

M1(ϕ) := K20(ϕ) +KT
11(ϕ)L−1

ω ∂xK11(ϕ) , M2(ϕ) := M1(ϕ)D−1
ω ,

M3(ϕ) := KT
11(ϕ)L−1

ω .
(6.29)

To solve equation (6.28) we have to choose 〈η̂〉 such that the right hand side in (6.28)
has zero average. By Lemma 6.6 and (6.4), the ϕ-averaged matrix

〈M1〉 = ε2bADS +O(ε5−2b) . (6.30)

Therefore, for ε small, 〈M1〉 is invertible and 〈M1〉−1 = O(ε−2b) = O(γ−1) (recall
(5.9)). Thus we define

〈η̂〉 := −〈M1〉−1[〈g1〉+ 〈M2g2〉+ 〈M3g3〉 − 〈M2[∂ψθ0]T 〉〈g2〉]. (6.31)

With this choice of 〈η̂〉, equation (6.28) has the solution

ψ̂ := D−1
ω [g1 +M1(ϕ)〈η̂〉+M2(ϕ)g2 +M3(ϕ)g3 −M2(ϕ)[∂ψθ0]T 〈g2〉]. (6.32)

In conclusion, we have constructed a solution (ψ̂, η̂, ŵ, ζ̂) of the linear system (6.22).

Proposition 6.8. Assume (6.4) and (6.26). Then, ∀ω ∈ Ω∞, ∀g := (g1, g2, g3),
the system (6.22) has a solution D−1g := (ψ̂, η̂, ŵ, ζ̂) where (ψ̂, η̂, ŵ, ζ̂) are defined
in (6.32), (6.24), (6.31), (6.27), (6.23), and satisfy

‖D−1g‖Lip(γ)
s ≤s γ−1

(
‖g‖Lip(γ)

s+µ + ε2γ−1‖I0‖Lip(γ)
s+µ ‖g‖

Lip(γ)
s0+µ

)
. (6.33)

Proof. Recalling (6.29), by Lemma 6.6, (6.26), (6.4) we get ‖M2h‖s0 + ‖M3h‖s0
≤ C‖h‖s0+σ. Then, by (6.31) and 〈M1〉−1 = O(ε−2b) = O(γ−1), we deduce

|〈η̂〉|Lip(γ) ≤ Cγ−1‖g‖Lip(γ)
s0+σ and (6.24), (5.16) imply ‖η̂‖Lip(γ)

s ≤s γ−1
(
‖g‖Lip(γ)

s+σ

+‖I0‖s+σ‖g‖Lip(γ)
s0

)
. The bound (6.33) is sharp for ŵ because L−1

ω g3 in (6.27) is

estimated using (6.26). Finally ψ̂ satisfies (6.33) using (6.32), (6.29), (6.26), (5.16)
and Lemma 6.6.

Let G̃δ(ψ, η, w, ζ) := (Gδ(ψ, η, w), ζ). Let ‖(ψ, η, w, ζ)‖Lip(γ)
s denote the maxi-

mum between ‖(ψ, η, w)‖Lip(γ)
s and |ζ|Lip(γ). We prove that the operator

T0 := (DG̃δ)(ϕ, 0, 0) ◦ D−1 ◦ (DGδ)(ϕ, 0, 0)−1 (6.34)

is an approximate right inverse for di,ζF(i0).
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Theorem 6.9. (Approximate inverse) Assume (6.4) and the inversion assump-
tion (6.26). Then there exists µ := µ(τ, ν) > 0 such that, for all ω ∈ Ω∞, for all
g := (g1, g2, g3), the operator T0 defined in (6.34) satisfies

‖T0g‖Lip(γ)
s ≤s γ−1

(
‖g‖Lip(γ)

s+µ + ε2γ−1‖I0‖Lip(γ)
s+µ ‖g‖

Lip(γ)
s0+µ

)
. (6.35)

The operator T0 is an approximate inverse of di,ζF(i0), namely

‖(di,ζF(i0) ◦T0 − I)g‖Lip(γ)
s (6.36)

≤s γ−1‖F(i0, ζ0)‖Lip(γ)
s0+µ ‖g‖

Lip(γ)
s+µ

+ γ−1
{
‖F(i0, ζ0)‖Lip(γ)

s+µ + ε2γ−1‖F(i0, ζ0)‖Lip(γ)
s0+µ ‖I0‖Lip(γ)

s+µ

}
‖g‖Lip(γ)

s0+µ .

Proof. In this proof we denote ‖ ‖s instead of ‖ ‖Lip(γ)
s . The bound (6.35) follows

from (6.34), (6.33), (6.21). By (5.6), since XN does not depend on y, and iδ differs
from i0 only for the y component, we have

di,ζF(i0)[ ı̂, ζ̂ ]− di,ζF(iδ)[ ı̂, ζ̂ ] = diXP (iδ)[ ı̂ ]− diXP (i0)[ ı̂ ] (6.37)

=

∫ 1

0
∂ydiXP (θ0, y0 + s(yδ − y0), z0)[yδ − y0, ı̂ ]ds =: E0[ ı̂, ζ̂ ].

By (5.13), (6.8), (6.9), (6.4), we estimate

‖E0[ ı̂, ζ̂ ]‖s ≤s ‖Z‖s0+σ‖̂ı‖s+σ + (‖Z‖s+σ + ‖Z‖s0+σ‖I0‖s+σ)‖̂ı‖s0+σ (6.38)

where Z := F(i0, ζ0) (recall (6.5)). Note that E0 [̂ı, ζ̂] is, in fact, independent of
ζ̂. Denote the set of variables (ψ, η, w) =: u. Under the transformation Gδ, the
nonlinear operator F in (5.6) transforms into

F(Gδ(u(ϕ)), ζ) = DGδ(u(ϕ))
(
Dωu(ϕ)−XK(u(ϕ), ζ)

)
, (6.39)

where K = Hε,ζ ◦ Gδ, see (6.14)-(6.15). Differentiating (6.39) at the trivial torus

uδ(ϕ) = G−1
δ (iδ)(ϕ) = (ϕ, 0, 0), at ζ = ζ0, in the direction (û, ζ̂ ) = (DGδ(uδ)

−1[ ı̂ ], ζ̂) =

DG̃δ(uδ)
−1[ ı̂, ζ̂ ], we get

di,ζF(iδ)[ ı̂, ζ̂ ] =DGδ(uδ)
(
Dωû− du,ζXK(uδ, ζ0)[û, ζ̂ ]

)
+ E1[ ı̂, ζ̂ ] , (6.40)

E1[ ı̂, ζ̂ ] :=D2Gδ(uδ)
[
DGδ(uδ)

−1F(iδ, ζ0), DGδ(uδ)
−1[ ı̂ ]

]
, (6.41)

where du,ζXK(uδ, ζ0) is expanded in (6.20). In fact, E1 is independent of ζ̂. We split

Dωû− du,ζXK(uδ, ζ0)[û, ζ̂] = D[û, ζ̂ ] +RZ [û, ζ̂ ],

where D[û, ζ̂] is defined in (6.22) and RZ [ψ̂, η̂, ŵ, ζ̂] is defined by difference, so that
its first component is −∂ψK10(ϕ)[ψ̂], its second component is

∂ψ[∂ψθ0(ϕ)]T [ψ̂, ζ0] + ∂ψψK00(ϕ)[ψ̂] + [∂ψK10(ϕ)]T η̂ + [∂ψK01(ϕ)]T ŵ,

and its third component is −∂x{∂ψK01(ϕ)[ψ̂]} (in fact, RZ is independent of ζ̂). By
(6.37) and (6.40),

di,ζF(i0) = DGδ(uδ) ◦ D ◦DG̃δ(uδ)−1 + E0 + E1 + E2,

E2 := DGδ(uδ) ◦RZ ◦DG̃δ(uδ)−1.
(6.42)
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By Lemmata 6.4, 6.7, 6.1, and (6.10), (6.4), the terms E1, E2 satisfy the same bound
(6.38) as E0. Thus the sum E := E0 + E1 + E2 satisfies (6.38). Applying T0 defined
in (6.34) to the right in (6.42), since D ◦ D−1 = I (see Proposition 6.8), we get
di,ζF(i0) ◦T0 − I = E ◦T0. Then (6.36) follows from (6.35) and the bound (6.38)
for E .

7 The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator Lω
defined in (6.25), see Proposition 7.4. To this aim, we compute 1

2(K02(ψ)w,w)L2(T),

w ∈ H⊥S , which collects all the terms of (Hε ◦Gδ)(ψ, 0, w) that are quadratic in w,
see (6.14). We first recall some preliminary lemmata.

Lemma 7.1 (Lemma 7.1-[5]). Let H be a Hamiltonian function of class C2(H1
0 (Tx),R)

and consider a map Φ(u) := u+Ψ(u) satisfying Ψ(u) = ΠEΨ(ΠEu), for all u, where
E is a finite dimensional subspace as in (3.5). Then

∂u[∇(H ◦ Φ)](u)[h] = (∂u∇H)(Φ(u))[h] +R(u)[h] , (7.1)

where R(u) has the “finite dimensional” form

R(u)[h] =
∑
|j|≤C

(
h, gj(u)

)
L2(T)

χj(u) (7.2)

with χj(u) = eijx or gj(u) = eijx. The remainder in (7.2) is R(u) = R0(u)+R1(u)+
R2(u) with

R0(u) := (∂u∇H)(Φ(u))∂uΨ(u), R1(u) := [∂u{Ψ′(u)T }][·,∇H(Φ(u))],

R2(u) := [∂uΨ(u)]T (∂u∇H)(Φ(u))∂uΦ(u). (7.3)

Lemma 7.2 (Lemma 7.3 in [5]). Let R be an operator of the form

Rh =
∑
|j|≤C

∫ 1

0

(
h , gj(τ)

)
L2(T)

χj(τ) dτ , (7.4)

where the functions gj(τ), χj(τ) ∈ Hs, τ ∈ [0, 1] depend in a Lipschitz way on the
parameter ω. Then its matrix s-decay norm (see (2.4)-(2.5)) satisfies

|R|Lip(γ)
s ≤s

∑
|j|≤C

sup
τ∈[0,1]

(
‖χj(τ)‖Lip(γ)

s ‖gj(τ)‖Lip(γ)
s0 + ‖χj(τ)‖Lip(γ)

s0 ‖gj(τ)‖Lip(γ)
s

)
.

7.1 Composition with the map Gδ

In the sequel we use the fact that Iδ := Iδ(ϕ;ω) := iδ(ϕ;ω) − (ϕ, 0, 0) satisfies, by
(6.8) and (6.4),

‖Iδ‖
Lip(γ)
s0+µ ≤ Cε5−2bγ−1 = Cε5−4b. (7.5)

In this section we study the Hamiltonian K := Hε ◦ Gδ = ε−2bH ◦ Aε ◦ Gδ defined
in (6.14), (4.6). Recalling (4.7), (6.13), Aε ◦Gδ has the form

Aε(Gδ(ψ, η, w)) = εvε
(
θ0(ψ), yδ(ψ) + L1(ψ)η + L2(ψ)w

)
+ εb(z0(ψ) + w) (7.6)

29



where vε is defined in (4.7), and

L1(ψ) := [∂ψθ0(ψ)]−T , L2(ψ) :=
[
(∂θz̃0)(θ0(ψ))

]T
∂−1
x . (7.7)

By Taylor’s formula, we develop (7.6) in w at (η, w) = (0, 0), and we get

(Aε ◦Gδ)(ψ, 0, w) = Tδ(ψ) + T1(ψ)w + T2(ψ)[w,w] + T≥3(ψ,w) ,

where

Tδ(ψ) := Aε(Gδ(ψ, 0, 0)) = εvδ(ψ) + εbz0(ψ), vδ(ψ) := vε(θ0(ψ), yδ(ψ)) (7.8)

is the approximate isotropic torus in the phase space H1
0 (T) (it corresponds to iδ in

Lemma 6.3),

T1(ψ)w := ε2b−1U1(ψ)w + εbw, T2(ψ)[w,w] := ε4b−3U2(ψ)[w,w]

U1(ψ)w =
∑
j∈S

|j|[L2(ψ)w]j e
i[θ0(ψ)]j

2
√
ξj + ε2(b−1)|j|[yδ(ψ)]j

eijx, (7.9)

U2(ψ)[w,w] = −
∑
j∈S

j2[L2(ψ)w]2j e
i[θ0(ψ)]j

8{ξj + ε2(b−1)|j|[yδ(ψ)]j}3/2
eijx, (7.10)

and T≥3(ψ,w) collects all the terms of order at least cubic in w. The terms U1, U2 =
O(1) in ε. Moreover, using that L2(ψ) in (7.7) vanishes as z0 = 0, they satisfy

‖U1w‖s ≤s ‖Iδ‖s‖w‖s0 + ‖Iδ‖s0‖w‖s ,
‖U2[w,w]‖s ≤s ‖Iδ‖s‖Iδ‖s0‖w‖2s0 + ‖Iδ‖2s0‖w‖s0‖w‖s

(7.11)

and also in the ‖ ‖Lip(γ)
s -norm. We expand H by Taylor’s formula

H(u+ h) = H(u) + ((∇H)(u), h)L2(T) + 1
2((∂u∇H)(u)[h], h)L2(T) +O(h3).

Specifying at u = Tδ(ψ) and h = T1(ψ)w+ T2(ψ)[w,w] + T≥3(ψ,w), we obtain that
the sum of all the components of K = ε−2b(H ◦Aε ◦Gδ)(ψ, 0, w) that are quadratic
in w is

1
2(K02w,w)L2(T) = ε−2b((∇H)(Tδ), T2[w,w])L2(T)

+ ε−2b 1
2((∂u∇H)(Tδ)[T1w], T1w)L2(T) .

Inserting the expressions (7.9), (7.10) in the last equality we get

K02(ψ)w = (∂u∇H)(Tδ)[w] + 2εb−1(∂u∇H)(Tδ)[U1w] (7.12)

+ ε2(b−1)UT1 (∂u∇H)(Tδ)[U1w] + 2ε2b−3U2[w, ·]T (∇H)(Tδ).

Lemma 7.3. The operator K02 reads

(K02(ψ)w,w)L2(T) = ((∂u∇H)(Tδ)[w], w)L2(T) + (R(ψ)w,w)L2(T) (7.13)

where R(ψ)w has the “finite dimensional” form

R(ψ)w =
∑
|j|≤C

(
w, gj(ψ)

)
L2(T)

χj(ψ). (7.14)
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The functions gj , χj satisfy, for some σ := σ(ν, τ) > 0,

‖gj‖Lip(γ)
s ‖χj‖Lip(γ)

s0 + ‖gj‖Lip(γ)
s0 ‖χj‖Lip(γ)

s ≤s εb+1‖Iδ‖
Lip(γ)
s+σ , (7.15)

‖∂igj [̂ı]‖s‖χj‖s0 + ‖∂igj [̂ı]‖s0‖χj‖s + ‖gj‖s0‖∂iχj [̂ı]‖s + ‖gj‖s‖∂iχj [̂ı]‖s0
≤s εb+1(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ) , (7.16)

where i = (θ, y, z) (see (5.1)) and ı̂ = (θ̂, ŷ, ẑ).

Proof. Since U1 = ΠSU1 and U2 = ΠSU2, the last three terms in (7.12) have all the
form (7.14). We have to prove that they are also small in size.

By (4.8), (6.13), (7.7), the only term in ε−2bH2(Aε(Gδ(ψ, η, w))) that is quadratic
in w is 1

2

∫
Tw

2
x dx, so this is the only contribution to (7.12) coming from H2.

It remains to consider all the terms coming from H≥4 := H4 + H≥5 = O(u4).
The term εb−1∂u∇H≥4(Tδ)U1, the term ε2(b−1)UT1 (∂u∇H≥4)(Tδ)U1 and the term

ε2b−3UT2 ∇H≥4(Tδ) have all the form (7.14) and, using the inequality ‖Tδ‖
Lip(γ)
s ≤

ε(1 + ‖Iδ‖
Lip(γ)
s ), (7.11) and (6.4), the bound (7.15) holds. By (6.11) and using

explicit formulae (7.7)-(7.10) we get (7.16).

The conclusion of this section is that, after the composition with the action-angle
variables, the rescaling (4.5), and the transformation Gδ, the linearized operator to
analyze is w 7→ (∂u∇H)(Tδ)[w], w ∈ H⊥S , up to finite dimensional operators which
have the form (7.14) and size (7.15).

7.2 The linearized operator in the normal directions

In view of (7.13) we now compute ((∂u∇H)(Tδ)[w], w)L2(T), w ∈ H⊥S , whereH = H◦
ΦB and ΦB is the Birkhoff map of Proposition 3.1. We recall that ΦB(u) = u+Ψ(u)
where Ψ satisfies (3.6) and Ψ(u) = O(u3). It is convenient to estimate separately
the terms in

H = H ◦ ΦB = H2 ◦ ΦB +H4 ◦ ΦB +H≥5 ◦ ΦB (7.17)

where H2, H4, H≥5 are defined in (3.4).
We first consider H≥5 ◦ ΦB. By (3.4) we get ∇H≥5(u) = π0[(∂uf)(x, u, ux)]

−∂x{(∂uxf)(x, u, ux)} where π0 is the operator defined in (1.32). Since ΦB has the
form (3.6), Lemma 7.1 (at u = Tδ, see (7.8)) implies that

∂u∇(H≥5 ◦ ΦB)(Tδ)[h] = (∂u∇H≥5)(ΦB(Tδ))[h] +RH≥5
(Tδ)[h]

= ∂x(r1(Tδ)∂xh) + r0(Tδ)h+RH≥5
(Tδ)[h] (7.18)

where the multiplicative functions r0(Tδ), r1(Tδ) are

r0(Tδ) := σ0(ΦB(Tδ)), r1(Tδ) := σ1(ΦB(Tδ)), (7.19)

σ0(u) := (∂uuf)(x, u, ux)− ∂x{(∂uuxf)(x, u, ux)},
σ1(u) := −(∂uxuxf)(x, u, ux),

the remainder RH≥5
(u) has the form (7.2) with χj = eijx or gj = eijx and, using

(7.3), it satisfies, for some σ := σ(ν, τ) > 0,

‖gj‖Lip(γ)
s ‖χj‖Lip(γ)

s0 + ‖gj‖Lip(γ)
s0 ‖χj‖Lip(γ)

s ≤s ε5(1 + ‖Iδ‖
Lip(γ)
s+2 ), (7.20)

‖∂igj [̂ı]‖s‖χj‖s0 + ‖∂igj [̂ı]‖s0‖χj‖s + ‖gj‖s0‖∂iχj [̂ı]‖s + ‖gj‖s‖∂iχj [̂ı]‖s0
≤s ε5(‖̂ı‖s+σ + ‖Iδ‖s+2‖̂ı‖s0+2).
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Now we consider the contributions from H2 ◦ ΦB and H4 ◦ ΦB. By Lemma 7.1 and
the expressions of H2, H4 in (3.4) we deduce that

∂u∇(H2 ◦ ΦB)(Tδ)[h] = −∂xxh+RH2(Tδ)[h] , (7.21)

∂u∇(H4 ◦ ΦB)(Tδ)[h] = −3ς(ΦB(Tδ))
2h+RH4(Tδ)[h] , (7.22)

where RH2(u), RH4(u) have the form (7.2). By (7.3), they have size RH2(Tδ) =
O(ε2), RH4(Tδ) = O(ε4). More precisely, the functions gj , χj in RH4(Tδ) satisfy the
bounds in (7.20) with ε5 replaced by ε4. Regarding RH2(Tδ), we need to find an
exact formula for the terms of order ε2.

The sum of (7.18), (7.21) and (7.22) gives a formula for ∂u∇H(Tδ)[h], where the
terms of form (7.2) and order ε2 are confined in RH2(Tδ). On the other hand, recall-
ing (3.7), H = H2 +H4 +H≥5, and ∂u∇H2(Tδ) = −∂xx, while ∂u∇H≥5(Tδ) = O(ε3).
Therefore all the terms of order ε2 in ∂u∇H(Tδ) can only come from ∂u∇H4(Tδ).
Using formula (3.8) for H4, we calculate

Π⊥S
(
∂u∇H4(Tδ)[h]

)
= −3ςΠ⊥S (T 2

δ h) ∀h ∈ Hs
S⊥ .

Hence all the terms of order ε2 in Π⊥S (∂u∇H(Tδ)[h]) are contained in the term
−3ςΠ⊥S (T 2

δ h) (and the term −3ςΠ⊥S (T 2
δ h) is included in −3ςΠ⊥S [(ΦB(Tδ))

2h] because
ΦB(Tδ) = Tδ + Ψ(Tδ)). As a consequence, Π⊥SRH2(Tδ) is of size O(ε3), and its
functions gj , χj (see (7.2)) satisfy (7.20) with ε5 replaced by ε3.

By Lemma 7.3 and the results of this section we deduce:

Proposition 7.4. Assume (7.5). Then the Hamiltonian operator Lω has the form,
∀h ∈ Hs

S⊥
(Tν+1),

Lωh := Dωh− ∂xK02h = Π⊥S
(
Dωh+ ∂xx(a1∂xh) + ∂x(a0h)− ∂xR∗h

)
(7.23)

where R∗ := RH2(Tδ) +RH4(Tδ) +RH≥5
(Tδ) +R(ψ) (with R(ψ) defined in Lemma

7.3, and RH2(Tδ), RH4(Tδ), RH≥5
(Tδ) defined in (7.18), (7.21), (7.22)), the func-

tions
a1 := 1− r1(Tδ) , a0 := 3ς(ΦB(Tδ))

2 − r0(Tδ) , (7.24)

r0, r1 are defined in (7.19), and Tδ in (7.8). They satisfy

‖a1 − 1‖Lip(γ)
s + ‖a0 − 3ςT 2

δ ‖Lip(γ)
s ≤s ε3(1 + ‖Iδ‖

Lip(γ)
s+σ ) , (7.25)

‖∂ia1 [̂ı]‖s + ‖∂i(a0 − 3ςT 2
δ )[̂ı]‖s ≤s ε3(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ) (7.26)

where Iδ(ϕ) := (θ0(ϕ) − ϕ, yδ(ϕ), z0(ϕ)) corresponds to Tδ. The remainder R∗ has
the form (7.2), and its coefficients gj , χj satisfy bounds (7.15)-(7.16).

Remark 7.5. For K = H + λM2, λ = 3ς/4, the coefficient a0 in (7.24) becomes

a0 = 3ςπ0

[
(ΦB(Tδ))

2
]
− r0(Tδ),

where π0 is defined in (1.32). Thus the space average of a0 has size O(ε3).

Bound (7.15) imply, by Lemma 7.2, estimates for the s-decay norms of R∗. The
linearized operator Lω := Lω(ω, iδ(ω)) depends on the parameter ω both directly
and also through the dependence on the torus iδ(ω). We have estimated also the
partial derivative ∂i with respect to the variables i (see (5.1)) in order to control,
along the nonlinear Nash-Moser iteration, the Lipschitz variation of the eigenvalues
of Lω with respect to ω and the approximate solution iδ.
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8 Reduction of the linearized operator in the normal
directions

The goal of this section is to conjugate the Hamiltonian linear operator Lω in (7.23)
to the constant coefficients linear operator L∞ defined in (8.64). The proof is ob-
tained applying different kind of symplectic transformations. We shall always assume
(7.5).

8.1 Space reduction at the order ∂xxx

As a first step, we symplectically conjugate the operator Lω in (7.23) to L1 in (8.13),
which has the coefficient of ∂xxx independent on the space variable. Because of the
Hamiltonian structure, this step also eliminates the terms O(∂xx).

We look for a ϕ-dependent family of symplectic diffeomorphisms Φ(ϕ) of H⊥S
which differ from

A⊥ := Π⊥SAΠ⊥S , (Ah)(ϕ, x) := (1 + βx(ϕ, x))h(ϕ, x+ β(ϕ, x)) , (8.1)

up to a small “finite dimensional” remainder, see (8.3). For each ϕ ∈ Tν , the map
A(ϕ) is a symplectic map of the phase space, see Remark 3.3 in [3]. If ‖β‖W 1,∞ <
1/2, then A is invertible (see Lemma 2.3), and its inverse and adjoint maps are

(A−1h)(ϕ, y) = (1 + β̃y(ϕ, y))h(ϕ, y + β̃(ϕ, y)) ,

(ATh)(ϕ, y) = h(ϕ, y + β̃(ϕ, y))
(8.2)

where x = y + β̃(ϕ, y) is the inverse diffeomorphism (of T) of y = x+ β(ϕ, x).
The restricted map A⊥(ϕ) : H⊥S → H⊥S is not symplectic. We have already ob-

served in the introduction that A(ϕ) is the time-1 flow map of the linear Hamiltonian
PDE (1.30). The equation (1.30) is a linear transport equation, whose charactheris-
tic curves are the solutions of the ODE

d

dτ
x = −b(ϕ, τ, x) .

To obtain a symplectic transformation close to A⊥, we define a symplectic map
Φ of H⊥S as the time 1 flow of the Hamiltonian PDE (1.31). The linear operator
Π⊥S ∂x(b(τ, x)u) is the Hamiltonian vector field generated by the quadratic Hamil-
tonian 1

2

∫
T b(τ, x)u2dx restricted to H⊥S . The flow of (1.31) is well defined in the

Sobolev spaces Hs
S⊥

(Tx) for b(ϕ, τ, x) smooth enough, by standard theory of linear
hyperbolic PDEs (see e.g. section 0.8 in [28]). The difference between the time 1
flow map Φ and A⊥ is a “finite-dimensional” remainder of size O(β).

Lemma 8.1 (Lemma 8.1 of [5]). For ‖β‖W s0+1,∞ small, there exists an invertible
symplectic transformation Φ = A⊥ +RΦ of Hs

S⊥
, where A⊥ is defined in (8.1) and

RΦ is a “finite-dimensional” remainder

RΦh =
∑
j∈S

∫ 1

0
(h, gj(τ))L2(T) χj(τ) dτ +

∑
j∈S

(
h, ψj

)
L2(T)

eijx (8.3)

for some functions χj(τ), gj(τ), ψj ∈ Hs satisfying for all τ ∈ [0, 1]

‖ψj‖s + ‖gj(τ)‖s ≤s ‖β‖W s+2,∞ , ‖χj(τ)‖s ≤s 1 + ‖β‖W s+1,∞ . (8.4)
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Moreover

‖Φh‖s + ‖Φ−1h‖s ≤s ‖h‖s + ‖β‖W s+2,∞‖h‖s0 ∀h ∈ Hs
S⊥ . (8.5)

We conjugate Lω in (7.23) via the symplectic map Φ = A⊥+RΦ of Lemma 8.1.
Using the splitting Π⊥S = I −ΠS , we compute

LωΦ = ΦDω + Π⊥SA
(
b3∂yyy + b2∂yy + b1∂y + b0

)
Π⊥S +RI , (8.6)

where the coefficients bi(ϕ, y), i = 0, 1, 2, 3, are

b3 := AT [a1(1 + βx)3], b2 := AT
[
2(a1)x(1 + βx)2 + 6a1βxx(1 + βx)

]
, (8.7)

b1 := AT
[
(Dωβ) +

3a1β
2
xx

1 + βx
+ 4a1βxxx + 6(a1)xβxx + ((a1)xx + a0)(1 + βx)

]
,

b0 := AT
[ 1

1 + βx

(
Dωβx + a1βxxxx + 2(a1)xβxxx + ((a1)xx + a0)βxx

)
+ (a0)x

]
,

and the remainder

RI := −Π⊥S
(
a1∂xxx + 2(a1)x∂xx + ((a1)xx + a0)∂x + (a0)x

)
ΠSAΠ⊥S

−Π⊥S ∂xR∗A⊥ + [Dω,RΦ] + (Lω −Dω)RΦ . (8.8)

The commutator [Dω,RΦ] has the form (8.3) with Dωgj or Dωχj , Dωψj instead of
χj , gj , ψj respectively. Also the last term (Lω −Dω)RΦ in (8.8) has the form (8.3)
(note that Lω − Dω does not contain derivatives with respect to ϕ). By (8.6), and
decomposing I = ΠS + Π⊥S , we get

LωΦ = Φ(Dω + b3∂yyy + b2∂yy + b1∂y + b0)Π⊥S +RII , (8.9)

RII := {Π⊥S (A− I)ΠS −RΦ}(b3∂yyy + b2∂yy + b1∂y + b0)Π⊥S +RI . (8.10)

Now we choose the function β = β(ϕ, x) such that

a1(ϕ, x)(1 + βx(ϕ, x))3 = b3(ϕ) (8.11)

so that the coefficient b3 in (8.7) depends only on ϕ (note that AT [b3(ϕ)] = b3(ϕ)).
The only solution of (8.11) with zero space average is (see e.g. [3]-section 3.1) β :=
∂−1
x ρ0, where ρ0 := b3(ϕ)1/3(a1(ϕ, x))−1/3 − 1, and

b3(ϕ) =
( 1

2π

∫
T
(a1(ϕ, x))−1/3dx

)−3
. (8.12)

Applying the symplectic map Φ−1 in (8.9) we obtain the Hamiltonian operator (see
Definition 2.2)

L1 := Φ−1LωΦ = Π⊥S
(
ω · ∂ϕ + b3(ϕ)∂yyy + b1∂y + b0

)
Π⊥S + R1 (8.13)

where R1 := Φ−1RII . Note that the term b2∂yy has disappeared from (8.13) because,
by the Hamiltonian nature of L1, the coefficient b2 = 2(b3)y (see [3]-Remark 3.5)
and therefore, by (8.12), b2 = 2(b3)y = 0.

Lemma 8.2 (Lemma 8.2 of [5]). The operator R1 in (8.13) has the form (7.4).
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Since a1 = 1 + O(ε3) and a0 = 3ςT 2
δ + O(ε3) (see (7.25)-(7.26) for the precise

estimates), by the usual composition estimates we deduce the following lemma.

Lemma 8.3. There is σ = σ(τ, ν) > 0 such that

‖β‖Lip(γ)
s + ‖b3 − 1‖Lip(γ)

s + ‖b1 − 3ςT 2
δ ‖Lip(γ)

s + ‖b0 − 3ς(T 2
δ )x‖Lip(γ)

s

≤s ε3(1 + ‖Iδ‖
Lip(γ)
s+σ ), (8.14)

‖∂iβ [̂ı]‖s + ‖∂ib3 [̂ı]‖s + ‖∂i(b1 − 3ςT 2
δ )[̂ı]‖s + ‖∂i(b0 − 3ς(T 2

δ )x)[̂ı]‖s
≤s ε3

(
‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ

)
, (8.15)

where Tδ is defined in (7.8). The transformations Φ, Φ−1 satisfy

‖Φh‖Lip(γ)
s + ‖Φ−1h‖Lip(γ)

s ≤s ‖h‖Lip(γ)
s+1 + ‖Iδ‖

Lip(γ)
s+σ ‖h‖

Lip(γ)
s0+1 (8.16)

‖∂i(Φh)[̂ı]‖s + ‖∂i(Φ−1h)[̂ı]‖s ≤s ‖h‖s+σ‖̂ı‖s0+σ + ‖h‖s0+σ‖̂ı‖s+σ (8.17)

+ ‖Iδ‖s+σ‖h‖s0+σ‖̂ı‖s0+σ .

Moreover the remainder R1 has the form (7.4), where the functions χj(τ), gj(τ)
satisfy the estimates (7.15)-(7.16) uniformly in τ ∈ [0, 1].

8.2 Time reduction at the order ∂xxx

The goal of this section is to get a constant coefficient in front of ∂yyy, using a
quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(ϕ, y) := w(ϕ+ ωα(ϕ), y), (B−1h)(ϑ, y) := h(ϑ+ ωα̃(ϑ), y) , (8.18)

where Tν → Tν , ϑ 7→ ϕ = ϑ+ωα̃(ϑ) is the inverse diffeomorphism of ϑ = ϕ+ωα(ϕ)
in Tν . By conjugation, the differential operators become

B−1ω · ∂ϕB = ρ(ϑ)ω · ∂ϑ, B−1∂yB = ∂y, ρ := B−1(1 + ω · ∂ϕα). (8.19)

By (8.13), using also that B and B−1 commute with Π⊥S , the conjugate operator
B−1L1B is equal to

Π⊥S [ρω · ∂ϑ + (B−1b3)∂yyy + (B−1b1)∂y + (B−1b0)]Π⊥S +B−1R1B. (8.20)

We choose α such that (B−1b3)(ϑ) = m3ρ(ϑ) for some constant m3 ∈ R, namely

b3(ϕ) = m3(1 + ω · ∂ϕα(ϕ)) (8.21)

(recall (8.19)). The unique solution with zero average of (8.21) is

α(ϕ) :=
1

m3
(ω · ∂ϕ)−1(b3 −m3)(ϕ), m3 :=

1

(2π)ν

∫
Tν
b3(ϕ)dϕ . (8.22)

Hence, by (8.20),

B−1L1B = ρL2, L2 := Π⊥S (ω · ∂ϑ +m3∂yyy + c1∂y + c0)Π⊥S + R2 (8.23)

c1 := ρ−1(B−1b1), c0 := ρ−1(B−1b0), R2 := ρ−1B−1R1B . (8.24)

The transformed operator L2 in (8.23) is still Hamiltonian, because the repara-
metrization of time preserves the Hamiltonian structure (see Section 2.2 and Remark
3.7 in [3]).
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Lemma 8.4. There is σ = σ(ν, τ) > 0 (possibly larger than σ in Lemma 8.3) such
that

|m3 − 1|Lip(γ) ≤ Cε3, |∂im3 [̂ı]| ≤ Cε3‖̂ı‖s0+σ (8.25)

‖α‖Lip(γ)
s ≤s ε3γ−1(1 + ‖Iδ‖

Lip(γ)
s+σ )

‖∂iα[̂ı]‖s ≤s ε3γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ)

‖ρ− 1‖Lip(γ)
s ≤s ε3(1 + ‖Iδ‖

Lip(γ)
s+σ )

‖∂iρ[̂ı]‖s ≤s ε3(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ)

‖c1 − 3ςT 2
δ ‖Lip(γ)

s + ‖c0 − 3ς(T 2
δ )x‖Lip(γ)

s ≤s ε5γ−1(1 + ‖Iδ‖
Lip(γ)
s+σ ), (8.26)

‖∂i(c1 − 3ςT 2
δ )[̂ı]‖s + ‖∂i(c0 − 3ς(T 2

δ )x)[̂ı]‖s
≤s ε5γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ).

The transformations B, B−1 satisfy the estimates (8.16), (8.17). The remainder R2

has the form (7.4), and the functions gj(τ), χj(τ) satisfy the estimates (7.15)-(7.16)
for all τ ∈ [0, 1].

Proof. To estimate ‖α‖Lip(γ)
s we also differentiate (8.22) with respect to the parame-

ter ω. Note that c1−3ςB−1(T 2
δ ) = O(ε3), and similarly c0−3ςB−1((T 2

δ )x) = O(ε3).
The factor ε5γ−1 in the last two inequalities comes from the estimate of the difference
B−1(T 2

δ )− T 2
δ ' (T 2

δ )ϕα = O(ε2ε3γ−1).

8.3 Translation of the space variable

In this section we remove the space average from the coefficient in front of ∂y.
Consider the change of the space variable z = y+p(ϑ) which induces on Hs

S⊥
(Tν+1)

the operators

(T w)(ϑ, y) := w(ϑ, y + p(ϑ)) , (T −1h)(ϑ, z) = h(ϑ, z − p(ϑ)) (8.27)

(which are a particular case of those used in section 8.1). The differential operators
become T −1ω ·∂ϑT = ω ·∂ϑ+{ω ·∂ϑp(ϑ)}∂z, T −1∂yT = ∂z. Since T , T −1 commute
with Π⊥S , we get

L3 := T −1L2T = Π⊥S (ω · ∂ϑ +m3∂zzz + d1∂z + d0)Π⊥S + R3 , (8.28)

d1 := (T −1c1) + ω · ∂ϑp , d0 := T −1c0 , R3 := T −1R2T . (8.29)

We choose

m1 :=
1

(2π)ν+1

∫
Tν+1

c1dϑdy , p := (ω · ∂ϑ)−1
(
m1 −

1

2π

∫
T
c1dy

)
, (8.30)

so that
1

2π

∫
T
d1(ϑ, z) dz = m1 ∀ϑ ∈ Tν . (8.31)

Recalling (8.26), we analyze the space average of c1 in more detail. To avoid am-
biguity between the space variable y ∈ T and the action yδ : Tν → Rν of (7.8),
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we rename x ∈ T the space variable, and ϕ ∈ Tν the variable on the torus (time
variable). Let

v̄(ϕ, x) :=
∑

j∈S

√
ξje

i`(j)·ϕeijx, (8.32)

where ` : S → Zν is the odd injective map (see (1.11))

`(̄i) := ei , `(−̄i) := −ei , i = 1, . . . , ν (8.33)

and ei = (0, . . . , 1, . . . , 0) denotes the i-th vector of the canonical basis of Rν . In
view of the next linear Birkhoff normal form step (whose goal is to normalize the
term of size ε2), we observe that the component of order ε2 in T 2

δ (see (7.8)) is ε2v̄2,
with

‖T 2
δ − ε2v̄2‖Lip(γ)

s ≤s ε2‖Iδ‖
Lip(γ)
s+σ ,

‖∂i(T 2
δ − ε2v̄2)[̂ı ]‖s ≤s ε2(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ) .

(8.34)

Moreover, from (7.8), since (vδ, z0)L2(T) = 0, and (θ0)−j = −(θ0)j for all j ∈ S, we
have∫

T
T 2
δ dx = ε2

∫
T
v2
δ dx+ ε2b

∫
T
z2

0 dx = ε2
∑
j∈S

ξj + ε2b
∑
j∈S
|j|(yδ)j + ε2b

∫
T
z2

0 dx.

We define
d̃1 := d1 − 3ςε2v̄2, d̃0 := d0 − 3ςε2(v̄2)x, (8.35)

and note that, by (8.31) and (8.32),

1

2π

∫
T
d̃1 dx = m1 −

3ςε2

2π

∫
T
v̄2 dx = m1 − ε2c(ξ), c(ξ) := 3ς

∑
j∈S

ξj . (8.36)

Using the explicit formulae above, and Lemma 7.2 for the estimate of R3, we get
the following bounds.

Lemma 8.5. There is σ := σ(ν, τ) > 0 (possibly larger than in Lemma 8.4) such
that

|m1 − ε2c(ξ)|Lip(γ) ≤ Cε5γ−1, |∂im1 [̂ı]| ≤ Cε2b‖̂ı‖s0+σ (8.37)

‖p‖Lip(γ)
s ≤s ε5γ−2 + ‖Iδ‖

Lip(γ)
s+σ ,

‖∂ip[̂ı]‖s ≤s ‖̂ı‖s+σ + ε5γ−2‖Iδ‖s+σ‖̂ı‖s0+σ ,

‖d̃k‖Lip(γ)
s ≤s ε7γ−2 + ε2‖Iδ‖

Lip(γ)
s+σ , k = 0, 1, (8.38)

‖∂id̃k [̂ı]‖s ≤s ε5γ−1(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ) , k = 0, 1.

The matrix s-decay norm (see (2.4)) of the operator R3 satisfies

|R3|Lip(γ)
s ≤s ε1+b‖Iδ‖

Lip(γ)
s+σ ,

|∂iR3 [̂ı]|s ≤s ε1+b(‖̂ı‖s+σ + ‖Iδ‖s+σ‖̂ı‖s0+σ) .
(8.39)

The transformations T , T −1 satisfy (8.16), (8.17).
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Remark 8.6. When K = H + λM2, λ = 3/4, the constant coefficient m1 in (8.30)
becomes of size

|m1|Lip(γ) ≤ Cε5γ−1. (8.40)

The inequality (8.40) is the key difference between the cases H + (3ς/4)M2 and H
(compare (8.40) with (8.37), where m1 contains the non-perturbative term ε2c(ξ)).

It is sufficient to estimate R3 (which has the form (7.4)) only in the s-decay
norm (see (8.39)) because the next transformations will preserve it. Such norms will
be used in the reducibility scheme of section 8.6.

8.4 Linear Birkhoff normal form

Now we normalize the terms of order ε2 of L3. This step is different from the
reducibility steps that we shall perform in section 8.6: the diophantine constant
γ in (5.3) is γ = o(ε2), and therefore the terms of order ε2 are not perturbative,
because ε2γ−1 is not small (in fact, it is big). The reduction of this section is possible
thanks to the special form of the term ε2B defined in (8.41): the harmonics of ε2B
corresponding to a possible small divisor are naught, except Bjj (0), see Lemma 8.9.

Note that, since the previous linear transformations Φ, B, T are O(ε5γ−2)-close to
the identity, the terms of order ε2 in L3 are the same as in the original linearized
operator.

First, we collect all the terms of order ε2 in the operator L3 in (8.28). We have

L3 = Π⊥S (ω · ∂ϕ +m3∂xxx + ε2B + d̃1∂x + d̃0)Π⊥S + R3

where d̃1, d̃0,R3 are defined in (8.35), (8.29) and (recall (8.32))

Bh := 3ςv̄2∂xh+ 3ς(v̄2)xh = ∂x(3ςv̄2h). (8.41)

Note that B is the linear Hamiltonian vector field of H⊥S generated by the Hamilto-
nian z 7→ 3ς

2

∫
T v̄

2z2 dx.
We transform L3 by a symplectic operator Φ2 : Hs

S⊥
(Tν+1)→ Hs

S⊥
(Tν+1) of the

form

Φ2 := exp(ε2A) = IH⊥S
+ ε2A+ ε4Â, Â :=

∑
k≥2

ε2(k−2)

k!
Ak , (8.42)

where A(ϕ)h =
∑

j,j′∈ScA
j′

j (ϕ)hj′e
ijx is a Hamiltonian vector field. The map Φ2 is

symplectic, because it is the time 1 flow of a Hamiltonian vector field. We calculate

L3Φ2 − Φ2Π⊥S (Dω +m3∂xxx)Π⊥S

= ε2Π⊥S {B + (DωA) +m3[∂xxx, A]}Π⊥S + Π⊥S d̃1∂xΠ⊥S +R3 (8.43)

where

R3 := ε4Π⊥S {(DωÂ) +m3[∂xxx, Â] + B(A+ ε2Â)}Π⊥S (8.44)

+ Π⊥S d̃1∂xΠ⊥S (Φ2 − I) + (Π⊥S d̃0Π⊥S + R3)Φ2 .
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Remark 8.7. R3 has no longer the form (7.4). However R3 = O(∂0
x) because

A = O(∂−1
x ) (see Lemma 8.12), and therefore Φ2 − IH⊥S = O(∂−1

x ). Moreover the

matrix decay norm of R3 is o(ε2).

In order to normalize the term of order ε2 of (8.43), we develop Aj
′

j (ϕ) =∑
l∈Zν A

j′

j (l)eil·ϕ, and for each j, j′ ∈ Sc, l ∈ Zν , we choose

Aj
′

j (l) :=

−
Bj
′

j (l)

i(ω · l +m3(j′3 − j3))
if ω̄ · l + j′3 − j3 6= 0 ,

0 otherwise.

(8.45)

This definition is well posed. Indeed, by (8.41) and (8.32),

Bj
′

j (l) := 3ςij
∑

j1,j2∈S
j1+j2=j−j′
`(j1)+`(j2)=l

√
ξj1ξj2 . (8.46)

In particular Bj
′

j (l) = 0 unless |l| ≤ 2. For |l| ≤ 2 and ω̄ · l + j′3 − j3 6= 0, the
denominators in (8.45) satisfy

|ω · l +m3(j′3 − j3)| = |m3(ω̄ · l + j′3 − j3) + (ω −m3ω̄) · l|
≥ |m3||ω̄ · l + j′3 − j3| − |ω −m3ω̄||l| ≥ 1/2 (8.47)

for ε small, because |ω̄ · l + j′3 − j3| ≥ 1 (ω̄ · l + j′3 − j3 is a nonzero integer),
ω = ω̄ +O(ε2) and by (8.25).

Remark 8.8. The operator A defined in (8.45) is Hamiltonian, because B is Hamil-
tonian. The reason is a general fact: the denominators δl,j,k := i(ω · l+m3(k3− j3))
satisfy δl,j,k = δ−l,k,j and an operator G(ϕ) is self-adjoint if and only if its matrix

elements satisfy Gkj (l) = Gjk(−l), see [3]-Remark 4.5. Alternatively, we could solve
the homological equation of this Birkhoff step directly for the Hamiltonian function
whose flow generates Φ2.

By the definition (8.45), the term of order ε2 in (8.43) is zero on the Fourier

indices (l, j, j′) such that ω̄ · l+ j′3 − j3 6= 0, while it is equal to ε2Bj
′

j (l) for (l, j, j′)

such that ω̄ · l+ j′3 − j3 = 0. Now we prove that the only nonzero components of B
that remain in (8.43) are Bjj (0).

Lemma 8.9. If ω̄ · l + j′3 − j3 = 0 and Bj
′

j (l) 6= 0, then l = 0 and j = j′.

Proof. If Bj
′

j (l) 6= 0, then, by (8.46), there exist j1, j2 ∈ S such that j1 + j2 = j − j′
and `(j1) + `(j2) = l. Hence, recalling (1.19) and (8.33),

0 = ω̄ · l + j′3 − j3 = ω̄ · `(j1) + ω̄ · `(j2) + j′3 − j3 = j3
1 + j3

2 + j′3 − j3.

This equality, together with j1+j2+j′−j = 0, implies that (j1+j2)(j1+j′)(j2+j′) = 0
by Lemma 3.2. Since j1, j2 ∈ S, j′ ∈ Sc, the set S is symmetric, and 0 /∈ S, we
deduce that the factors j1 + j′ and j2 + j′ are nonzero. Hence j1 + j2 = 0, and
therefore l = `(j1) + `(−j1) = 0.
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Thus, the only nonzero term of order ε2 in (8.43) is Bjj (0). By (8.46), we calculate

Bjj (0) = ijc(ξ), where c(ξ) is defined in (8.36). Hence, by (8.45), Lemma 8.9 and

(8.36), the term of order ε2 in (8.43) is

ε2Π⊥S {B + (DωA) +m3[∂xxx, A]}Π⊥S = ε2c(ξ)∂xΠ⊥S . (8.48)

Remark 8.10. When K = H + λM2, λ = 3ς/4, the operator in (8.41) becomes
Bh = ∂x(3ςπ0(v̄2)h). Hence Bjj (0) = 0, and the right-hand side term in (8.48) is
zero, namely the first step of linear Birkhoff normal form completely eliminates all
the terms of order ε2.

We now estimate the transformation A.

Lemma 8.11. (i) For all l ∈ Zν , j, j′ ∈ Sc,

|Aj
′

j (l)| ≤ C(|j|+ |j′|)−1 , |Aj
′

j (l)|lip ≤ ε−2(|j|+ |j′|)−1 . (8.49)

(ii) (A1)j
′

j (l) = 0 for all l ∈ Zν , j, j′ ∈ Sc such that |j − j′| > 2CS, where CS :=
max{|j| : j ∈ S}.

Proof. (i) As already observed, for all |l| > 2 one has Bj
′

j (l) = 0, and therefore

Aj
′

j (l) = 0. For |l| ≤ 2, j 6= j′, one has (since |ω| ≤ |ω̄|+ 1)

|ω · l +m3(j′3 − j3)| ≥ |m3||j′3 − j3| − |ω · l| ≥ 1
4(j′2 + j2)− 2|ω| ≥ 1

8(j′2 + j2)

for (j′2 + j2) ≥ C, for some constant C. Since also (8.47) holds, we deduce that, for
all j 6= j′,

Aj
′

j (l) 6= 0 ⇒ |ω · l +m3(j′3 − j3)| ≥ c(|j|+ |j′|)2 . (8.50)

On the other hand, if j = j′ ∈ Sc, and l 6= 0, then Bj
′

j (l) = 0, and therefore

Aj
′

j (l) = 0. For j = j′ and l = 0 we also have Aj
′

j (l) = 0 because ω̄ · l+ j′3 − j3 = 0.
Hence (8.50) holds for all j, j′. By (8.45), (8.50), (8.46) we deduce the first bound in
(8.49). The Lipschitz bound follows similarly (use also |j − j′| ≤ 2CS). (ii) follows
by (8.45)-(8.46).

The previous lemma means that A = O(|∂x|−1). More precisely, we deduce the
following bound.

Lemma 8.12 (Lemma 8.19 of [5]). |A∂x|Lip(γ)
s + |∂xA|Lip(γ)

s ≤ C(s).

It follows that the symplectic map Φ2 in (8.42) is invertible for ε small, with
inverse

Φ−1
2 = exp(−ε2A) = IH⊥S

+ ε2Ǎ , Ǎ :=
∑

n≥1

ε2n−2

n!
(−A)n ,

|Ǎ∂x|Lip(γ)
s + |∂xǍ|Lip(γ)

s ≤ C(s) .

(8.51)

By (8.43) and (8.48) we get the Hamiltonian operator

L4 := Φ−1
2 L3Φ2 = Π⊥S

(
Dω +m3∂xxx + (ε2c(ξ) + d̃1)∂x

)
Π⊥S +R4 , (8.52)

R4 := (Φ−1
2 − I)Π⊥S (ε2c(ξ) + d̃1)∂xΠ⊥S + Φ−1

2 R3 . (8.53)
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Lemma 8.13. There is σ = σ(ν, τ) > 0 (possibly larger than in Lemma 8.5) such
that

|R4|Lip(γ)
s ≤s ε7γ−2 + ε2‖Iδ‖

Lip(γ)
s+σ ,

|∂iR4 [̂ı]|s ≤s ε1+b‖̂ı‖s+σ + ε2‖Iδ‖s+σ‖̂ı‖s0+σ .
(8.54)

Proof. Use (8.44), (8.42), (8.38), (8.39), (8.25) and Lemma 8.12.

8.5 Space reduction at the order ∂x

The goal of this section is to transform L5 in (8.52) so that the coefficient of ∂x
becomes constant. We conjugate L4 via a symplectic map of the form

S := exp(Π⊥S (w∂−1
x ))Π⊥S = Π⊥S

(
I + w∂−1

x

)
Π⊥S + Ŝ , (8.55)

where Ŝ :=
∑

k≥2
1
k! [Π

⊥
S (w∂−1

x )]kΠ⊥S and w : Tν+1 → R is a function. Note that

the linear operator Π⊥S (w∂−1
x )Π⊥S is the Hamiltonian vector field generated by the

Hamiltonian −1
2

∫
Tw(∂−1

x h)2 dx, h ∈ H⊥S . We calculate

L4S − SΠ⊥S (Dω +m3∂xxx +m1∂x)Π⊥S

= Π⊥S (3m3wx + ε2c(ξ) + d̃1 −m1)∂xΠ⊥S + R̃5 ,

R̃5 := Π⊥S {(3m3wxx + (ε2c(ξ) + d̃1 −m1)Π⊥Sw)π0

+ ((Dωw) +m3wxxx + (ε2c(ξ) + d̃1)Π⊥Swx)∂−1
x

+ (DωŜ) +m3[∂xxx, Ŝ] + (ε2c(ξ) + d̃1)∂xŜ −m1Ŝ∂x +R4S}Π⊥S ,

where R̃5 collects all the terms of order at most ∂0
x. By (8.36), we solve 3m3wx

+ε2c(ξ) + d̃1 − m1 = 0 by choosing w := −(3m3)−1∂−1
x (ε2c(ξ) + d̃1 − m1). For ε

small the operator S is invertible, and we get

L5 := S−1L4S = Π⊥S (Dω +m3∂xxx +m1∂x)Π⊥S +R5 , R5 := S−1R̃5 . (8.56)

Since S is symplectic, L5 is Hamiltonian (recall Definition 2.2). By (8.38), (8.37),

(8.25), one has ‖w‖Lip(γ)
s ≤s ε7γ−2 + ε2‖Iδ‖

Lip(γ)
s+σ .

Lemma 8.14. There is σ = σ(ν, τ) > 0 (possibly larger than in Lemma 8.13) such
that

|S±1 − I|Lip(γ)
s ≤s ε7γ−2 + ε2‖Iδ‖

Lip(γ)
s+σ ,

|∂iS±1 [̂ı]|s ≤s ε2b‖̂ı‖s+σ + ε5γ−1‖Iδ‖s+σ‖̂ı‖s0+σ .

The remainder R5 satisfies the same estimates (8.54) as R4.

8.6 KAM reducibility and inversion of Lω
The coefficients m3,m1 of the operator L5 in (8.56) are constants, and the remainder
R5 is a bounded operator of order ∂0

x with small matrix decay norm, see (8.59). Then
we can diagonalize L5 by applying the iterative KAM reducibility Theorem 4.2 in
[3] along the sequence of scales

Nn := Nχn

0 , n = 0, 1, 2, . . . , χ := 3/2, N0 > 0 . (8.57)
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In section 9, the initial N0 will (slightly) increase to infinity as ε→ 0, see (9.5). The
required smallness condition (see (4.14) in [3]) is (written in the present notations)

NC0
0 |R5|Lip(γ)

s0+β γ
−1 ≤ 1 (8.58)

where β := 7τ+6 (see (4.1) in [3]), τ is the diophantine exponent in (5.3) and (8.63),
and the constant C0 := C0(τ, ν) > 0 is fixed in Theorem 4.2 in [3]. By Lemma 8.14,
the remainder R5 satisfies the bound (8.54), and using (7.5) we get (recall (5.9))

|R5|Lip(γ)
s0+β ≤ Cε

7γ−2 = Cε3−2a, |R5|Lip(γ)
s0+β γ

−1 ≤ Cε7γ−3 = Cε1−3a. (8.59)

We use that µ in (7.5) is assumed to satisfy µ ≥ σ + β where σ := σ(τ, ν) is given
in Lemma 8.14.

Theorem 8.15. (Reducibility) Assume that ω 7→ iδ(ω) is a Lipschitz function
defined on some subset Ωo ⊂ Ωε (recall (5.2)), satisfying (7.5) with µ ≥ σ + β,
where σ := σ(τ, ν) is given in Lemma 8.14 and β := 7τ + 6. Then there exists
δ0 ∈ (0, 1) such that, if

NC0
0 ε7γ−3 = NC0

0 ε1−3a ≤ δ0 , γ := ε2b := ε2+a , a ∈ (0, 1/6) , (8.60)

then:
(i) (Eigenvalues). For all ω ∈ Ωε there exists a sequence

µ∞j (ω) := µ∞j (ω, iδ(ω)) := i
(
− m̃3(ω)j3 + m̃1(ω)j

)
+ r∞j (ω), j ∈ Sc , (8.61)

where m̃3, m̃1 coincide with the coefficients m3,m1 of L5 in (8.56) for all ω ∈ Ωo,
and

|m̃3 − 1|Lip(γ) ≤ Cε3, |m̃1 − ε2c(ξ)|Lip(γ) ≤ Cε5γ−1,

|r∞j |Lip(γ) ≤ Cε3−2a ∀j ∈ Sc
(8.62)

for some C > 0 (and c(ξ) is defined in (8.36)). All the eigenvalues µ∞j are purely
imaginary. We define, for convenience, µ∞0 (ω) := 0.

(ii) (Conjugacy). For all ω in the set

Ω2γ
∞ := Ω2γ

∞(iδ) :=
{
ω ∈ Ωo : |iω · l + µ∞j (ω)− µ∞k (ω)| ≥ 2γ|j3 − k3|

〈l〉τ

∀l ∈ Zν , ∀j, k ∈ Sc ∪ {0}
}

(8.63)

there is a real, bounded, invertible linear operator Φ∞(ω) : Hs
S⊥

(Tν+1)→ Hs
S⊥

(Tν+1),
with bounded inverse Φ−1

∞ (ω), that conjugates L6 in (8.56) to constant coefficients,
namely

L∞(ω) := Φ−1
∞ (ω) ◦ L5(ω) ◦ Φ∞(ω) = ω · ∂ϕ +D∞(ω),

D∞(ω) := diagj∈Sc{µ∞j (ω)} .
(8.64)

The transformations Φ∞,Φ
−1
∞ are close to the identity in matrix decay norm, with

|Φ∞ − I|Lip(γ)

s,Ω2γ
∞

+ |Φ−1
∞ − I|

Lip(γ)

s,Ω2γ
∞
≤s ε7γ−3 + ε2γ−1‖Iδ‖

Lip(γ)
s+σ . (8.65)

Moreover Φ∞,Φ
−1
∞ are symplectic, and L∞ is a Hamiltonian operator.
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Proof. The proof closely follows the one of Theorem 4.1 in [3], which is based on
Theorem 4.2, Corollaries 4.1, 4.2 and Lemmata 4.1, 4.2 of [3]. Here ω ∈ Rν , while
in [3] the parameter λ ∈ R, but Kirszbraun’s Theorem on Lipschitz extension also
holds in Rν . The bound (8.65) follows by Corollary 4.1 of [3] and the estimate of R5

in Lemma 8.14 above.
To adapt the proof of [3] to the present case, the only changes in the statement

of Theorem 4.2 of [3] are: ε3−2a instead of ε in (4.18) of [3], and ε1+b instead of ε in
(4.23), (4.25) and (4.26) of [3]. The factor ε1+b comes from the bound for ∂iR5, see
Lemma 8.14 and (8.54).

Remark 8.16. Theorem 4.2 in [3] also provides the Lipschitz dependence of the
(approximate) eigenvalues µnj with respect to the unknown i0(ϕ), which is used for
the measure estimate (Lemma 9.3).

All the parameters ω ∈ Ω2γ
∞ satisfy (specialize (8.63) for k = 0)

|iω · l + µ∞j (ω)| ≥ 2γ|j|3〈l〉−τ , ∀l ∈ Zν , j ∈ Sc, (8.66)

and the diagonal operator L∞ is invertible.
In the following theorem we verify the inversion assumption (6.26) for Lω.

Theorem 8.17. (Inversion of Lω) Assume the hypotheses of Theorem 8.15 and
(8.60). Then there exists σ1 := σ1(τ, ν) > 0 such that, ∀ω ∈ Ω2γ

∞(iδ) (see (8.63)),
for any function g ∈ Hs+σ1

S⊥
(Tν+1) the equation Lωh = g has a solution h = L−1

ω g ∈
Hs
S⊥

(Tν+1), satisfying

‖L−1
ω g‖Lip(γ)

s ≤s γ−1
(
‖g‖Lip(γ)

s+σ1 + ε2γ−1‖I0‖Lip(γ)
s+σ1 ‖g‖

Lip(γ)
s0

)
. (8.67)

Proof. See the proof of Theorem 8.16 in [5].

9 The Nash-Moser nonlinear iteration

In this section we prove Theorem 5.1. It will be a consequence of the Nash-Moser
Theorem 9.1 below.

Consider the finite-dimensional subspaces

En :=
{
I(ϕ) = (Θ, y, z)(ϕ) : Θ = ΠnΘ, y = Πny, z = Πnz

}
where Nn := Nχn

0 are introduced in (8.57), and Πn are the projectors (which, with
a small abuse of notation, we denote with the same symbol)

ΠnΘ(ϕ) :=
∑
|l|<Nn

Θle
il·ϕ, Πnz(ϕ, x) :=

∑
|(l,j)|<Nn

zlje
i(l·ϕ+jx), (9.1)

where Θ(ϕ) =
∑

l∈Zν Θle
il·ϕ and z(ϕ, x) =

∑
l∈Zν ,j∈Sc zlje

i(l·ϕ+jx) (for Πny(ϕ) sim-

ilar definition as for ΠnΘ(ϕ)). We define Π⊥n := I − Πn. The classical smoothing
properties hold: for all α, s ≥ 0,

‖ΠnI‖Lip(γ)
s+α ≤ Nα

n ‖I‖Lip(γ)
s ∀I(ω) ∈ Hs,

‖Π⊥n I‖Lip(γ)
s ≤ N−αn ‖I‖

Lip(γ)
s+α ∀I(ω) ∈ Hs+α.

(9.2)

43



We define the constants

µ1 := 3µ+ 9 , α := 3µ1 + 1 , α1 := (α− 3µ)/2 , (9.3)

κ := 3
(
µ1 + ρ−1

)
+ 1 , β1 := 6µ1 + 3ρ−1 + 3 , 0 < ρ <

1− 3a

C1(2 + 3a)
, (9.4)

where µ := µ(τ, ν) is the “loss of regularity” defined in Theorem 6.9 (see (6.35)) and
C1 is fixed below.

Theorem 9.1. (Nash-Moser) Assume that f ∈ Cq with q > s0 + β1 + µ+ 3. Let
τ ≥ ν + 2. Then there exist C1 > max{µ1 + α,C0} (where C0 := C0(τ, ν) is the one
in Theorem 8.15), δ0 := δ0(τ, ν) > 0 such that, if

NC1
0 εb∗+2γ−2 < δ0 , γ := ε2+a = ε2b , N0 := (ε4γ−3)ρ , b∗ := 5− 2b , (9.5)

then, for all n ≥ 0:

(P1)n there exists a function (In, ζn) : Gn ⊆ Ωε → En−1 × Rν , ω 7→ (In(ω), ζn(ω)),

(I0, ζ0) := 0, E−1 := {0}, satisfying |ζn|Lip(γ) ≤ C‖F(Un)‖Lip(γ)
s0 ,

‖In‖Lip(γ)
s0+µ ≤ C∗εb∗γ−1 , ‖F(Un)‖Lip(γ)

s0+µ+3 ≤ C∗ε
b∗ , (9.6)

where Un := (in, ζn) with in(ϕ) = (ϕ, 0, 0) + In(ϕ). The sets Gn are defined
inductively by:

G0 :=
{
ω ∈ Ωε : |ω · l| ≥ 2γ

〈l〉τ
∀l ∈ Zν \ {0}

}
,

Gn+1 :=
{
ω ∈ Gn : |iω · l + µ∞j (in)− µ∞k (in)| ≥ 2γn|j3 − k3|

〈l〉τ

∀j, k ∈ Sc ∪ {0}, l ∈ Zν
}
, (9.7)

where γn := γ(1 + 2−n) and µ∞j (ω) := µ∞j (ω, in(ω)) are defined in (8.61) (and
µ∞0 (ω) = 0).

The difference În := In − In−1 (where we set Î0 := 0) is defined on Gn, and
it satisfies

‖Î1‖Lip(γ)
s0+µ ≤ C∗εb∗γ−1 , ‖În‖Lip(γ)

s0+µ ≤ C∗εb∗γ−1N−α1
n−1 ∀n > 1. (9.8)

(P2)n ‖F(Un)‖Lip(γ)
s0 ≤ C∗εb∗N−αn−1 where we set N−1 := 1.

(P3)n (High norms). ‖In‖Lip(γ)
s0+β1

≤ C∗εb∗γ−1Nκ
n−1 and ‖F(Un)‖Lip(γ)

s0+β1
≤ C∗εb∗Nκ

n−1.

(P4)n (Measure). The measure of the “Cantor-like” sets Gn satisfies

|Ωε \ G0| ≤ C∗ε2(ν−1)γ ,
∣∣Gn \ Gn+1

∣∣ ≤ C∗ε2(ν−1)γN−1
n−1 . (9.9)

All the Lip norms are defined on Gn, namely ‖ ‖Lip(γ)
s = ‖ ‖Lip(γ)

s,Gn .
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Proof. To simplify notations, in this proof we denote ‖ ‖Lip(γ) by ‖ ‖.
Step 1: Proof of (P1, 2, 3)0. Recalling (5.6) we have ‖F(U0)‖s = ‖F(ϕ, 0, 0, 0)‖s

= ‖XP (ϕ, 0, 0)‖s ≤s ε5−2b by Lemma 5.3. Hence (recall that b∗ := 5 − 2b) the
smallness conditions in (P1)0-(P3)0 hold taking C∗ := C∗(s0 + β1) large enough.

Step 2: Assume that (P1, 2, 3)n hold for some n ≥ 0, and prove (P1, 2, 3)n+1.
The proof of this step closely follows Step 2 in the proof of Theorem 9.1 of [5]. We
just mention the main changes: here it is convenient to define

wn := ε2γ−2‖F(Un)‖s0 , Bn := ε2γ−1‖In‖s0+β1 + ε2γ−2‖F(Un)‖s0+β1 , (9.10)

while the corresponding quantities defined in (9.18) of [5] have ε instead of ε2 (and
then, with definition (9.10), the bounds (9.19) of [5] are also valid here without
changes). In the present case, the estimates (9.20)-(9.21) of [5] for the quadratic
Taylor remainder have to be adapted by replacing the factor ε with ε2. The reason
for this improvement is that the nonlinearity in the mKdV equation is cubic, whereas
in the KdV equation considered in [5] the nonlinearity is just quadratic.

Remark 9.2. Since the KdV, respectively mKdV, nonlinearity is quadratic, re-
spectively cubic, the smallness condition required in [5] for the convergence of the
Nash-Moser scheme is stronger than for Theorem 9.1: it is ε‖F(ϕ, 0, 0)‖s0+µγ

−2 � 1
instead of ε2‖F(ϕ, 0, 0)‖s0+µγ

−2 � 1. As a consequence less steps of Birkhoff normal
form are required (namely less monomials to work out in the original Hamiltonian)
to reach the sufficient smallness F(U0) = O(ε5−2b) to make the Nash-Moser scheme
to converge (in [5] it is needed F(U0) = O(ε6−2b)).

Step 3: Prove (P4)n for all n ≥ 0. For all n ≥ 0, the difference Gn \Gn+1 is the
union over l ∈ Zν , j, k ∈ Sc ∪ {0} of the sets Rljk(in), where

Rljk(in) :=
{
ω ∈ Gn : |iω · l + µ∞j (in)− µ∞k (in)| < 2γn|j3 − k3| 〈l〉−τ

}
. (9.11)

Since Rljk(in) = ∅ for j = k, in the sequel we assume that j 6= k.

Lemma 9.3. For n ≥ 1, |l| ≤ Nn−1, one has the inclusion Rljk(in) ⊆ Rljk(in−1).

Proof. The proof closely follows the one of Lemma 5.2 in [3]. The differences are that
here the vector ω is not confined along a fixed direction, here we have Nn−1 instead
of Nn, and the factor ε in (5.28) and (5.33) of [3] is replaced here by ε7γ−2 = ε3−2a.

In the proof we use (9.8), (8.59), (8.25), (8.37), and the bounds (4.25), (4.26),
(4.34) of [3] adapted to the present case (the bounds (4.25), (4.26) of [3] hold here
with ε1+b instead of ε, as already pointed out in the proof of Theorem 8.15; the
bound (4.34) of [3] holds here with no change).

By definition, Rljk(in) ⊆ Gn (see (9.11)). By Lemma 9.3, for n ≥ 1 and |l| ≤
Nn−1 we also have Rljk(in) ⊆ Rljk(in−1). On the other hand, Rljk(in−1) ∩ Gn = ∅
(see (9.7)). As a consequence, Rljk(in) = ∅ for all |l| ≤ Nn−1, and

Gn \ Gn+1 ⊆
⋃

j,k∈Sc∪{0}
|l|>Nn−1

Rljk(in) ∀n ≥ 1. (9.12)

Lemma 9.4. Let n ≥ 0. If Rljk(in) 6= ∅, then |l| ≥ C1|j3 − k3| ≥ 1
2C1(j2 + k2) for

some constant C1 > 0 (independent of l, j, k, n, in, ω).
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Proof. Follow the proof of Lemma 5.3 of [3], also using (8.62). Note that |ω| ≤ 2|ω̄|
for all ω ∈ Ωε, for ε small enough, by (5.2) and (4.10).

Now we study the measure of the resonant sets Rljk(in) defined in (9.11). We
have to analyze in more details the sublevels of the function

ω 7→ φ(ω) := iω · l + µ∞j (ω)− µ∞k (ω), (9.13)

appearing in (9.11) (φ also depends on l, j, k, in).

Lemma 9.5. There exists C0 > 0 such that for all j 6= k, with j2 + k2 > C0, the
set Rljk(in) has Lebesgue measure |Rljk(in)| ≤ Cε2(ν−1)γ〈l〉−τ .

Proof. For l 6= 0, decompose ω = sl̂ + v, where l̂ := l/|l|, s ∈ R, and l · v = 0 (so
that ω · l = s|l|). Let ψ(s) := φ(sl̂+ v). The eigenvalues µ∞j are given in (8.61). By

(8.36) and (5.4), ε2|c(ξ)|lip ≤ C2 for some constant C2 > 0 depending only on the
set S of the tangential sites. Then, by (8.62) and (2.2),

|m̃3(s1)− m̃3(s2)| ≤ Cε3γ−1|s1 − s2|,
|m̃1(s1)− m̃1(s2)| ≤ (C2 + Cε5γ−2)|s1 − s2| ≤ 2C2|s1 − s2|,
|r∞j (s1)− r∞j (s2)| ≤ Cε3−2aγ−1|s1 − s2|

for some C > 0 and ε small enough, where, with a slight abuse of notations, we have
written

m̃i(s) = m̃i(sl̂ + v) , i = 1, 3 and r∞j (s) = r∞j (sl̂ + v) , j ∈ Sc .

By (8.61) and Lemma 9.4,

|ψ(s1)− ψ(s2)| ≥
(
|l| − Cε3γ−1|j3 − k3| − 2C2|j − k| − 2Cε3−2aγ−1

)
|s1 − s2|

≥ |j3 − k3|
(
C1 − Cε3γ−1 − 2C2|j − k|

|j3 − k3|
− 2Cε3−2aγ−1

|j3 − k3|

)
|s1 − s2|

≥ C1

2
|j3 − k3||s1 − s2|

for ε small enough and j2 + k2 + jk > C0 := 12C2/C1. As a consequence, the set
∆ljk(in) := {s : sl̂ + v ∈ Rljk(in)} has Lebesgue measure

|∆ljk(in)| ≤ 2

C1|j3 − k3|
4γn|j3 − k3|
〈l〉τ

≤ Cγ

〈l〉τ

for some C > 0. The lemma follows by Fubini’s Theorem.

Remark 9.6. When K = H+λM2, λ = 3/4, using (8.40), the conclusion of Lemma
9.5 holds without restrictions on j, k.

It remains to estimate the measure of the finitely many resonant sets Rljk(in)
for j2 + k2 ≤ C0. Recalling (8.36) and the parity ξ−j = ξj , we write c(ξ) = 6ς~1 · ξ
where ~1 is the vector (1, . . . , 1) ∈ Rν and ξ = (ξj)j∈S+ ∈ Rν . Hence, by (5.4),

ε2c(ξ) = 6ς~1 · A−1[ω − ω̄] = 6ςA−T~1 · [ω − ω̄] (9.14)
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where A−T is the transpose of A−1. We write the function φ(ω) in (9.13) as

φ(ω) = ajk + bljk · ω + qjk(ω) ,

where

ajk := −i
(
j3 − k3 + 6ς(j − k)~1 · A−1ω̄

)
,

bljk := i
(
l + 6ς(j − k)A−T~1

)
,

qjk(ω) := −i(m̃3 − 1)(j3 − k3) + i(m̃1 − ε2c(ξ))(j − k) + r∞j − r∞k

(and m̃3, m̃1, ξ, r
∞
j , r

∞
k all depend on ω). By (8.62) and since j2 +k2 ≤ C0 we deduce

that |qjk|Lip(γ) ≤ Cε3−2a. Recalling (2.2) we get

|qjk|sup ≤ Cε3−2a , |qjk|lip ≤ γ−1|qjk|Lip(γ) ≤ Cε1−3a (9.15)

so that φ(ω) is a small perturbation of the affine function ω 7→ ajk + bljk · ω. By
the next lemma, the hypothesis (1.12) on the tangential sites S allows to verify that
such function does not vanish identically.

Lemma 9.7. Assume (1.12). Then, for all j 6= k, j2 + k2 ≤ C0 it results ajk 6= 0.

Proof. Using formulae (1.19) and (4.11), we calculate

~1 · A−1ω̄ = − 1

3ς(2ν − 1)

ν∑
i=1

̄ 2
i .

Hence

ajk = −i(j − k)
(
j2 + jk + k2 − 2

2ν − 1

ν∑
i=1

̄ 2
i

)
6= 0

by assumption (1.12) on the set S.

Lemma 9.7 implies that δ := min{|ajk| : j2 + k2 ≤ C0, j 6= k} > 0.

Lemma 9.8. Assume (1.12). If j2 + k2 ≤ C0, then |Rljk(in)| ≤ Cε2(ν−1)γ〈l〉−τ .

Proof. Denote b := bljk for brevity. For j2 + k2 ≤ C0, ω ∈ Rljk(in), one has, by
(9.11), (9.15),

|b · ω| ≥ |ajk| − |φ(ω)| − |qjk(ω)| ≥ δ − 2γn|j3 − k3|〈l〉−τ − Cε3−2a ≥ δ/2

for ε small enough. On the other hand, |b · ω| ≤ 2|ω̄||b| because |ω| ≤ 2|ω̄| (see
(5.2) and (4.10)). Hence |b| ≥ δ1 where δ1 := δ/(4|ω̄|) > 0. Split ω = sb̂ + v where
b̂ := b/|b| and v · b = 0. Let ψ(s) := φ(sb̂+ v). By (9.15), for ε small enough, we get

|ψ(s1)− ψ(s2)| ≥ (|b| − |qjk|lip)|s1 − s2| ≥
δ1

2
|s1 − s2| .

Then we proceed similarly as in the proof of Lemma 9.5.

The proof of (9.9) follows from the lemmata 9.3, . . . , 9.8, proceeding like in [3]
(see the conclusion of the proof of Theorem 5.1 in [3]).
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Proof of Theorem 5.1 concluded. The conclusion of the proof of Theorem 5.1
follows exactly like in [5] (see “Proof of Theorem 5.1 concluded” in [5]).

Remark 9.9. By remark 9.6, Lemma 9.7 (which is the only point in the paper
where assumption (1.12) is used) is not needed any more. Thus Theorem 1.1 applies
to K = H + (3ς/4)M2 without assuming hypothesis (1.12).
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