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1 Introduction and main results

In this paper we prove the existence and stability of Cantor families of quasi-periodic solutions of Hamil-
tonian quasi-linear (also called “strongly nonlinear”, e.g. in [24]) perturbations of the KdV equation

Ut + Ugge — OUUL +N4(x7 uaumuzzauza:m) =0, (11)



under periodic boundary conditions z € T := R/2xZ, where

Ny (2,0, Uy Uy U ) = — Oy [(8uf)(m7u,ux) — Bm((auzf)(ac,muz))] (1.2)

is the most general quasi-linear Hamiltonian (local) nonlinearity. Note that A contains as many deriva-
tives as the linear part 9,... The equation (1.1 is the Hamiltonian PDE u; = 9,V H (u) where VH
denotes the L?(T,) gradient of the Hamiltonian

H(u) = /11‘ u?i +ud + flx,u,uy) de (1.3)

on the real phase space

HY(T,) == {u(:z:) € HY(T,R) : /

Tu(ac)dx = 0} . (1.4)

We assume that the “Hamiltonian density” f € C4(T x R x R;R) for some ¢ large enough, and that

= fs(u,uz) + foe(w,u,us), (1.5)

where f5(u, u,) denotes the homogeneous component of f of degree 5 and f>¢ collects all the higher order
terms. By (1.5) the nonlinearity N; vanishes of order 4 at v = 0 and (1.1)) may be seen, close to the
origin, as a “small” perturbation of the KdV equation

Ut + Uy — OUU, =0, (1.6)

which is completely integrable. Actually, the KdV equation may be described by global analytic
action-angle variables, see [20] and the references therein.

A natural question is to know whether the periodic, quasi-periodic or almost periodic solutions of
persist under small perturbations. This is the content of KAM theory.

The first KAM results for PDEs have been obtained for 1-d semilinear Schréodinger and wave equations
by Kuksin [22], Wayne [31], Craig-Wayne [11], Péschel [25], see [10], [24] and references therein. For PDEs
in higher space dimension the theory has been more recently extended by Bourgain [9], Eliasson-Kuksin
[12], and Berti-Bolle [5], Geng-Xu-You [13], Procesi-Procesi [28]-[27], Wang [30].

For unbounded perturbations the first KAM results have been proved by Kuksin [23] and Kappeler-
Poschel [20] for KAV (see also Bourgain [§]), and more recently by Liu-Yuan [19], Zhang-Gao-Yuan [32]
for derivative NLS, and by Berti-Biasco-Procesi [3]-[4] for derivative NLW. For a recent survey of known
results for KAV, we refer to [14].

The KAM theorems in [23], [20] prove the persistence of the finite-gap solutions of the integrable
KdV under semilinear Hamiltonian perturbations €9, (9, f)(z,u), namely when the density f is
independent of u,, so that (1.2) is a differential operator of order 1 (note that in [24] such nonlinearities
are called “quasi-linear” an “strongly nonlinear”). The key point is that the frequencies of KdV
grow as ~ j2 and the difference |53 —i3| > (j2+142)/2, i # j, so that KAV gains (outside the diagonal) two
derivatives. This approach also works for Hamiltonian pseudo-differential perturbations of order 2 (in
space), using the improved Kuksin’s lemma in [I9]. However it does not work for a general quasi-linear
perturbation as in 7 which is a nonlinear differential operator of the same order (i.e. 3) as the constant
coefficient linear operator 0,.,. Such a strongly nonlinear perturbation term makes the KAM question
quite delicate because of the possible phenomenon of formation of singularities in finite time, see Lax
[18], Klainerman-Majda [2I] for quasi-linear wave equations, see also section 1.4 of [24]. For example,
Kappeler-Poschel [20] (Remark 3, page 19) wrote: “It would be interesting to obtain perturbation results
which also include terms of higher order, at least in the region where the KdV approximation is valid.
However, results of this type are still out of reach, if true at all’.

In this paper we give the first positive answer to this problem, proving the existence of small amplitude,
linearly stable, quasi-periodic solutions of ([1.1)), see Theorem Note that (1.1)) does not depend
on external parameters. Moreover the KdV equation (l.1) is a completely resonant PDE, namely the



linearized equation at the origin is the linear Airy equation u; + g, = 0, which possesses only the
2m-periodic in time solutions

u(t,z) = Z ueld el (1.7)

jez\{oy 7
Thus the existence of quasi-periodic solutions of ([1.1]) is a purely nonlinear phenomenon (the diophantine

frequencies in ([1.9)) are O(|¢])-close to integers with & — 0) and a perturbation theory is more difficult.
The solutions that we find are localized in Fourier space close to finitely many “tangential sites”

St i=1{5,...,}, S=8TU(-ST)={£j:jeS5}, 7e€N\{0}, Vi=1,...,v. (1.8)

The set S is required to be even because the solutions u of (1.1)) have to be real valued. Moreover, we
also assume the following explicit hypotheses on S:

o (81) j1 + j2 + j3 # 0 for all 5y, j2,j3 € S.
e (52) Bj1,...,j4 € S such that j; + jo + js + 4 # 0, j3 + 45 + 75 + 53 — (j1 +J2 +Js +ja)® = 0.

Theorem 1.1. Given v € N, let f € C? (with q := q(v) large enough) satisfy (1.5)). Then, for all
the tangential sites S as in (1.8) satisfying (S1)-(S2), the KdV equation (1.1) possesses small amplitude

quasi-periodic solutions with diophantine frequency vector w := w(§) = (w;)jes+ € RY, of the form
. .3 1
ult,r) =) 2/& coslwit + ja) + o(VIED),  wj =57 = 6857 (1.9)

for a “Cantor-like” set of small amplitudes & € RY with density 1 at { = 0. The term o(~\/[¢]) is small
in some H?®-Sobolev norm, s < q. These quasi-periodic solutions are linearly stable.

This result is deduced from Theorem [5.11 Let us make some comments.

1. The set of tangential sites S satisfying (S1)-(S2) can be iteratively constructed in an explicit way,
see the end of section @ After fixing {J1,...,Jn}, in the choice of 7,41 there are only finitely many
forbidden values, while all the other infinitely many values are good choices for 7,,41. In this precise
sense the set S is “generic”.

2. The linear stability of the quasi-periodic solutions is discussed after . In a suitable set of
symplectic coordinates (v, n,w), ¢» € TY, near the invariant torus, the linearized equations at the
quasi-periodic solutions assume the form , . Actually there is a complete KAM normal
form near the invariant torus (remark [6.5)), see also [6].

3. A similar result holds for perturbed (focusing/defocusing) mKdV equations
ut+U3cac9c:l:a:cus+N4(mau7u:cvuxac7u:cxx> =0 (110)

for tangential sites S which satisfy 52—+ Y7 | 72 ¢ Z. If the density f(u,u,) is independent on z,
the result holds for all the choices of the tangential sites. The KdV equation (|1.1)) is more difficult
than ((1.10) because the nonlinearity is quadratic and not cubic.

An important point is that the fourth order Birkhoff normal form of KdV and mKdV is completely
integrable. The present strategy of proof — that we describe in detail below — is a rather general
approach for constructing small amplitude quasi-periodic solutions of quasi-linear perturbed KdV
equations. For example it could be applied to generalized KdV equations with leading nonlinearity
uP, p > 4, by using the normal form techniques of Procesi-Procesi [27]-[28]. A further interesting
open question concerns perturbations of the finite gap solutions of KdV.

Let us describe the strategy of proof of Theorem [I.I} which involves many different arguments.

Weak Birkhoff normal form. Once the finite set of tangential sites S has been fixed, the first step is
to perform a “weak” Birkhoff normal form (weak BNF), whose goal is to find an invariant manifold
of solutions of the third order approximate KdV equation (L.1)), on which the dynamics is completely



integrable, see section [3] Since the KdV nonlinearity is quadratic, two steps of weak BNF are required.
The present Birkhoff map is close to the identity up to finite dimensional operators, see Proposition [3.1
The key advantage is that it modifies Ny very mildly, only up to finite dimensional operators (see for
example Lemma, and thus the spectral analysis of the linearized equations (that we shall perform in
section [8)) is essentially the same as if we were in the original coordinates.

The weak normal form does not remove (or normalize) the monomials O(z?). This could be
done. However, we do not perform such stronger normal form (called “partial BNF” in Poschel [26])
because the corresponding Birkhoff map is close to the identity only up to an operator of order O(9; 1),
and so it would produce, in the transformed vector field Ny, terms of order 9., and 9,. A fortiori, we
cannot either use the full Birkhoff normal form computed in [20] for KdV, which completely diagonalizes
the fourth order terms, because such Birkhoff map is only close to the identity up to a bounded operator.
For the same reason, we do not use the global nonlinear Fourier transform in [20] (Birkhoff coordinates),
which is close to the Fourier transform up to smoothing operators of order O(9;1).

The weak BNF procedure of sectionis sufficient to find the first nonlinear (integrable) approximation
of the solutions and to extract the “frequency-to-amplitude” modulation .

In Proposition [3.1| we also remove the terms O(v®), O(v*z) in order to have sufficiently good approx-
imate solutions so that the Nash-Moser iteration of section [9] will converge. This is necessary for KdV
whose nonlinearity is quadratic at the origin. These further steps of Birkhoff normal form are not required
if the nonlinearity is yet cubic as for mKdV, see Remark To this aim, we choose the tangential sites
S such that (82) holds. We also note that we assume because we use the conservation of momentum
up to the homogeneity order 5, see .

Action-angle and rescaling. At this point we introduce action-angle variables on the tangential sites
(section {)) and, after the rescaling , we look for quasi-periodic solutions of the Hamiltonian (4.9).
Note that the coefficients of the normal form A in depend on the angles 6, unlike the usual KAM
theorems [26], [22], where the whole normal form is reduced to constant coefficients. This is because the
weak BNF of section [3| did not normalize the quadratic terms O(z2). These terms are dealt with the
“linear Birkhoff normal form” (linear BNF) in sections 1 F In some sense here the “partial” Birkhoff
normal form of [26] is split into the weak BNF of section [3| and the linear BNF of sections
The action-angle variables are convenient for proving the stability of the solutions.

The nonlinear functional setting. We look for a zero of the nonlinear operator , whose unknown is
the embedded torus and the frequency w is seen as an “external” parameter. The solution is obtained
by a Nash-Moser iterative scheme in Sobolev scales. The key step is to construct (for w restricted to
a suitable Cantor-like set) an approximate inverse (a la Zehnder [33]) of the linearized operator at any
approximate solution. Roughly, this means to find a linear operator which is an inverse at an exact
solution. A major difficulty is that the tangential and the normal dynamics near an invariant torus are
strongly coupled.

This difficulty is overcome by implementing the abstract procedure in Berti-Bolle [6]-[7] developed in
order to prove existence of quasi-periodic solutions for autonomous NLW (and NLS) with a multiplicative
potential. This approach reduces the search of an approximate inverse for to the invertibility of a
quasi-periodically forced PDE restricted on the normal directions. This method approximately decouples
the “tangential” and the “normal” dynamics around an approximate invariant torus, introducing a suit-
able set of symplectic variables (¢, 7, w) near the torus, see . Note that, in the first line of ,
1 is the “natural” angle variable which coordinates the torus, and, in the third line, the normal variable
z is only translated by the component zo(¢) of the torus. The second line completes this transformation
to a symplectic one. The canonicity of this map is proved in [6] using the isotropy of the approximate
invariant torus is, see Lemma The change of variable brings the torus is “at the origin”. The
advantage is that the second equation in (which corresponds to the action variables of the torus)
can be immediately solved, see (6.30)). Then it remains to solve the third equation , i.e. to invert
the linear operator £,,. This is, up to finite dimensional remainders, a quasi-periodic Hamiltonian linear
Airy equation perturbed by a variable coefficients differential operator of order O(9;z,). The exact form
of L,, is obtained in Proposition

Reduction of the linearized operator in the normal directions. In section [§] we conjugate the variable coef-



ficients operator L, in ((7.34]) to a diagonal operator with constant coefficients which describes infinitely
many harmonic oscillators

i}j +:u(]?ovj :Oa ,u_(])o = i(—m3j3+m1j)—|—r;?° EiR, .] ¢S7 (111)

where the constants m3 — 1, m; € R and sup; |r$°| are small, see Theorem The main perturbative
effect to the spectrum (and the eigenfunctions) of £, is clearly due to the term a; (wt, ©)0yza (see )7
and it is too strong for the usual reducibility KAM techniques to work directly. The conjugacy of L,
with is obtained in several steps. The first task (obtained in sections is to conjugate L,
to another Hamiltonian operator of H g: with constant coefficients

Lg ::w-8¢+m38mm+m18x+R6, mi,m3 € R, (112)

up to a small bounded remainder Rg = O(9Y)), see (8.113). This expansion of £,, in “decreasing symbols”
with constant coefficients is similar to [2], and it is somehow in the spirit of the works of Iooss, Plotnikov
and Toland [I7]-[16] in water waves theory, and Baldi [I] for Benjamin-Ono. It is obtained by transfor-
mations which are very different from the usual KAM changes of variables. There are several differences
with respect to [2]:

1. The first step is to eliminate the z-dependence from the coefficient aq (wt, )0y, of the Hamiltonian
operator L,,. We cannot use the symplectic transformation A defined in , used in [2], because
L., acts on the normal subspace H é‘ only, and not on the whole Sobolev space as in [2]. We can
not use the restricted map A, := O Al which is not symplectic. In order to find a symplectic
diffeomorphism of Hg mnear A, the first observation is to realize A as the flow map of the time
dependent Hamiltonian transport linear PDE . Thus we conjugate L, with the flow map of
the projected Hamiltonian equation . In Lemma we prove that it differs from A, up to
finite dimensional operators. A technical, but important, fact is that the remainders produced after
this conjugation of L, remain of the finite dimensional form , see Lemma

This step may be seen as a quantitative application of the Egorov theorem, see [29], which describes
how the principal symbol of a pseudo-differential operator (here aj(wt,x)0y..) transforms under
the flow of a linear hyperbolic PDE (here (8.5)).

2. Since the weak BNF procedure of section [3[ did not touch the quadratic terms O(2?), the operator
L., has variable coefficients also at the orders O(e) and O(e?), see (7.34)-(7.35). These terms
cannot be reduced to constants by the perturbative scheme in [2], which applies to terms R such
that Ry~! < 1 where v is the diophantine constant of the frequency vector w. Here, since KAV
is completely resonant, such v = o(g?), see . These terms are reduced to constant coefficients
in sections by means of purely algebraic arguments (linear BNF), which, ultimately, stem
from the complete integrability of the fourth order BNF of the KdV equation (L.6]), see [20].

The order of the transformations of sections 8.1 used to reduce L, is not accidental. The first two
steps in sections reduce to constant coefficients the quasi-linear term O(0,.,) and eliminate the
term O(0;4), see (the second transformation is a time quasi-periodic reparametrization of time).
Then, in section we apply the transformation 7 (8.64) in such a way that the space average of the
coefficient d; (¢, -) in is constant. This is done in view of the applicability of the descent method
in section All these transformations are composition operators induced by diffeomorphisms of the
torus. Therefore they are well-defined operators of a Sobolev space into itself, but their decay norm is
infinite! We perform the transformation 7 before the linear Birkhoff normal form steps of sections
because 7 is a change of variable that preserves the form of the remainders (it is not evident after
the Birkhoff normal form). The Birkhoff transformations are symplectic maps of the form I +e0(9;1).
Thanks to this property the coefficient d; (¢, x) obtained in step is not changed by these Birkhoff
maps. The transformation in section is one step of “descent method” which transforms d; (¢, )0,
into a constant md,,. It is at this point of the regularization procedure that the assumption (S1) on the
tangential sites is used, so that the space average of the function ¢~ is zero, see Lemma [7.5] Actually we




only need that the average of the function in is zero. If f5 = 0 (see (|1.5))) then (S1) is not required.
This completes the task of conjugating £, to Lg in .

Finally, in section we apply the abstract reducibility Theorem 4.2 in [2], based on a quadratic
KAM scheme, which completely diagonalizes the linearized operator, obtaining . The required
smallness condition (8.115)) for Rg holds. Indeed the biggest term in Rg comes from the conjugation of
€0, (00(¥), ys()) i. The linear BNF procedure of section had eliminated its main contri-
bution £d,v.(¢,0). It remains €9, (ve(0o(¢), ys(¢)) — ve(p,0)) which has size O(e"2*y71) due to the
estimate of the approximate solution. This term enters in the variable coefficients of d; (¢, )0,
and do(p,2)d0. The first one had been reduced to the constant operator m;0, by the descent method
of section The latter term is an operator of order O(89) which satisfies (8.115). Thus Ls may
be diagonalized by the iterative scheme of Theorem 4.2 in [2] which requires the smallness condition
O(e772*4~2) < 1. This is the content of section
The Nash-Moser iteration. In section [J] we perform the nonlinear Nash-Moser iteration which finally
proves Theorem [5.1]and, therefore, Theorem[I.1] The optimal smallness condition required for the conver-
gence of the scheme is || F(,0,0)]|so+,7 2 < 1, see (9.5). It is verified because || Xp(p,0,0)[s <s 872
(see (5.15))), which, in turn, is a consequence of having eliminated the terms O(v®),O(v*z) from the
original Hamiltonian , see (3.5)). This requires the condition (82).
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research was supported by the European Research Council under FP7, and partially by the grants STAR
2013 and PRIN 2012 “Variational and perturbative aspects of nonlinear differential problems”.

2 Preliminaries

2.1 Hamiltonian formalism of KdV

The Hamiltonian vector field Xy generated by a Hamiltonian H : H}(T,) — R is Xy (u) := 0,VH (u),
because
dH(u)[h] = (VH(u), h)r2(r,) = U Xp(u),h), Vu,h € H)(T,),

where () is the non-degenerate symplectic form
Qu,v) = /(aglu) vdr, Yu,v€ Hy(T,), (2.1)
T

and 9, 'u is the periodic primitive of u with zero average. Note that

1
8z5;1 = 8;18;5 =m, mo(u):=u-— o Tu(m) dx . (2.2)

A map is symplectic if it preserves the 2-form €.
We also remind that the Poisson bracket between two functions F, G : H}(T,) — R is

{F(u),Gu)} :=QXp, Xq) = /EVF(U)amVG(u)dx. (2.3)

The linearized KdV equation at u is
hi = 0, (0,VH)(u)[h] = Xk (h),

where X is the KdV Hamiltonian vector field with quadratic Hamiltonian K = £ ((8,VH)(u)[R], h)r2(1,)
= 2(OuwuH)(u)[h, h]. By the Schwartz theorem, the Hessian operator A := (0, VH)(u) is symmetric,
namely AT = A, with respect to the L?-scalar product.

Dynamical systems formulation. It is convenient to regard the KdV equation also in the Fourier
representation

w(@) =Yy ule) e = (e oy v =T (24)



where the Fourier indices j € Z \ {0} by the definition (1.4]) of the phase space and u_; = u; because
u(x) is real-valued. The symplectic structure writes

1 1 1 1 1 _
Q= 3 Z gduj ANdu_j; = Z i—jduj Adu_j, Qu,v) = Z i—jujv,j = Z i—jujvj , (2.5)
J#0 Jj=1 J#0 J#0

the Hamiltonian vector field X and the Poisson bracket {F, G} are
(X (u)]; =1j(0u_jH)(u), Vj#0, {F(u),G(u)} = *Z#Oij‘(au_jF)(U)(aujG)(U)~ (2.6)

Conservation of momentum. A Hamiltonian

Hw) = Y Hy . u, wz)= Y u;e (2.7)

J15e-sdn €Z\{0} JeZ\{0}
homogeneous of degree n, preserves the momentum if the coeflicients Hj, .. ;. are zero for ji+...+j, # 0,
so that the sum in (2.7)) is restricted to integers such that j; + ...+ j, = 0. Equivalently, H preserves
the momentum if {H, M} = 0, where M is the momentum M (u) := [, u’dz = > jem oy Uju—j- The
homogeneous components of degree < 5 of the KdV Hamiltonian H in (|1.3) preserve the momentum
because, by (1.5, the homogeneous component f5 of degree 5 does not depend on the space variable x.

Tangential and normal variables. Let 7,...,7, > 1 be v distinct integers, and ST := {71,...,7,}.
Let S be the symmetric set in (1.8), and S¢ := {j € Z\ {0} : j ¢ S} its complementary set in Z \ {0}.
We decompose the phase space as

H{(T,):= Hs ® Hg, Hg:=span{e’":je S}, Hg:={u= Z uje’" € Hy(T,)}, (2.8)
jese

and we denote by Ilg, Hg: the corresponding orthogonal projectors. Accordingly we decompose
_ _ o Cijx _ 4. Cijx
u="v+2z, v=1Igu:= Zjesu] eVt z=Tgu:= ngSqu el (2.9)

where v is called the tangential variable and z the normal one. We shall sometimes identify v = (v;)es
and z = (z;)jese. The subspaces Hg and Hé are symplectic. The dynamics of these two components is
quite different. On Hg we shall introduce the action-angle variables, see (4.1)). The linear frequencies of
oscillations on the tangential sites are

w:=(7,...,72) e N". (2.10)

2.2 Functional setting

Norms. Along the paper we shall use the notation
l[ulls = llullgs(resry = [lullms , (2.11)

to denote the Sobolev norm of functions u = u(y, z) in the Sobolev space H*(T**!). We shall denote by
| lzz; the Sobolev norm in the phase space of functions u := u(z) € H*(T). Moreover || ||zs will denote
the Sobolev norm of scalar functions, like the Fourier components u; ().

We fix sq := (v + 2)/2 so that H*(T**!) — L°°(T**!) and the spaces H*(T"*!), s > s, are an
algebra. At the end of this section we report interpolation properties of the Sobolev norm that will be
currently used along the paper. We shall also denote

S (T = {ue H(T") : u(p, ) € Hg Vo € T}, (2.12)
H (T == {ue H(T"™) : u(p,) € Hg Vo € T"}. (2.13)



For a function v : Q, — E, w — u(w), where (E, || ||g) is a Banach space and €2, is a subset of R”, we
define the sup-norm and the Lipschitz semi-norm

lip . _ H ||11p _ Hu(wl) - u(w2)”E

[ullz® = llullz, = sup [lu(@)le, [ullg 1= sup : (2.14)
wes, w1 Aws |wi — wa
and, for v > 0, the Lipschitz norm
Li L li
][ 27 B = ull® + Ay lull (2.15)
Lip(y Lip(v)

If E = H® we simply denote |lul|7s" " = ||ulls . We shall use the notation

a<sb <<= a<C(s)b forsome constant C(s) > 0.

Matrices with off-diagonal decay. A linear operator can be identified, as usual, with its matrix
representation. We recall the definition of the s-decay norm (introduced in [5]) of an infinite dimensional
matrix. This norm is used in [2] for the KAM reducibility scheme of the linearized operators.

Definition 2.1. The s-decay norm of an infinite dimensional matriz A := (Az:f)ihizezb, b>1,1is
N2
A2 =30 40> (s |4lz]) (2.16)
iezb 1

For parameter dependent matrices A := A(w), w € Q, C R”, the definitions (2.14) and (2.15) become

: Alwy) — A(w
AR = sup |A@)L. (Al = sp A ZAC)l
weN, w1 Fwa |w1 - WQ‘

L AR = AR 4y AP (2.17)

Such a norm is modeled on the behavior of matrices representing the multiplication operator by a
function. Actually, given a function p € H*(T?), the multiplication operator h + ph is represented by
the Toplitz matrix 7} = p;_y and |T|s = ||p||s- If p = p(w) is a Lipschitz family of functions, then

TP = ||p|5 P (2.18)
The s-norm satisfies classical algebra and interpolation inequalities, see [2].

Lemma 2.1. Let A = A(w) and B = B(w) be matrices depending in a Lipschitz way on the parameter
w € Qy, CRY. Then for all s > sg > b/2 there are C(s) > C(sg) > 1 such that

|AB|I;iP(7) < C(S)|A|T§ip(v)|B‘Lip(v) , (2.19)
[ABILO) < O(s)| A[SPD | BIIPO) 4 O(s0)|A[LP | BILPO), (2.20)
The s-decay norm controls the Sobolev norm, namely
JAR[IPO) < C(s) (AP R FPO) + AP ) LPO). (2.21)
Let now b := v + 1. An important sub-algebra is formed by the Tdplitz in time matrices defined by

AP = AP (1) — ), (2.22)

whose decay norm ([2.16)) is
j 2, .2s
A= D" (s AR @A™ (2:23)

jezlezy Ir1I2=i

These matrices are identified with the ¢-dependent family of operators

AlG) = (AN, e ARR) = 2, AR 220



which act on functions of the z-variable as

= hied" = Ap = Y AZ(p)hj,en". (2.25)

JEL J1,J2€Z

We still denote by [A(¢)|s the s-decay norm of the matrix in (2.24). As in [2], all the transformations
that we shall construct in this paper are of this type (with j,j1,j2 # 0 because they act on the phase
space HE(T,)). This observation allows to interpret the conjugacy procedure from a dynamical point of
view, see [2]-section 2.2. Let us fix some terminology.

Definition 2.2. We say that:

the operator (Ah)(p,x) := A(@)h(p, ) is SYMPLECTIC if each A(p), ¢ € T, is a symplectic map of
the phase space (or of a symplectic subspace like Hé:),

the operator w - 0, — 0;G(p) is HAMILTONIAN if each G(p), ¢ € T, is symmetric;

an operator is REAL if it maps real-valued functions into real-valued functions.

As well known, a Hamiltonian operator w - 0, — 0,G(¢p) is transformed, under a symplectic map A,
into another Hamiltonian operator w - 9, — 0, E(p), see e.g. [2]-section 2.3.

We conclude this preliminary section recalling the following well known lemmata, see Appendix of [2].
Lemma 2.2. (Composition) Assume f € C*(T? x By), By := {y € R™ : |y| < 1}. Then Vu €

H*(T4 R™) such that ||lul|p~ < 1, the composition operator f(u)(x) = f(x,u(x)) satisfies || f(u)||s <
Clfllcs(Jlulls + 1) where the constant C' depends on s,d. If f € C72 and ||u + h||L~ < 1, then

_ k£ )
| f(u+h)— Zi:ofT(U)[hz]Hs < Clflles+2 |5 (IBlls + Al Lo llulls), & =0,1.

The previous statement also holds replacing || ||s with the norms | |s,c0-

Lemma 2.3. (Tame product). For s > so > d/2,

luvlls < Clso)llullslvllse + CS)lullsllvlls,  Yu,v € H(TY.

Fors>0,s€eN,
luvlls < 5 lull o= llolls + C(s)l[ullw==[v]o, ¥Yue W(T?), ve H*(T?).

The above inequalities also hold for the norms || ||(I§ip(v).

Lemma 2.4. (Change of variable) Let p € W*>®(T4 R%), s > 1, with ||p|lwi.~ < 1/2. Then the
function f(z) = x + p(x) is invertible, with inverse f~1(y) = y + q(y) where ¢ € W°(T% R%), and
llgllws. < C|lpllws.=. If, moreover, p = p, depends in a Lipschitz way on a parameter w € Q C R”, and
| DepwllLee < 1/2, Vw, then ||qHIIjII,I;(ZO) < C’||p||[V';Iz(fl)oo The constant C := C(d, s) is independent of ~.
Ifue H5(T?,C), then (uo f)(z) := u(x + p(x)) satisfies
[uo flls < Cllulls + llpllweoellull),  llwo f—ulls < Clpllzeellulls+1 + plws = l[ull2),

i Li Li Li
uo fIEPO) < € (Jlull X2 4 1l ful|5).

The function uo f~1 satisfies the same bounds.

3 Weak Birkhoff normal form

The Hamiltonian of the perturbed KdV equation (L.1)) is H = Hy + H3 + H>5 (see (1.3))) where

Hy(u) := %/Tuid:c, Hs(u) ::/Tugdx, H>s5(u /f X, U, Uy )d (3.1)



and f satisfies (L.5). According to the splitting (2.9) u =v + z, v € Hg, 2 € Hz, we have

2 2
Hy(u) z/%daj—i—/%’”dm, Hj(u) :/vgdx—i—S/szdm—i—B/vzzdx—F/z?’da:. (3.2)
T T T T T T

For a finite-dimensional space
E:= Ec:=span{e®:0 < |j| <C}, C>0, (3.3)

let I denote the corresponding L2-projector on E.
The notation R(v¥~2%) indicates a homogeneous polynomial of degree k in (v, z) of the form

R 929y = M[v,...,v ,z,...,2], M = k-linear .
—_—
(k—gq) times g times

Proposition 3.1. (Weak Birkhoff normal form) Assume Hypothesis (S2). Then there exists an
analytic invertible symplectic transformation of the phase space ®p : H} (T,) — HE(T,) of the form

Bp(u) =u+ U(u), U(u)=TpP(lzu), (3.4)

where E is a finite-dimensional space as in (3.3)), such that the transformed Hamiltonian is

H:=Ho®p=Ho+Hs+Hs+Hs+H>¢, (3.5)
where Hy is defined in (3.1]),

3 lu;l* °
Hs = /23 dx + 3/ v2tde, Hy:=—= Z T+ Hao+Haz, Hs:i= ZR(vS*qzq) , (3.6)

T T 245~ ] —

JjES q=2
Hao = G/Uzns((aglu)(aglz)) dx + 3/ 22m0(0; ') dr,  Haz = R(vz?), (3.7

T T

and Hx¢ collects all the terms of order at least siz in (v, z).

The rest of this section is devoted to the proof of Proposition [3.1
First, we remove the cubic terms [;v® 4+ 3 [ v?z from the Hamiltonian Hs defined in (3.2). In the
Fourier coordinates (2.4]), we have

1 .
Hy =3 S PP Hs= > wjugug, . (3.8)
j#0 J1+j2+753=0

We look for a symplectic transformation ®(®) of the phase space which eliminates the monomials Uy Uy Uy
of Hs with at most one index outside S. Note that, by the relation j; + jo + j3 = 0, they are finitely
many. We look for &) := (@%(3))”:1 as the time-1 flow map generated by the Hamiltonian vector field
X3, with an auxiliary Hamiltonian of the form

3 ,_ 3
Ft )(U') = Z Fj(ljyzjgujlujZUjS'
J1+J2+353=0
The transformed Hamiltonian is

H® :=Hoo® = Hy + B + 0 + HE)
HYY = Hy + {Hp, F®}, H = %{{Hg, FOLF®) 4 {Hy, FOY, (3.9)
where H (235) collects all the terms of order at least five in (u,u,). By and we calculate
Y = N {1+ 4 D E 5w,
J1+Jj2+33=0

10



Hence, in order to eliminate the monomials with at most one index outside S, we choose

1
a3 3y U (jlanajS) GA,
F =10+ +39) (3.10)
0 otherwise,

where A := {(j1,j2,43) € (Z\{0})? : ji +j2 +j3 = 0, j{ + 53 + j§ # 0, and at least 2 among ji, j2, js
belong to S}. Note that

A= {(jl,jQ,jg) € (Z\ {0})3 : j1 + jo + j3 = 0, and at least 2 among 71, jo, j3 belong toS} (3.11)
because of the elementary relation
Jitits=0 = 7 +75+j5 = 3j1j2js #0 (3.12)

being j1, j2, j3 € Z\ {0}. Also note that A is a finite set, actually A C [-2Cs,2Cs]® where the tangential
sites S C [-Cg,Cg]. As a consequence, the Hamiltonian vector field X () has finite rank and vanishes
outside the finite dimensional subspace E := Fs¢, (see (3.3)), namely

Xpe (u) =MpXpe (Igu).

Hence its flow ®®) : H}(T,) — HJ(T,) has the form (3.4) and it is analytic.
By construction, all the monomials of H3 with at least two indices outside S are not modified by the
transformation ®®). Hence (see (3.2)) we have

HéS) :/z3daj+3/vz2dm. (3.13)
T T

We now compute the fourth order term Hf) = Z?:o Hf’i) in (3.9)), where Hfi) is of type R(vi~iz?).
Lemma 3.2. One has (recall the definition (2.2)) of mo)

3
HE) = §/TU27TO[(3;1U)2]dx, ) ::6/

v2Ils ((9; 10)(9; 1)) dfc+3/z2m[(6;1v)2]dx. (3.14)
T

T
Proof. We write Hy = Hy <1 + H{® where Hy <y (u) := Jpvide + 3 [ v zdx. Then, by (3.9), we get
1
D = Lt PO 4 19,50 515
By (3.10), (3.12), the auxiliary Hamiltonian may be written as

F(B)(u) _ _1 Z Ujy UjoUjg _ _é /(8;1’1))3(1.% o /(8:6—1v)2(a;12)dx
T

Gy e () (172)(i3) T
Hence, using that the projectors Ilg, Hg: are self-adjoint and 9, ! is skew-selfadjoint,
VF® (u) = 9, {(9; 'v)? + 2115 [(0; ') (9, 12)] } (3.16)

(we have used that 9, 'mg = 9, ! be the definition of 9;!). Recalling the Poisson bracket definition (2.3),
using that VHjs <1(u) = 3v? + 61l (vz) and (3.16]), we get

{H3 <1, F®} = /T {3v® + 6ILs(vz) b { (05 'v)* + 2[5 [(0; 'v)(0; '2)] } da

=3 /T 021 (0; ') dr + 12 /E s (v2)s (9, v) (0, ' 2)] dx + R(v32). (3.17)

Similarly, since VH (u) = 322 + 611% (v2),
{H:g?’), F®Y =3 /11‘ 22m0(0; w)? dr + R(v32) + R(vz?). (3.18)
The lemma follows by (3.15), (3.17), (3.18). O
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We now construct a symplectic map ®* such that the Hamiltonian system obtained transforming
H; + H§3) +H f) possesses the invariant subspace Hg (see (2.8)) and its dynamics on Hg is integrable
and non-isocronous. Hence we have to eliminate the term H fl) (which is linear in z), and to normalize

H fg (which is independent of z). We need the following elementary lemma (Lemma 13.4 in [20]).
Lemma 3.3. Let j1, j2,j3, ja € Z such that j1 + jo + js + ja = 0. Then

G133+ 33 + 8 = =301+ 52) (1 + Js) (G2 + Ja).
Lemma 3.4. There exists a symplectic transformation ®%) of the form such that

14
HO = g® 0 = i, + 7P + 1P + 7Y, HY = *%Z [

Iy HE) +HE), (3.19)
JeS

where Hég) is defined in (3.13), Hf’g in (3.14)), HZES?E = R(vz?) and H(>45) collects all the terms of degree
at least five in (u,u,). B

Proof. We look for a map &) := (@%(4))“:1 which is the time 1-flow map of an auxiliary Hamiltonian
4
FW(u) = > I RRRTRRTI

Ji+tj2+js+7a=0
at least 3 indices are in S

with the same form of the Hamiltonian H fg + H 4&31) . The transformed Hamiltonian is

HY = H® 00® = Hy + B + B + HS), HY = (H,, FO} + B, (3.20)
where H (2453 collects all the terms of order at least five. We write H, £4) = Z?:o H fi) where each H fi) if of
type R(v*~2%). We choose the coefficients

(3)
(4) P if (j1,72,J3,74) € As
Fj1j2j3j4 = 1(‘7% Jr]% Jr]g +.72) e ’ (3'21)
0 otherwise,

where

Ag = {1 J2, 33, 74) € (Z\AON 2 ju + jo + js +ja = 0, 37 + j3 + j3 + ji #0,

and at most one among ji, jo, j3, j4 outside S} .

By this definition Hfl) = (0 because there exist no integers ji, j2, j3 € 5, ja € S satisfying j1+jo+js+js =
0, j3 + 73 + j3 + j3 = 0, by Lemma [3.3| and the fact that S is symmetric. By construction, the terms
Hii-) = Hf’i), i = 2,3,4, are not changed by ®®. Finally, by (3.14)

@ 3 1

H4 P § : (ijg)(ij4)ujluj2uj3uj4 : (3'22)
J1.2,J3,J4€S
J1+J2+i3+7a=0
Jy 5 +i3+id=0
Ji+3z2 ,J3+7iaF#0

If 1 + j2 + js + ja = 0 and j§ + j3 + 53 + 5§ = 0, then (j1 + j2) (1 + j3)(j2 + j3) = 0 by Lemma 3.3 We
develop the sum in (3.22)) with respect to the first index j;. Since j; + jo # 0 the possible cases are:

(i) {ja # —j1, ds = —jv, ja=—ja}  or  (it) {j2 # —j1, Js # —J1, Js = —Ja2, ja = —j1}-

12



Hence, using u_; = @; (recall (2.4])), and since S is symmetric, we have
1 gy g 2 Juj [y |2 Ju | Ju |
P D D A D=l D R CEL)
(1) 84 J1,§2€85,J2F#—J1 1J2 J,j'es JES jES

and in the second case (i7)

1 1 1 1
S —wjupuu, =Y U U, = Y 3\“j|2( > j*2|uj2|2) =0. (329

(47) JaJa Ji,J2,JeF#+j1 J1J2 JES JaF#ty
Then (3.19)) follows by (3.22)), (3.23)), (3.24). O

Note that the Hamiltonian Hy + H§3) + H£4) (see (3.19)) possesses the invariant subspace {z = 0}
and the system restricted to {z = 0} is completely integrable and non-isochronous (actually it is formed
by v decoupled rotators). We shall construct quasi-periodic solutions which bifurcate from this invariant
manifold.

In order to enter in a perturbative regime, we have to eliminate further monomials of H® in (3:19).
The minimal requirement for the convergence of the nonlinear Nash-Moser iteration is to eliminate the
monomials R(v®) and R(v%z). Here we need the choice of the sites of Hypothesis (S2).

Remark 3.5. In the KAM theorems [24], [26] (and [28], [30]), as well as for the perturbed mKdV
equations (|1.10]), these further steps of Birkhoff normal form are not required because the nonlinearity
of the original PDE is yet cubic. A difficulty of KdV is that the nonlinearity is quadratic. O

We spell out Hypothesis (S2) as follows:
e (82¢). There is no choice of 5 integers ji,...,j5 € S such that

it +45=0, jF+...+52=0. (3.25)
e (821). There is no choice of 4 integers ji,...,j4 in S and an integer in the complementary set

js € S€:=(Z\ {0}) \ S such that (3.25)) holds.

The homogeneous component of degree 5 of H®) is

4 4
HE() )(u) = Z H_](l?...,jsujl oo Ugs -
Ji+...+j5=0
We want to remove from H 5(4) the terms with at most one index among j1, ..., js outside S. We consider
the auxiliary Hamiltonian
(5) (5) ;) 5
FO® = > By, gy, By o= el (3.26)

Ji---Js (43 AN
; ; i(jy + ...+

it +js=0 Ui J5)
at most one index outside S

By Hypotheses (S20), (S21), if 51 + ...+ j5 = 0 with at most one index outside S then j3 + ...+ j3 # 0
and F®) is well defined. Let ®® be the time 1-flow generated by X p(s). The new Hamiltonian is

H® :=HY00® = By + B + HY + {H, FO} + HY + HS) (3.27)

where, by (3.26),
5
HY o= {Hy, FO} + 1Y =3 R(u5129).
q=2

Renaming H := H®, namely H,, := H", n = 3,4,5, and setting &5 := &® 0 & 0 &), formula
(13.5)) follows.
The homogeneous component H, é4) preserves the momentum, see section Hence F®) also preserves

the momentum. As a consequence, also H 25), k < 5, preserve the momentum.
Finally, since F®) is Fourier-supported on a finite set, the transformation ®®) is of type (3.4) (and
analytic), and therefore also the composition @5 is of type (3.4) (and analytic).
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4 Action-angle variables
We now introduce action-angle variables on the tangential directions by the change of coordinates
uj = /& + [ily; €%, ifjes,
s (4.1)
uj 1= 2, if j € 5¢,
where (recall u_; = ;)
§_j=§j, €j >0, Y—j =Yj, 9_j=—9j, Gj,yj eR, Vjes. (4.2)

For the tangential sites S* := {71,...,7,} we shall also denote 05, :=0;, y5, :==yi, &, ==&, i=1,... V.
The symplectic 2-form € in (2.5) (i.e. (2.1))) becomes

W= db; Ady; + % > %dzj Ndz_j = (D do; Ndy;) & Qgr = dA (4.3)
i=1 jesaqoy i=1

where Qg1 denotes the restriction of Q to Hg (see (2.8)) and A is the contact 1-form on T” x R” x Hg
defined by Ay ) : RY x RV x Hzi — R,

~ 1
A(G,y,z)[97 Y, Z] =y 0+ 5(83: 12’, Z)L2(']I‘) . (44)

Instead of working in a shrinking neighborhood of the origin, it is a convenient devise to rescale the
“unperturbed actions” £ and the action-angle variables as

€2, y—ey, 2 elz. (4.5)

Then the symplectic 2-form in (.3]) transforms into £2°/. Hence the Hamiltonian system generated by
H in (3.5) transforms into the new Hamiltonian system

9 - 8yHE(97 Y, Z) ) y = _89H€(97y7 Z) y Rt = BIVZHE(67:U7 Z) ) HE = E_QbH o AE (46)

where
2 : _ . i0; ijx
As(97y7 Z) = 51}6(9’y) + 5bz =€ jeS gj + 52(b 1)|]|yj eied + Ebz . (47)

We shall still denote by Xu, = (0yH., —0sH., 0,V H.) the Hamiltonian vector field in the variables
(0,y,2) € TV x RV x Hz.

We now write explicitly the Hamiltonian H.(6,y, 2z) in . The quadratic Hamiltonian Hs in
transforms into

1
e 2Hy0 A, = const + Z, Py + = / 22dx, (4.8)
J T

2
and, recalling ({3.6]), , the Hamiltonian H in (3.5) transforms into (shortly writing v. := v.(6,y))

es+

H.(0,y,2) =e(&) +a(f) - y+ %/zidw +eb / 2dx + 36/ v 2 dx (4.9)
T T T

_ _ _ 3
+ 82{6/11‘1)52'Hs((69J 1118)(81 12)) dx + 3/T,2271'0(8w 1115)2 dx} — 56%2]‘65%2

5
+ e R(v.23) + 3 R(v32?) + 2 1P Z @IV R(57929) 4 =2 6(cv. + b2)
q=3

where e(€) is a constant, and the frequency-amplitude map is

a(f) =w+e2A8, A= —6diag{1/j};cs+ . (4.10)
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We write the Hamiltonian in (4.9)) as

H.=N+P, N(@O,y,2)=a) y+ %(N(G)z Z)Lz(qr) , (4.11)
where
%(N(O)z Z)L?(T) = %(((LVHE)(@,O,0)[2]72)L2(T) /z dx + 35/Tv5 )2 dx (4.12)
re{e /Tve(e 0)=1Ts (5 0. (0, 0)) (05 dx+3/1rz27r0 (0.0)da’}y +

and P:= H, — N.

5 The nonlinear functional setting
We look for an embedded invariant torus
i T =T xRY x Hg, ¢ i(p) = (0(¢), y(), 2(¢)) (5.1)

of the Hamiltonian vector field X, filled by quasi-periodic solutions with diophantine frequency w. We
require that w belongs to the set

Qe :=a([1,2]") ={a(§) : £ € [1,2]"} (5:2)
where « is the diffeomorphism (4.10)), and, in the Hamiltonian H. in (4.11]), we choose
t=alw)=e?Aw-). (5.3)

Since any w € Q. is e2-close to the integer vector @ (see (2.10])), we require that the constant 7 in the
diophantine inequality

lw-1| >~4()"", VieZ"\{0}, satisfies y=¢e?T" for some a > 0. (5.4)

We remark that the definition of « in is slightly stronger than the minimal condition, which is
v < ¢£? with ¢ small enough. In addition to (5.4) we shall also require that w satisfies the first and second
order Melnikov-non-resonance conditions .

We look for an embedded invariant torus of the modified Hamiltonian vector field Xy, . = Xp, +
(0,¢,0) which is generated by the Hamiltonian

H.c(0,y,2) = H:(0,y,2) + (-0, C€ER”. (5.5)

Note that Xz_. is periodic in 6 (unlike H. (). It turns out that an invariant torus for Xg, s actually
invariant for X H., see Lemma 6.1 We introduce the parameter ¢ € R” in order to control the average in
the y-component of the hnearlzed equations. Thus we look for zeros of the nonlinear operator

F(i,¢) = F(i,(,w, €) := Dui(p) — Xu, (i(¢)) = Dwi(p) — Xn(i(p)) — Xp ( () +(0,¢,0) (5.6)
D.0(p) — 0y Hc(i(¢)) D, 0(p) — 9, P(i(p))
= | Duy(p) + 0H:(i(9)) + ¢ |=| Duylp) + 506 (N (0())z(¢ ) ( )z + 96 P(i()) + ¢
Dy,z(p) — 02V He(i()) Doz(p) — 0 N(0())z(p) — 0 V- P(i())

where O(y) := 0(p) — ¢ is (2m)"-periodic and we use the short notation
D, =w-0,. (5.7)
The Sobolev norm of the periodic component of the embedded torus

I(p) ==1i(p) — (¢,0,0) :== (B(0),y(p), 2(¢), O(p) =0(p) — ¢, (5.8)
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is
130ls == lI®llzg + llyllzg + N2l (5.9)
where ||z|[s := [[2]|ns, is defined in (2.11). We link the rescaling (4.5) with the diophantine constant
v = &2t by choosing
y=e*,  b=1+(a/2). (5.10)
Other choices are possible, see Remark
Theorem 5.1. Let the tangential sites S in (1.8) satisfy (S1),(82). Then, for all e € (0,ep), where g¢ is
small enough, there exists a Cantor-like set C. C )., with asympotically full measure as € — 0, namely
ICel
e—0 |Q |
such that, for all w € C., there exists a solution oo () := iso(w,€)(p) of Duioco() — X, (iec(p)) = 0.

Hence the embedded torus ¢ — in () is invariant for the Hamiltonian vector field Xp_(. ¢y with & as in
(5.3), and it is filled by quasi-periodic solutions with frequency w. The torus i~ satisfies

lise () — (12,0, 0)[[ 55 = O(e5-271) (5.12)

=1, (5.11)

for some p = u(v) > 0. Moreover, the torus i is LINEARLY STABLE.

Theorem [5.1|is proved in sections |6} I-l It implies Theorem |1 Where the & in are e2¢;, f] [1 2],
in . By 2)), going back to the variables before the rescahng , we get 900 = O(e87204~ 1),
= O(b ’1) Zoo = O(57%y~ 1), which, as b — 17, tend to the expected optimal estimates.

Remark 5.2. There are other possible ways to link the rescaling with the diophantine constant
v = 2+, The choice v > £2® reduces to study perturbations of an isochronous system (as in [22], [24],
[26]), and it is convenient to introduce &(w) as a variable. The case €2 > ~, in particular b = 1, has to
be dealt with a perturbation approach of a non-isochronous system & la Arnold-Kolmogorov. O

We now give the tame estimates for the composition operator induced by the Hamiltonian vector
fields X and Xp in (5.6)), that we shall use in the next sections.
We first estimate the composition operator induced by v.(6,y) defined in (4.7)). Since the functions

y = €+ e20-Djly, 0 — €l are analytic for e small enough and |y| < C, the composition Lemma
implies that, for all ©,y € H*(T",R"), [|O||s0, [|Yllso < 1, Setting 0(p) ==+ 0(p), [lve(B(©), y(P)|ls <s

1+ |©]s + ||lylls- Hence, using also (5.3)), the map A in satisfies, for all ||J||Slp(7) <1 (see (5.8))

14:(0(#), y(9), 2(NFP <, 5(1 +[3IIFP). (5.13)
We now give tame estimates for the Hamiltonian vector fields X, Xp, Xp_, see (4.11))-(4.12]).
Lemma 5.3. Let I(¢) in (5.8) satisfy ||3||I;;3_(;) < 02y ~1 Then

10, P) |50 <, et + 23720, 10 P (i) | PO <, 72 (1 + 3|5 R) (5.14)

IV.P@E)IEP <, 70 4+ 8Py IIZRY IXp(0)|5PO) <, 872 4+ 22| 3] R (5.15)

1000, P(i) [P <, e + Py IIEY 19, VPSP <, &+ 2 T|IfRY (5.16)
18y P(i) + 32 I | 100D < 2420 4 20431 ) Lin(Y) (5.17)

and, for all7:= (@,ﬂ, 2),

18ydi X p ()RIIIEPD) <o (I + 13155 IR15S) (5.18)

ld: X1, (1)[7] + (0,0, Braa )|[ZP <, e ([l + 13115 IR15557) (5.19)

2 X, (D FNEPO) <, e (RIS + 191557 (2R (5.20)

In the sequel we will also use that, by the diophantine condition , the operator D! (see )

is defined for all functions u with zero p-average, and satisfies

— - — Li
IDZ ulls < Oy Mlullsr s D5 ulld™ < Oy Hlull 5 (5.21)
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6 Approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,¢{) = 0 our aim is
to construct an approximate right inverse (which satisfies tame estimates) of the linearized operator

di ¢ Flio, Co)[7,C] = di ¢ Flio)[t, (] = DT — di Xz, (io()) ] + (0,C,0) (6.1)

see Theorem Note that d; ¢ F(io, (o) = d; ¢ F(io) is independent of (o (see (5.6)).

The notion of approximate right inverse is introduced in [33]. It denotes a linear operator which is an
exact right inverse at a solution (ig, (o) of F(ip, (o) = 0. We want to implement the general strategy in
[6]-[7] which reduces the search of an approximate right inverse of to the search of an approximate
inverse on the normal directions only.

It is well known that an invariant torus ip with diophantine flow is isotropic (see e.g. [6]), namely the
pull-back 1-form 45A is closed, where A is the contact 1-form in . This is tantamount to say that the
2-form W (see (4.3)) vanishes on the torus io(T") (i.e. W vanishes on the tangent space at each point
i0(p) of the manifold io(T")), because igW = ifdA = difA. For an “approximately invariant” torus ig
the 1-form iGA is only “approximately closed”. In order to make this statement quantitative we consider

1 _
A =" au@deor,  an(e) = —([0,000)) 90(0)) + 5 @p20(0), 07 20 (@2 (6:2)
and we quantify how small is
W =digh = Apj(p)dor Mgy, Agj () = 0pa;(p) — O, ar () - (6.3)

1<k<j<v

Along this section we will always assume the following hypothesis (which will be verified at each step of
the Nash-Moser iteration):

e ASSUMPTION. The map w — ip(w) is a Lipschitz function defined on some subset 2, C €., where
Q. is defined in (5.2), and, for some p := p(r,v) > 0,

[To[|550) < 062571 | Z) 2 < €2 4 =2 bi=14(a/2), a€ (0,1/6), (6.4)
where JO(QD) = 7’0(90) - (907070)7 and
Z(¢) = (21, Za, Z) () := Flio, (o) () = w - Dyio () — X, ., (i0(0)) - (6.5)

Lemma 6.1. [{|"P(") < C’||Z||Llp oIf Flig,Co) = 0 then (o = 0, namely the torus ig is invariant for
Xy

€

Proof. Tt is proved in [6] the formula

G = /T ~[0p50()]" Z1() + [060(9))" Za () — [0p20())" 0, Z5(p) dyp
Hence the lemma follows by (6.4)) and usual algebra estimate. O
We now quantify the size of i)V in terms of Z.
Lemma 6.2. The coefficients Ay;(p) in (6.3) satisfy
i _ Li ~ L Li Li
Ak I < (120525190155 + 121555 1901575 2) - (6.6)

Proof. We estimate the coefficients of the Lie derivative Ly, (igW) = 3_; ; DAy (¢)dipr Adipj. Denoting
by e, the k-th versor of R” we have

Dy Arj = Lu(igW)(#) ey, €] = W(0oZ(p)ey, Dpin(#)e;) + W (Opio(p)ex, Do Z(#)e;)
(see [6]). Hence

i Li Li Li Li
1D Ags 5P <, ||Z||sff”uJo||soil + 12155 130157 (6.7)
The bound follows applying D' and using (6.3)), (5.21)). O
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As in [6] we first modify the approximate torus ip to obtain an isotropic torus is which is still
approximately invariant. We denote the Laplacian A, := Zk 1 82

Lemma 6.3. (Isotropic torus) The torus is(p) := (0o(¢),ys(p), 2z0(¢)) defined by

vs = 0+ 10002 Tp(0),  ps(0) = AT B Aki(p) (6:8)

is isotropic. If (6.4) holds, then, for some o :=o(v,T),

i — Li Li Li Li
lys = woll P <o v (1215 1F0lls” + 121555 130l5) (6.9)
. i Li Li Li
IF G, ) IEP0 < 1Z13557 + 1215055 130155 (6.10)
0ilés]0lls <s I[2lls + 1| Tolls+o 2]l - (6.11)
In the paper we denote equivalently the differential by 9; or d;. Moreover we denote by o := o (v, 7)

possibly different (larger) “loss of derivatives” constants.

Proof. In this proof we write || ||5 to denote || ||Lip(7) The proof of the isotropy of is is in [6]. The estimate

(6.9) follows by (6.8), (6.6), (6-4) and the tame bound for the inverse [|[0,00] 7 ||s <s 1+ |Jolls41. It
remains to estimate the dlfference (see (5.6) and note that X, does not depend on y)

0
Flis, o) — F(io,¢0) = | Dwlys — vo) | + Xp(is) — Xp(io). (6.12)
0
Using (516), (5T0), we get 0, Xp (i)l <, e + 2 [3]. 15 Hence (63), @) imply
[ Xp(is) — Xp(io)lls <s [[Tollso+o | Z]ls+o + Tolls+o || Zlso+o - (6.13)
Differentiating we have
Dou(ys — y0) = [0,00(9)] ™" Duup() + (Du0,00(2)] ™) () (6.14)
and Dyp;(p) = AZ! Zk 104, Dy Arj(p). Using (6.7)), we deduce that
110480) "Dty <o 1Z01ss11T0 2011 + 1 211011 Tollos1 - (6.15)

To estimate the second term in (6.14)), we differentiate Z;(¢) = D,00(p) —w — (0yP)(io(y)) (which is
the first component in (5.6])) with respect to ¢. We get D,,0,00(p) = 0, (0y P)(i0(¢)) + 0pZ1(¢). Then,

by 1),

IDw[000)" |5 <s € + (| Tollsr2 + [ Z]lst1 - (6.16)
Since Do [0,00()] T = —[0,00(#)]~T (Dul00(#)]7)[0,600()] 7 the bounds (16), (68), 1) imply
||(Dw[a¢90]_T)p”s <s 56_21)'7_1(||Z||s+0”30‘|80+0 + ||Z||80+0”30||s+0) . (6-17)

In conclusmn (6.12), (6.13), (6.14), (6.15), (6.17) imply (6.10). The bound (6.11)) follows by (6.8), .,

Note that there is no v~ in the right hand side of . It turns out that an approximate inverse
of d; ¢ F(is) is an approximate inverse of d; ¢ F(io) as well. In order to find an approximate inverse of the
linearized operator d; ¢ F(is) we introduce a suitable set of symplectic coordinates nearby the isotropic
torus i5. We consider the map Gs : (¥,7,w) — (6,y, 2) of the phase space T x R” x Hg defined by

1

0 0 0o (v)
| =Gs [ 1] = ys) + [0pb0 ()]0 + [(30Z0) (Bo(1))] " 05 1w (6.18)
z w zo(¢) +w
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where Zo(0) := 29(0; *(#)). Tt is proved in [6] that G is symplectic, using that the torus 4 is isotropic
(Lemma . In the new coordinates, is is the trivial embedded torus (v, n,w) = (¥,0,0). The trans-
formed Hamiltonian K := K (v, n,w,{y) is (recall (5.5))

K :=H. ¢, 0Gs=0o(¢) - Go+ Koo(¥) + K1o(¥) -+ (Ko1(¥), w)r2(r) + %K20(¢)77 -1

(K, 0) gy + 5 (Ko, w) o gy + Kz (,m,w) (6.19)

where K>3 collects the terms at least cubic in the variables (1, w). At any fixed 1, the Taylor coefficient
Koo(¥) € R, K19(¥) € R, Ko1(¢) € Hg (it is a function of z € T), Kao(1)) is a v x v real matrix, Koz (1))
is a linear self-adjoint operator of H é‘ and K11(¢) : R — H é‘ Note that the above Taylor coefficients
do not depend on the parameter (.

The Hamilton equations associated to are

= K1(¥) + Kao(¥)n + KL (Y)w + 9, K>5(, 1, w)

= —[0y00()]" Co — Oy Koo (1) — [0y K10(1)]" 1 — [0y Ko1 (¥)]"w

=0y (5 Ka0()n - 0+ (K11 (¥)n, w) r2emy + 5 (Koz(¥)w, w) 21y + K>3(¢,n,w))
= 0y (Ko1 () + K11 ()1 + Koz (V)w + Vi K>3(¢,n,w))

where [0, K10(1)]T is the v x v transposed matrix and [0y Ko1(v)]T, KL (¢) : Hy — RY are defined by
the duality relation (8¢K01(¢)[1/A)],w)p = - [0y Ko (V)] T w, Vip € RV, w € HZ, and similarly for K.
Explicitly, for all w € Hz, and denoting e, the k-th versor of RY,

Kf()w = Z::I (K1 (V)w - ey ) e = Z:Zl (w, K11(¢)§k)Lz(T)§k eR”. (6.21)

In the next lemma we estimate the coefficients Koo, K19, Ko1 in the Taylor expansion (6.19). Note
that on an exact solution we have Z = 0 and therefore Kyo(1) = const, K19 = w and Ko = 0.

Lemma 6.4. Assume (6.4). Then there is o := o(,v) such that

(6.20)

i i i Li Li Li
18y Koo PO + (| Ko — w]|XPO) + || Koy |LPO) < | 2|52 4 || Z) 5200 36 K0

Proof. Let F(is,Co) := Zs := (Z1,6, Z2,5, Z3,5). By a direct calculation as in [0] (using (6.19)), (5.6))

By Koo(v) = =[0p00()]" (= Za,5 — [0yys)[000] " Z1,5 + [(B620) (60 (1)) 0; ' Z3.5
+[(9020) (00 ()] 0, By 20 (1) (8o ()] ' Z1.5)
Kio() = w = [0p00(¥)] " Z1,5(1) ,
Ko1(v) = =0, ' Zs 5+ 05 0y 20 ()[04 00 ()] ™1 Z1,5(1) .

Then (6.4)), 7 (6.10) (using Lemma imply the lemma. O
Remark 6.5. If F(ig,(p) = 0 then (o = 0 by Lemma and Lemma implies that (6.19)) simplifies
to K = 00n3t+w'77+ %K2O('(/))7777+ (Kll(’(/))naw)[g(qr) + %(KO2(w)wvw L2(T) +K23- O

We now estimate Ksg, K11 in (6.19). The norm of Ko is the sum of the norms of its matrix entries.
Lemma 6.6. Assume (6.4)). Then

1 K20 + 3P I||LPO) < 22 4 2|50 | VP 4 34113, 5000 Z) L0 (6.22)
K[| EPO) < 97| EPO) + 271 (30|52 + 7 3o ls R D Z IR [l 5P (6.23)
1B wl|5P0) <, Sy w|2EY +52b—1<||30||g;;>y> +y  3llE XN ZIEE) w255 . (6.24)

In particular | Koo + 3620 I)|5P0) < €S9, and

||K1177||I§$p(7) < Oeby 1||77HL1p )7 ||K11w||L1p ™ < CE5W_1||w||f;;p(V)~
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Proof. To shorten the notation, in this proof we write || [|5 for || 5P, We have
Kao(p) = [000(0)] 7 0y He(i6())1000(0)] ™" = [0,00 ()]~ Dy P i (1)) 1000 (2)) "
Then (5.17)), (6.4), imply (6.22)). Now (see also [6])
Kui(p) = 8,V He(i5(9)[0,00()] ™" = 071 (99%0) (00 () (Dyy He ) (i5()) (0,00 (10)] ~"
8,V - P(is(9))[0,00(0)] ™" — 05 (36%0) (B0 () (Byy P) (i5()) [000 ()] ",
therefore, using (5.16), (5.17)), (6.4), we deduce (6.23). The bound for K, follows by (6.21). O

Under the linear change of variables

" Iybo(p) 0 0 "
DGs(,0,0) [ 7 | = [ Opws(e) [0pb0(0)]™T —1(80Z0)(Bo()] 0 | | 7 (6.25)
w Oy 20(p) 0 I w

the linearized operator d; ¢ F(is) transforms (approximately, see (6.45)) into the operator obtained lin-

earizing " at (1/)777711)7 C) = (@a 0707 CO) (Wlth 8t ~ DUJ)? namely

R DMZ—&,&Kw( W] - Kzo(@)A:Kﬂ( )W
Dy + [000 ()17 C + 0 [0y00 ()] T [, Co] + Oy Koo (@) [¥] + (04 K10(9)] "7 + [0y Ko1 ()] @ |- (6.26)
W — Oy {0y Ko1 ()] ]+K11(<P) + Koz(p)w}

We now estimate the induced composition operator.
Lemma 6.7. Assume (6.4) and let 7 := (12)\, n,w). Then
IDG5(0,0,0)[ls + [ DGs(,0,0) " [Wlls <s [fells + (|Tollsra + 7 Tollso+o | Zllsro) fEllso ,  (6:27)
ID*G5(,0,0)[t1,22]lls <s [[E1llsl22llso + 1 llso 2]l + (1Tolls+o + 37 ITollsoral|Z]ls+0) 7L llso 72150

for some o := o(v, 7). Moreover the same estimates hold if we replace the norm || ||s with || ||I§ip(7).

Proof. The estimate (6.27) for DG(, 0, 0) follows by (6.25)) and . By (6.4), ||(DGs(,0,0)=1)2]|s, <
Ceb= 247145, < |llsy/2- Therefore DGs(,0,0) is invertible and, by Neumann series, the inverse

satisfies . The bound for D2Gs follows by differentiating DGs. O
In order to construct an approximate inverse of ((6.26]) it is sufficient to solve the equation
- Dy — Kao(p)1) — Kﬂi@)@ g1
D[y, 7, @, (] == D7 + [0400()]7C = |9 (6.28)
Dwﬁ]\_a’vKll(@)ﬁ_awKOQ((p){U\ U]

which is obtained by neglecting in (6.26)) the terms 9y K10, Oyy Koo, Oy Koo, Oy Kor and 9y [04,00 ()] 7 [, Co]
(which are naught at a solution by Lemmata and .

First we solve the second equation in (6.28), namely D7 = g — [8¢90(¢)]TZ. We choose C so that
the p-average of the right hand side is zero, namely

~

¢=(92) (6.29)

(we denote (g) ~ J g Note that the p-averaged matrix ([0y00]7) = (I + [0400])7) = I
because 0y (p ) © —|— @0( ) and @0( ) is a periodic function. Therefore

7= D5 (92 = [0p00(0)] (g2)) + (), (7)) €R”, (6.30)

where the average (1) will be fixed below. Then we consider the third equation

LW = g3+ 6$K11(90)?]7 Ly =w- 889 - 893[(02((,0) : (631)
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e INVERSION ASSUMPTION. There ezists a set Qoo C 2, such that for all w € Q, for every function
g € Hgf[“('ﬂ”’“) there exists a solution h := L;'g € H. (T*T') of the linear equation L,h = g
which satisfies

_ i Li _ Li — 11~ 1 Li Li i
1£51 g5 < Cls)y T (glle + ey 1Tl ZE + 41Tl EE0 ) 2] 220 Y|l LPO)) (6.32)

for some p := pu(r,v) > 0.

Remark 6.8. The term ey~ 1{||J ||I;l+p” + 77T H?gi(z) ||Z||I§1+pM } arises because the remainder Rg in

section [8.6[ contains the term 5(||@0HI;_1&7) + Hyﬂ&fﬁ ) < €||35||I;fl§7), see Lemma O

By the above assumption there exists a solution

W= L, g3 + 0. K11(0)7] (6.33)
of (6.31]). Finally, we solve the first equation in (6.28)), which, substituting (6.30)), (6.33)), becomes
Dt = g1 + My(0) (@) + Ma(¢)g2 + M3 () g3 — Ma(0)[000)7 (g2) . (6.34)

where
Mi() = Kao(p) + KL (9) L5 0:K11(9),  Ma() = My(9)Dg',  Ms(p) == Kl (@)L . (6.35)

In order to solve the equation ([6.34]) we have to choose (7)) such that the right hand side in (6.34]) has
zero average. By Lemma and (6.4)), the p-averaged matrix (M;) = —3&2*T + O(e'°y~3). Therefore,
for € small, (M) is invertible and (M;)~! = O(e7?") = O(y ™) (recall (5.10)). Thus we define

() == —(M1) " [{g1) + (Ma2g2) + (M3g3) — (M2[0y00]" ) (g2)]- (6.36)
With this choice of () the equation has the solution
¥ =D g1 + Mi(9)(R) + Ma(9)g2 + Ms()gs — Ma()[0y60]" {g2)]- (6.37)

In conclusion, we have constructed a solution (1//)\, 7, W, E) of the linear system (6.28)).

Proposition 6.9. Assume 1} and (6.32)). Then, YVw € Qo, Yg := (91,92,93), the system
has a solution D™1g := (w,n,w C) where (Y, 7,0, C) are defined in (6.37), (6.30), (6.36]), (6.33), (|6 29|)
satisfying

_ i Li — Li — Li Li Li
ID~g 4P <, A~ (llglls P + ey YITol5EP 4 =1 To | S0 F (o, Go) 5P HIglEED).  (6.38)

Proof. Recalling (6.35)), by Lemma [6.6] (6.32), we get | Mahl|s, + [|[M3h|lsy < Cl|lhllsg+o- Then, by
(6.36) and (M;)~! = O(e=%) = O(y71), we deduce |<ﬁ>\Lip(“’) S C’fy*1||g||1;;3_;y) and (6.30)), - 5.21]) imply
|75 <, 7*1(||g||‘1;_if;7) + Hﬁo||s+g||g||Llp(7)) The bound (6.38)) is sharp for @ because £ g3 in 1-
is estimated using . Finally w satisfies ((6.38]) using (]m) m (6.32), (5.21)) and Lemma

Finally we prove that the operator

= (DG5)(,0,0) o D~ o (DGs)(¢,0,0) " (6.39)

is an approximate right inverse for d; ¢ F(ig) where ég(z/),n,w,g) = (Gg(w,n,w),C) is the identity on
the (-component. We denote the norm || (1,7, w, €)™ := max{]|(w, n, w) [, [¢[LPO}.
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Theorem 6.10. (Approximate inverse) Assume (6.4) and the inversion assumption (6.32)). Then
there exists p := p(r,v) > 0 such that, for all w € Qu, for all g := (g1,92,93), the operator Ty defined

in (6.39) satisfies
i Li — Li — Li Li Li
ITog |2 <o v~ (gl + e {IITlI508" + v~ I3 ll5 0 17 o, )1 Hlgllsans). (6.40)
It is an approxzimate inverse of d; ¢ F(io), namely
| (d: ¢ Flio) 0 To — Dgl[ 1P (6.41)

_ . Li Li . Li — . Li Li Li
(1 o, Gol s g™ + {1F o, Go) 1™ + ey 1 Gios )it 130 1557 Yl 22 ).

Proof. We denote || ||, instead of || ||, The bound (6.40) follows from (6.39), (6.38), (6.27). By (5.6),
since X does not depend on y, and 45 differs from ig only for the y component, we have

di ¢ F(i0)[7% (] — dic F(i5)[3,C] = diX p(i5)[7] — di X p(i0)[7] (6.42)

1
= / 0yd; Xp(0o,y0 + s(ys — yo), 20)[ys — yo,2]ds =: Eo[2, (]
0

By (5.18), , 7 we estimate
HSO[/Z:C]HS <s ||ZH50+U||/Z\I|S+U + ||Z||S+U||/Z\H50+U + 52b_17_1||Z||SO+UH/Z\I|80+0H30H8+0 (6-43)

where Z := F(ig, (o) (recall (6.5))). Note that Eoﬁ,a is, in fact, independent of QA“ Denote the set of
variables (1,7, w) =: u. Under the transformation Gg, the nonlinear operator F in (|5.6)) transforms into

f(Gd(u(<P))7 C) = DG(;(u(go))(Dwu(go) - XK(u(QD)’ C)) , K= HE,( oGy y (644)

see (6.20). Differentiating (6.44) at the trivial torus us(p) = G5 '(i5)(p) = (¢,0,0), at ¢ = (o, in the
directions (4, () = (DGs(us)~1[7],¢) = DGs(us) 17, (], we get

di «F(is)[7,C] =DGs(us) (Do — du e X (w5, C0)[Q, C]) + E[7,C], (6.45)
&1[7,C] :=D*Gy(u5) [DGs (us) "  Flis, Co), DGs(us) (7], 6.46)
where dy ¢ Xk (us, (o) is expanded in . In fact, & is independent of Z We split
DA — du¢ X (85, C0)[8, () = DR, (] + Rz[8.C],
where D[G, (] is defined in and
N N R —0y Koo Y]
Rz, 77, @,¢] = | 9y[0400(2)]" [, o] + D Koo () 8] + [0y K10(0)) "7 + [0 Kor (0))7 (6.47)

o~

—0:{0y Ko1 (o )[w]}

(Rz is independent of Z) By (6.42)) and (6.45]),
d@c]:(io) = DG5(U5) oDo Dé5(U§)_1 + & +E+E, &E:= DGg(u(;) oRzo0 Dé(g(u(;)_l . (648)

By Lemmata [6.4] [6.7] [6.1} and (6.10), (6.4), the terms &, &> (see (6.46), (6.48), (6.47)) satisfy the same
bound (6.43) as & (in fact even better). Thus the sum & := & + &1 + & satisfies (6.43). Applying Ty
defined in (6.39) to the right in (6.48]), since DoD~! = I (see Proposition, we get d; ¢ F(ig)oTo—1 =
€ oTy. Then (6.41)) follows fro and the bound for £. O
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7 The linearized operator in the normal directions

The goal of this section is to write an explicit expression of the linearized operator £, defined in (6.31]),
see Proposition To this aim, we compute %(Kog(w)w,w)Lz T), W € Hg, which collects all the
components of (H. o Gs)(,0,w) that are quadratic in w, see (6.19).

We first prove some preliminary lemmata.

Lemma 7.1. Let H be a Hamiltonian of class C*(Hg(T,),R) and consider a map ®(u) := u + ¥(u)
satisfying ¥(u) = MgV (Ilgu), for all u, where E is a finite dimensional subspace as in (3.3). Then

0y [V(H o ®)] (u)[h] = (8, VH)(®(u))[h] + R(u)[h], (7.1)
where R(u) has the “finite dimensional” form
R(u)[h] =

with xj(u) = €% or gj(u) = €. The remainder R(u) = Ro(u) + Ri(u) + Ra(u) with

|j‘gc(h’gj(u))L2(T)Xj(u) (72)

Ro(u) := (0uVH)(®(u)du¥(u),  Ra(u) := [0, (w)" Y[, VH(®(u))],
Ro(u) = [0 T (w)] (90 VH) (P (u)) Dy ® (w). (7.3)

Proof. By a direct calculation,
V(H 0 @)(u) = [@'(u)]" VH(®(u)) = VH(P(u)) + [¥'(u)]" VH(P(u)) (7.4)

where ®'(u) := (9, ®)(u) and [ ]T denotes the transpose with respect to the L? scalar product. Differen-

tiating ([7.4)), we get (7.1)) and (7.3)).
Let us show that each R, has the form ([7.2). We have

U(u) = TpW Meu)lly, [V(u)" =0 (Tgu) g . (7.5)
Hence, setting A := (0, VH)(®(u))Ig¥' (IIgu), we get
Ro(u)[h] = Allgh] =Y hjA(e9") = Z|jlgc(h7gj)L2(’ﬂ‘)Xj

with g; 1= €%, x; := A(e¥%). Similarly, using (7.5), and setting A := [¥' (1L pu)| £ (0, VH)(®(u))®' (u),
we get

j1<c
Ro(u)[h] = Mp[Ah] =Y (Ah, ") pamed™ =% " (h, ATel") 2 (n) e,

which has the form (7.2)) with g; := AT (€7%) and x; := €®. Differentiating the second equality in (7.5)),
we see that

lil<c lil<C

Ri(u)[h] = Tg[Ah], Ah:= 0,{V (Tgu) Y [ph, Tg(VH)(®(u))],

which has the same form of Rq and so ([7.2)). O

Lemma 7.2. Let H(u) := [} f(u)X(u)dz where X (u) = pX(gu) and f(u)(x) = f(u(x)) is the
composition operator for a function of class C?. Then

(0 VH)(u)[h] = f"(u) X (u) h + R (u)[h] (7.6)
where R(u) has the form with x;(u) = €% or g;(u) = eJ*.

Proof. A direct calculation proves that VH(u) = f'(u)X(u) + X'(u)T[f(u)], and (7.6) follows with
R(u)[h] = f'(w) X' (u)[h]+ 0u{ X' (w)T }Hh, f(u)]+ X' (u)T[f'(u)h], which has the form (7.2)). O

We conclude this section with a technical lemma used from the end of section about the decay
norms of “finite dimensional operators”. Note that operators of the form ((7.7) (that will appear in section
8.1) reduce to those in (7.2)) when the functions g;(7), x;(7) are independent of 7
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Lemma 7.3. Let R be an operator of the form
Rh = Z/ (. 95(7)) pogay () (r.7)

where the functions g;(1), x;(1) € H®, T € [0,1] depend in a Lipschitz way on the parameter w. Then its

matriz s-decay norm (see (2.16)-(2.17)) satisfies
IRIVPD <o > subrepoy { s (MIEPD g, (MIEPD + 1 ()52 g5 (1) 11}

Proof. For each 7 € [0,1], the operator h — (h,g;j(7))x;(7) is the composition x;(7) o Iy o g;(7) of
the multiplication operators for g;(7), x;(7) and h — Ilgh := fT hdz. Hence the lemma follows by the

interpolation estimate and - O

7.1 Composition with the map G;
In the sequel we shall use that Js := Js(p;w) 1= is(¢;w) — (¢, 0,0) satisfies, by Lemma 6.3 and (6.4),

lil<c

135|570 < Ceb-2y1 (7.8)

We now study the Hamiltonian K := H. o G5 = e 2*H o A, o G5 defined in (6.19)), (4.6).
Recalling (4.7) and (6.18]) the map A, o G has the form

Az o Gs(ibm.w) =& 3 (/& + 20V ][5 () + Ly ()0 + La(yul; @9 4 (z() +w) (7.9)

jes
where .
Li(¢) = [0p00()] ™", La() := [(B6Z0) (60 (v))] ;" (7.10)

By Taylor’s formula, we develop (7.9) in w at n = 0, w = 0, and we get A, o G5(¢,0,w) = T5(¢) +
Ty ()w + To(Y) [w, w4+ T>3(, w), where

T5(0) := (A:0G5)(,0,0) = cus(¥)+ez0(8) . vs() := 3 /& +e20-D{[ys()]; PP (7.11)
JES

is the approximate isotropic torus in phase space (it corresponds to is in Lemma ,
b=1)|4((, il
T1(¢)w _ EZ g |j|[ 25¢3w]j (& J PREES + Eb’LU = €2b_1U1(’(/J)’LU + EbU} (712)
o V& + ey ()]
gtb=1)4 2[Lo(¢)w ]2 ellfo(¥)];
8{& + 62“’ D1jllys()];13/2

T () [w,w] = —sz el = 730, (Y) [w, w] (7.13)

JjES

and T>3(,w) collects all the terms of order at least cubic in w. In the notation of (4.7), the function
vs() in (7.11) is vs(¢) = ve (0o (), ys(0)). The terms Uy, Us = O(1) in €. Moreover, using that Lo (¢))
in ([7.10)) vanishes as zo = 0, they satisfy

1Twlls < 13sllsllwllso + 1Tsllso lwlls s (V2w wllls < WTsllsllTsllsollwllF, + 135035, lwllsollwlls  (7-14)
)

and also in the || |¥*)-norm.

By Taylor’s formula H(u+h) = H(u)+ ((VH)(w), h) L2(r) + 5 (0. VH) (W) [h], h) L2(1) + O(h®). Specify-
ing at u = T5(y) and h = Ty (P)w+ T (¢) [w, w]+T>3(¥, w), we obtain that the sum of all the components
of K =¢72°(H o A. 0 Gs)(¢,0,w) that are quadratic in w is

1 1
5 (Bo2w, w)ra(m) = e 2 ((VH)(T5), To[w, w]) L2(r) + 8_2b§((5uVH)(T5)[T1w]7le)L2(1r) :
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Inserting the expressions (7.12)), (7.13) we get

Koz ()w = (0, VH)(Ts)[w] + 2°~1 (8, VH)(Ts)[Urw] + 2O~ VUT (0, VH)(T5)[Uyw]

+ 2627305 [w, )T (VH)(Ts). (7.15)
Lemma 7.4.
(Ko2()w, w) 21y = ((Ou VH)(Ts)[w], w) p2(ry + (R(Y)w, w) 2T (7.16)
where R(¢Y)w has the “finite dimensional” form
R(’L/))’U) = Z\ﬂSC (wagj(w))Lz(T)Xj (¢) (717)

where, for some o :=o(v,7) >0,

i i i i Li
g 120 s [5PO) + flg; 5P Ixs 1LY <, |35 (7.18)

19595 s XL so + 1955 5o 15115 + giillso a5 @115 + g5 lls 1005 illlso <5 € [Ellsto (7.19)

+e2! 13515+ 2]l so+o »

and, as usual, i = (0,y,z) (see (5.1))), 7= (é\, U, 2).

Proof. Since Uy = lIgU; and Uy = gUs, the last three terms in (7.15) have all the form (7.17) (argue
as in Lemma . We now prove that they are also small in size.
The contributions in (7.15]) from Hs are better analyzed by the expression

Py 4, 0 Galnw) = const + 3 Plust) + La(hn + La(w)ul, + 5 [ (olw) + wis
T

jest

which follows by (4.8 , , 7.10). Hence the only contribution to (K()QU) w) is fTw dx. Now
in (3.

we consider the cublc term Hs A direct calculation shows that for u = v + 2z, VH3(u) =
32% + 611% (vz), and 0, VH3(u)[Uw] = GHJ- (zUrw) (since Uyw € Hg). Therefore

VH3(Ts) = 362022 + 6" s (vs520), 9 VH3(Ts)[Urw] = 6°T15 (20 Uyw) . (7.20)
By one has ((0,VH3)(Ts)[Urw], Utw)2(my = 0, and since also Us = IsUs,
¥ 710, VH(Ts) [Urw] 4+ e 73U w, | T VH3(Ts) = 620 (2oUrw) 4 36 3Usw, 1722, (7.21)
These terms have the form and, using , , they satisfy .

Finally we consider all the terms which arise from H>4 = O(u* ) The operators 710 V’H>4(T5)U17
2O VUL (8, VH>4)(T5)U1, €*°73U3 VH>4(T5) have the form and, using || T[S < (1 +
||3(5||£J1p(7))7 (7.14), (6.4), the bound (7.18) holds. Notice that the blggest term is €10, VH>4(T5)U;.

By (6.11) and using explicit formulae (7.10])-(7.13|) we get estimate (7.19). O

The conclusion of this section is that, after the composition with the action-angle variables, the rescal-
ing (4.5)), and the transformation Gs, the linearized operator to analyze is Hg > w + (9, VH)(Ts)[w],
up to finite dimensional operators which have the form (7.17)) and size (7.18)).

7.2 The linearized operator in the normal directions

In view of we now compute ((OuVH)(Ts)[w], w) r2(r), w € Hg, where H = H o @ and ®p is the
Birkhoff map of Proposition [3.1] It is convenient to estimate separately the terms in

H:HO(I)B:(H2+H3)O‘I)B+H250(I>B (722)

where Hy, Hs, H>5 are defined in (3.1)).
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We first consider H>5 o ®. By (3.1) we get VH>5(u) = mo[(Ouf)(x, u, uy)] — 0x{(Ou, f)(x, u,uz)},
see (2.2)). Since the Birkhoff transformation ®p has the form (3.4), Lemma (at u = T, see (|7.11))
implies that

OuV (H>s50 @) (Ts)[h] = (0.VH>5)(®5(T5))[h] + Ru.,(Ts)[h]
=0, (Tl (Tg)aa;h) + T()(T(S)h + 'Rst (Tg)[h] (7.23)

where the multiplicative functions ro(T5), m1(T5) are

ro(Ts) := oo(®p(Ts)), oo(u) = (Ouuf)(x,u,ug) — Op{(Ouu, f) (T, u, ug)}, (7.24)
r1(Ts) := o1(®5(Ts)), o1(u) := —(Ouyu, (@, u, uy), (7.25)

the remainder Ry (u) has the form (7.2) with x; = €% or g; = €Y% and, using (7.3), it satisfies, for
some o :=o(v,7) > 0,

i i i i Li
g5 15O 1P + g5 15O s 1100 <, 41+ [13515557)
19ig; @1 M5l s0 + 1953 [N so 133 115 + llgsllso 105 s + N5l 105 Elllso <s €*([Ellsso + [Tsllsr2lfillso+2)-

Now we consider the contributions from (Hz + H3) o ®5. By Lemma and the expressions of Ho, Hj
in (3.1) we deduce that

OV (Hy 0 ®p)(Ts5)[h] = —0sah + Ru,(T5)[h], 0,V(Hso ®p)(Ts)[h] =6Pp(Ts)h + R, (Ts)[h],

where ®(T}) is a function with zero space average, because ®p : H}(T,) — Ha(T,) (Proposition
and Ry, (u), R, (u) have the form (7.2)). By (7.3), the size (Ru, + Ru,)(Ts) = O(e). We expand

(R, + Ru,)(Ts) = Ry + e2Ro + Rsa,
where R+ has size o(g?), and we get, Vh € Hg,
150,V ((Hy + Hs) 0 ®5)(T5)[h] = —0puh + & (605 (Ts)h) + 115 (eR1 + 2Ry + Ro2)[h].  (7.26)

We also develop the function ®5(T5s) is powers of €. Expand ®p5(u) = u+ ¥a(u) + ¥>3(u), where Us(u)
is quadratic, ¥>3(u) = O(u?), and both map H}(T,) — HE(T,). At u=Ts = evs + 2 we get

Op(Ts) = Ts + Vo(T5) + VUs3(Ts) = evs + e Wa(vs) + G (7.27)
where § 1= b2 + Wa(Ts5) — e2Ws(vs) + U>3(Ts) has zero space average and it satisfies

Igl15™ <y &+ e¥1Ts )15, [13idlalls <s € (Ils + 1TsllsI2llso) -

In particular, its low norm ||¢jHr;;p(7) <sp €970y = 0(£2).
We need an exact expression of the terms of order € and €2 in (7.26). We compare the Hamiltonian
(3.5) with (7.22), noting that (Hs5 o ®5)(u) = O(u’) because f satisfies (I.5) and ®p(u) = O(u).

Therefore
(Hy + H3) o &g = Hy + Hs + Hy + O(u®),

and the homogeneous terms of (Hy + H3) o @ of degree 2,3,4 in u are Hy, Hs, Hy respectively. As a
consequence, the terms of order ¢ and €2 in (both in the function ®5(T5) and in the remainders
R1,R2) come only from Hy + Hz + Ha. Actually they come from Hy, Hs and Hqo (see , )
because, at u = Ty = evs + €’2g, for all h € Hé-,

15 (0. VH)(T5)[h] = T (8. VHa,2) (T5) ] + o(?) .
A direct calculation based on the expressions (3.6), (8.7) shows that, for all h € H,

15 (0,V (Ha + Hs + Ha))(T5)[h] = —0uzh + 6l (v5h) + 6e’TIS (20h) + 2115 {6m0[(0; Tvs)?]h
+ 605115 [(9; 105) (9,1 h)] — 60, {(9; Mvs)Us[vsh]} } + o(?).  (7.28)
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Thus, comparing the terms of order ¢,&? in (7.26) (using (7.27)) with those in (7.28)) we deduce that the

operators R, Re and the function ¥y (vs) are
R1 =0, Ral[h]=060vs1lg [(8;11)5)(8;%)] — 60, H{(0; ws)dg[vsh]}, Wy(vs) = mo[(9; tvs)?].  (7.29)
In conclusion, by (7.22)), (7.26), (7-23), (7.27), (7.29)), we get, for all h € Hg.,

g0, VH(Ts)[h] = —uuh + g [ (e6vs + £26m0[(0; 'vs)?] + g2 + P>4)h]
+ 1150, (r1(T5)0uh) + €2 TTERo[h] + L Ro[h] (7.30)

where 71 is defined in (7.24), Ry in (7.29), the remainder Rvy := Ruo + Ru.,(Ts5) and the functions

(using also ([7.24)), (7.25)), )7
g>2 = 6q + 53((8uuf5)(1}6a (Ué)z) - ar{(auumffi)(vé’ (U(S)I)}) (731)
pza = 10(T5) = €% [(Ouuf5)(vs, (v8)2) = Ou{ (D, f5) (v5, (v5)2)}] - (7.32)

Lemma 7.5. [.¢s2dz = 0.

Proof. We already observed that § has zero z-average as well as the derivative 893{(6uum f5)(v,v;)}. Finally

(8uuf5)<v7 U$) = Z Cj1273 V51 Vjz Ujaei(jl+j2+j3)x U= Z UJ (7'33)
J1,J2,J3€S jE€S
for some coefficient ¢;, j,;,, and therefore it has zero average by hypothesis (S1). O

By Lemma and the results of this section (in particular (7.30))) we deduce:
Proposition 7.6. Assume (7.8). Then the Hamiltonian operator L., has the form, Vh € Hg, (Tv+1),

Loh = w-0,h — 0, Koah =115 (w-0ph + 04y (a105h) + 0y (aoh) — €20, Rah — 9, R.h) (7.34)
where Ry is defined in (7.29), Ry := Rso + R(¢) (with R(v) defined in Lemma , the functions
a1 :=1-r1(Ts), ao:=—(ep1+e°p2+qs2+p=4a), p1:=06vs, po:=6mo[(0; v5)°],  (7.35)

the function g is defined in (7.31) and satisfies fT g>2dx = 0, the function p>4 is defined in (7.32), r1
in (7.25), Ts and vs in (7.11). For py = p1,pa,

ol SP) <o 14+ 135507, 10spr[llls <s l[2llsta + 1 Tsllsta ol so+1 (7.36)
lgs2[5P0) <4 & + )35 5P 10ig>2[lls <s € (Illss1 + 1 TsllsalfEllso 1), (7.37)
lax = 1[50 <, &3 (1 + [35]1577) 10iar[@)lls <s € (Illst1 + 1 Tslls41 17 s041) (7.38)
Ip=al 3P0 <, et + 42| 35| 7R 1024l <s €72 (fillsv2 + [ Tsllst2lDlsor2)  (7:39)

where Ts(¢) = (0o(v) — @, ys(¢), 2z0(p)) corresponds to Ts. The remainder Rq has the form (7.2) with

g7 1B 4 1 IFPD) < 14 135112 10595 [@lls + 100l <s [illsso + 1 Tsllstolfillsgro (7-40)
and also R, has the form (7.2)) with

L
g3 1P G 18P + (g7 ISP [P <, &2 4+ 135007 (7.41)
10:g5 Bl 1x5 llso + 1055 Elllso 15 Ls + 195 lso 100G N5 + 1195 100G Bl s0 <s € [Allso (7.42)
+ 27| Ts | stolfillso o -

The bounds , imply, by Lemma estimates for the s-decay norms of Ry and R..
The linearized operator L, := L, (w,i5(w)) depends on the parameter w both directly and also through
the dependence on the torus is(w). We have estimated also the partial derivative 9; with respect to
the variables i (see (5.1))) in order to control, along the nonlinear Nash-Moser iteration, the Lipschitz
variation of the eigenvalues of £, with respect to w and the approximate solution is.
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8 Reduction of the linearized operator in the normal directions

The goal of this section is to conjugate the Hamiltonian operator £, in (7.34]) to the diagonal operator
L defined in (8.121)). The proof is obtained applying different kind of symplectic transformations. We

shall always assume ([7.8)).

8.1 Change of the space variable

The first task is to conjugate L, in (7.34) to £; in (8.31]), which has the coefficient of 9., independent
on the space variable. We look for a ¢-dependent family of symplectic diffeomorphisms ®(¢) of Hz which
differ from

A = HJS'.AHéT s (Ah)(@a "E) = (1 + ﬁz(‘pv x))h(ap, x + ﬁ(@ﬂ (E)) ’ (8'1)

up to a small “finite dimensional” remainder, see . Each A(p) is a symplectic map of the phase
space, see [2]-Remark 3.3. If ||5|w1. < 1/2 then A is invertible, see Lemma and its inverse and
adjoint maps are

(A7'R) (0, y) = (1 + By (e, y)h(o,y + Ble. ), (ATh)(p,y) = ke, y + B(e,y)) (8.2)

where = =y + (g, y) is the inverse diffeomorphism (of T) of y = z + (g, z).

The restricted maps A, (¢) : Hg — Hg are not symplectic. In order to find a symplectic diffeo-
morphism near A (¢), the first observation is that each A(p) can be seen as the time 1-flow of a time
dependent Hamiltonian PDE. Indeed A(p) (for simplicity we skip the dependence on ¢) is homotopic to
the identity via the path of symplectic diffeomorphisms

ur (14 76)u(z+78(x)), 7€1]0,1],

which is the trajectory solution of the time dependent, linear Hamiltonian PDE

Oru = 0, (b(T,x)u), b(r,z):= H/b;(;j(x) , (8.3)

with value u(z) at 7 = 0 and Au = (1 + Bz(x))u(z + B(z)) at 7 = 1. The equation (8.3)) is a transport
equation. Its associated charactheristic ODE is

ix = —b(T,2). (8.4)

dr

We denote its flow by ™7, namely v™7 (y) is the solution of (8.4) with v ™ (y) = y. Each v™7 is a
diffeomorphism of the torus T,.

Remark 8.1. Let y — y + B(T, y) be the inverse diffeomorpshim of z + 2 + 74(x). Differentiating the
identity 3(,y) + 76(y + B(1,y)) = 0 with respect to 7 it results that 47 (y) :== "7 (y) = y + B(1,y). O

Then we define a symplectic map ® of H § as the time-1 flow of the Hamiltonian PDE
Oru = M50, (b(1, 2)u) = 0p (b(7, )u) — g0y (b(T,2)u), u€ Hg . (8.5)

Note that 1%, (b(r, z)u) is the Hamiltonian vector field generated by 3 [, b(7, z)u?dx restricted to Hg .
We denote by ®™7 the flow of (8., namely ®™7(ug) is the solution of with initial condition
®70:70(ug) = ug. The flow is well defined in Sobolev spaces HZ, (T,) for b(r,z) is smooth enough
(standard theory of linear hyperbolic PDEs, see e.g. section 0.8 in [29]). It is natural to expect that the
difference between the flow map ® := %! and A, is a “finite-dimensional” remainder of the size of /.

Lemma 8.2. For |||lyso+1.00 small, there exists an invertible symplectic transformation ® = A, + Re
of Hy,, where Ay is defined in (8.1) and Re is a “finite-dimensional” remainder

Rah = Z/O (h’gj (T))Lz(T)Xj (T)dT + Z (h7 wj)Lz(T)eijx (8.6)

jes jeS
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for some functions x;(7),9;(7),¥; € H® satisfying

[95lls s Mg (Plls <s [1Bllwerzee s X ()lls <o 1+ [[Bllwerree, V7 €0, 1] (8.7)

Furthermore, the following tame estimates holds

12 hlls < llhlls + IBllweszoollbllsy , VR € Hg. . (8.8)

Proof. Let w(r,z) := (®7ug)(z) denote the solution of (8.5) with initial condition ®°(w) = ug € Hg.
The difference

(AL — ®)ug = TT§ Aug — w(l,-) = Aug — w(l,-) — MgAug, Vuo € Hg, (8.9)
and N Ny
Mg Aug = Ts(A — ITgug = Z (Uo ; %’)LQ(T)@‘” . Y= (AT — 1€l (8.10)
jES

We claim that the difference
Aug —w(l, z) = (1 + Bz (2)) /01(1 +784(2)) 7! M (b(7)w (7)) (77 (x + B(=))) dr (8.11)
where 77 (y) :=7%7(y) is the flow of (8.4). Indeed the solution w(r,z) of satisfies
O-{w (T, " ()} = ba(7, 7" (W))w(7, 7" (y)) — [0 (b(7)w(7))] (V" (y)) -

Then, by the variation of constant formula, we find

w7 (y)) = elo bz (7" (y)) ds (Uo(y) B /OT oIy b ($,7C () dC [Hsaz(b(s)w(s))] (v (v)) ds) )

Since 9,77 (y) solves the variational equation 0, (9,77 (y)) = —bs (7,7 (v))(9y7" (v)) with 9,7°(y) =1 we
have that ) L
€f° ba (8,77 (y))ds (@,’YT(y))_ =14 T,Bz(l') (812)

by remark and so we derive the expression
w(r.o) = (178, ) {uola + (@) — | (14 58 (2)) ™ (s (b)) (" o+ 7)) s}

Evaluating at 7 = 1, formula (8.11]) follows. Next, we develop (recall w(7) = @7 (ug))

[Ms0. (b(T)w(T))](x) = Z (uo,gj (T))LQ(T)eijz T (1) := —((I)T)T[b(T)axeijz] , (8.13)
jes
and becomes
Aug —w(l,-) = —/ Z (uo, gj(T))Lz(T)Xj(T, dr, (8.14)
0 jes
where .
Xi (T, @) = =(1 4 o (@) (1 + 7, (x)) el (HA@) (8.15)

By (.9), (8.10), (8.11)), (8-14) we deduce that ® = A, + Rq as in (8.6).

We now prove the estimates (8.7). Each function «; in (8.10) satisfies ||¢;]|s <s ||5]lws., see (8.2)).
The bound ||x;(7)[|s <s 1+ ||B||ws+1. follows by (8.15). The tame estimates for g;(7) defined in (8.13))
are more difficult because require tame estimates for the adjoint (®7)7, V7 € [0,1]. The adjoint of the
flow map can be represented as the flow map of the “adjoint” PDE

0y z = Mg {b(r, 2)0, g 2} = b(7, x)dpz — Mg(b(7,2)0x2), z¢€ Hy, (8.16)
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where —II$b(7, 2)0, is the L2-adjoint of the Hamiltonian vector field in (8.5). We denote by W™
the flow of (8.16)), namely U™ 7(v) is the solution of (8.16) with U™ ™ (v) = v. Since the derivative
O-(D7 (ug), ¥ T () p2(ry = 0, V7, we deduce that (@™ (ug), ¥ (v))r2(my = (P°(uo), ¥ (v)) 21y,
namely (recall that U707 (v) = v) the adjoint

(@) =90 vy e0,1]. (8.17)

Thus it is sufficient to prove tame estimates for the flow W7 7. We first provide a useful expression for
the solution z(7, z) := U7 (v) of (8.16)), obtained by the methods of characteristics. Let v™'7(y) be the

flow of (8.4)). Since 8,2(7,7™7 (y)) = —[ILs(b(1)dxz(1)] (V™7 (y)) we get
™) = o)+ [ Msb02(6)0 W) ds, 7 e 0.1,

Denoting by y = z + o(7, ) the inverse diffeomorphism of z = y™7(y) = y + 5(7,y), we get
To
U7 (v) = 2(1,2) = v(z + o(7, 7)) + / s (b(s)022(s)] (™" (x + o(T,2))) ds

=v(zr+o(r,z))+ b Z(z(s),pj (s)kj(s,x)ds =v(x+o(r,z)) + R-v, (818)
T jes

where p;(s) = —0,(b(s)e?), k;(s,x) = 7" (@Ho(ro) and

(Reoa) = [ S0 006Dy 5 ) .

T jes

Since ||o(7, ) |lws.ee, [|6(T,)||[wse <s ||B]lws+1.0 (recall also (8.3)), we derive ||p;lls <s [|B|lws+2.,
#5lls <s 1+ [[Bllws+r.c and [[o(z + o (7, 2))[ls <s [[v]ls + [Bllwetr.ec[v]lso, V7 € [0,1]. Moreover

IRevlls <o 51D, o107 (0) 1o Bllsweone + 50D, iy 107 (0) 1o | Bl -
Therefore, for all T € [0, 1],

1977 0l|s < [[vlls +|Bllwe+1.00 [0]]so +5uPre o1 LIIET0]s | Bllweorz.oe + X7 70|y |Bllwrase.ce } . (8.19)
For s = sg it implies

supefo,1 1977 (V)llso <so [0llso (L + [1Bllweorr.oe) + supreioa [¥7 7 (0) |15 18]l wroo 2.0

and so, for ||5]|yso+2.« < ¢(sp) small enough,

Supr€[0,1]||\IJTO7T(v)||SO S50 HUHSO : (820)
Finally (8.19)), (8.20) imply the tame estimate
sup. o, 1977 (V)[ls <s [[0lls + [[Bllwerae [[0]ls, - (8.21)

By (8.17) and (8.21) we deduce the bound (8.7) for g; defined in (8.13)). The tame estimate (8.8) for ®
2.4)

follows by that of A and (8.7)) (use Lemma . The estimate for ®~! follows in the same way because
&1 = &0 ig the backward flow. O

We conjugate L, in ([7.34) via the symplectic map ® = A, + R of Lemma We compute (split
I = I — 1)
L,® = @D, + g A(b30yyy + b20yy + b10, + bo) g + Ry, (8.22)
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where the coeflicients are

b3(<)0? y) = -AT[al(l + Bw)g] bZ(Lpa y) = AT [2(&1)1(1 + 61)2 + 6alﬁww(1 + Bm)} (823)

2
bl (4;07 y) = -AT [(Dwﬂ) + 3&1 1%% + 40’151}:61 + 6(a1)zﬂxm + (al)zx(l + ﬁm) + 0,0(]. + Bz)] (824)
Dw T TrTT TrT Tx Tx
bO(gO)y) = AT[(l +[;) + a; 1B+ﬂ +2(a1)xlﬁ+ﬁ —i—(al)leiﬁ +a01iﬂ +(ao)x} (825)

and the remainder

Rr:= _H§8$(52R2 +R)AL — H§ (ala:mm +2(a1)20zz + ((1)zz + a0)0z + (ao)w)HSAH§
+ [Dwv R@] + ('Cw - Dw)R<I> . (826)

The commutator [D,,, Rs] has the form (8.6) with D,, g, or D, x;, D, instead of x;, g;, ¥; respectively.
Also the last term (£, — D,)Rq in (8.26) has the form (note that £, — D,, does not contain
derivatives with respect to ¢). By (8.22), and decomposing I = Ilg + I1Z, we get
L,® = ®(D,, + b3,y + baOyy + 10, + b))l +Rys, (8.27)
Ry = {IIg (A — DIlg — Ra } (b30yyy + b20yy + b19y + bo) g + Ry . (8.28)

Now we choose the function § = (p,x) such that

al(@a m)(l + Bz (907 x))?; = b?)((p) (829)

so that the coefficient b3 in (8.23) depends only on ¢ (note that AT [b3(¢)] = bs(p)). The only solution
of (8.29) with zero space average is (see e.g. [2]-section 3.1)

1

Bi= 0700, poi=bol)Harlp,a) =1 ble) = (5 / <a1<¢,x>>*1/3dz)’3. (8.30)

Applying the symplectic map ®~! in (8.27) we obtain the Hamiltonian operator (see Definition
L= 1L,® =I5 (w- 0y + b3(0)Dyyy + 010y + bo) 15 + Ry (8.31)

where Ry := ®"'R;;. We used that, by the Hamiltonian nature of £, the coefficient by = 2(b3),, (see
[2]-Remark 3.5) and so, by the choice (8.30), we have by = 2(b3), = 0. In the next Lemma we analyse
the structure of the remainder R;.

Lemma 8.3. The operator Ry has the form (7.7)).

Proof. The remainders R; and R;; have the form (7.7)). Indeed Ro, R. in (8.26)) have the form ([7.2) (see
Proposition and the term IIgAw = ZjeS(ATeijx, w) 2(1y€7” has the same form. By (8.6)), the terms
&

of Ry, Ry; which involves the operator R have the form ([7.7)). All the operations involved preserve this
structure: if Ryw = x(7)(w, g(7))r2(1), 7 € [0,1], then

anéw = X(T)(Hﬁg(T)a w)L2(1r) , RrAw = X(T) -AT9<7')7 w)L?(T) , OLRrw = X:E(T)(g(T)aw)LQ(T) )
g Rrw = (Mg x(7))(g(7), w) 21y s ARyw = (Ax(7))(g(7), w)L2(ry , @~ Rrw = (7' x(7))(9(7), w) L2(m)
=f

(the last equality holds because ®~1(f(p)w) (p)®~1(w) for all function f(p)). Hence R has the

form (7.7) where x;(7) € Hg for all 7 € [0, 1]. O
We now put in evidence the terms of order ¢,€2, ..., in by, by, Ry, recalling that a; — 1 = O(&3) (see
(7-38)), ao = O(e) (see (7.35)-(7.39)), and 8 = O(e?) (proved below in (8.35])). We expand b; in (8.24]) as
bl = —€p1 — 52102 —g>2 + Dwﬁ + 4Bzzm + (al)zz + b1,24 (832)

where b1 >4 = O(e?) is defined by difference (the precise estimate is in Lemma.

31



Remark 8.4. The function D, has zero average in = by (8.30) as well as (a1)zz, Bewe- O
Similarly, we expand by in (8.25)) as
bo = —E(p1)w - 52(]72)9: - (q>2)a: + Dwﬁa} + Bza:a:w + b0724 (833)

where by >4 = O(e?) is defined by difference.
Using the equalities (8.28), (8:26) and IIg AIlG = Hg(A — I)IIE we get

Ry =0 'Ry = 150, Ry + R. (8.34)

where R is defined in (7.29) and we have renamed R, the term of order o(¢?) in %R;. The remainder R,
7.7)

in (8.34) has the form (7.7]

Lemma 8.5. There is 0 = o(1,v) > 0 such that

i Li
IBIIEPO) <, e3(1+ |75 SR, 108015 <s & (Ifllsto + [1Tsllsto ol soto) » (8.35)

i ~ Li
b5 — 1[5P0) <, et + 22|35 R0, 10:b3[illls <s €72 ([Pllsto + 1Tsllsr0 7l so10) (8.36)
161, 54| 5P + [[bo, 54 [P0V <, et + 22| 35]| 50 (8.37)
103b1, >4l |s + 100 >4 [l s <s €2 (Illsro + [ Tslls ol soto)- (8.38)

The transformations ®, ®~1 satisfy
i Li Li Li

IDE RO <, I + 19150 Il oE (8.39)
Hai((bilh)m”s <s Hh||s+a|m‘80+0 + ||h|‘80+0||/1|s+0 + ”35||s+<7||h||80+0|m‘80+0 . (8~40)

Moreover the remainder R, has the form (7.7), where the functions x;(T), g;(7) satisfy the estimates
(7.41)-(7.42) uniformly in 7 € [0,1].
Proof. The estlmates ) follow by (8.30]), -7 and the usual interpolation and tame estimates in

Lemmata [2.2}]2.4] (and Lemma 5.13) and 1- For the estimates of bz, by (8.30) and ( we consider
the functlon el deﬁned in (7.25). Recalling also 1 4)) and - the function

r1(T5) = €*(Oupu, f5) (05, (V5)2) + 11,34, 7134 := 11(T5) — € (Qupu, f5) (vs, (vs)a) -

Hypothesis (S1) implies, as in the proof of Lemma. 5} that the space average S (Oupis f5) (5, (V5) o )da =
0. Hence the bound - ) for bs — 1 follows. For the estlmates on &, 7 we apply Lemma and the

estimate (8.35]) for 8. We estimate the remainder R, in (8.34)), using (8.26)), (8.28)) and ([7.41)- 7 42). O
g

8.2 Reparametrization of time

The goal of this section is to make constant the coefficient of the highest order spatial derivative operator
Oyyy, by a quasi-periodic reparametrization of time. We consider the change of variable

(Bw)(p,y) = w(p +walp),y),  (B7'h)(9,y) = (0 +wa(v),y),

where ¢ = ¥ 4+ wa(¥) is the inverse diffeomorphism of ¢ = ¢ + wa(p) in T”. By conjugation, the
differential operators become

B 'w. 0,B=p)w-0y, B 'o,B=0, p:=B'1+w-0,a). (8.41)
By (8.31)), using also that B and B~! commute with IIZ, we get

B™'LiB =TI&[pw - B9 + (B71b3)0yyy + (B7101)0, + (B~ 'bo)|lIg + B~ B. (8.42)

32



We choose a such that
(B™'b3)(0) = map(9), mz €R, namely bz(p)=mz(l+w-dyap)) (8.43)

(recall (8.41])). The unique solution with zero average of (8.43) is

1 _ 1
o) = ol 0) "y —ma)(e), o= / bs(p)dg. (8.44)

Hence, by (8.42)),
B™'LiB = pL,, Lo = TI5(w - Dy +m3Dyyy + 10, + co)Ig + Ry (8.45)
c1:=p *(B7'b1), co:=p (B '), Re:=p 'B'RB. (8.46)

The transformed operator Lo in is still Hamiltonian, since the reparametrization of time preserves
the Hamiltonian structure (see Section 2.2 and Remark 3.7 in [2]).

We now put in evidence the terms of order €,¢2, ... in ¢1, co. To this aim, we anticipate the following
estimates: p(¥) = 1+ O(e?), a = O(e*y~1), mg = 1+ O(e?), B~! — I = O(a) (in low norm), which are
proved in Lemma below. Then, by —, we expand the functions ¢y, ¢y in as

c1=—ep1 —&2p2 — B 'qsa +e(p1 — B 'p1) + 2 (p2 — B7'p2) + Do B+ 4Buaz + (a1)za + 1,54, (8.47)

co=—e(p1)e—€2(p2)e— (B~ g=2)a+e(p1 — B 'p1)e +%(p2— B™'p2)s + (DwB)s + Brwws +Co,54, (8.48)

where ¢1 >4,¢0>4 = O(g*) are defined by difference.

Remark 8.6. The functions e(p; — B~ 1p1) = O(e5y~1) and &%(p2 — B~ 1p2) = O(5v71), see (8.53). For
the reducibility scheme, the terms of order 89 with size O(e°y~!) are perturbative, since e>y=2 < 1. O

The remainder R, in (8.46) has still the form (7.7) and, by (8.34)),
Ry = —p 'B7IR B = —’ 1140, Ry + R (8.49)
where R is defined in (7.29) and we have renamed R, the term of order o(¢2) in Rs.

Lemma 8.7. There is 0 = o(v,7) > 0 (possibly larger than o in Lemma such that

|ms — 1|Lip(7) < C’€4, |0ims[i]] < Csb+2||ﬂ\50+a 8.50

i — — 1~ pLi —
| BP0 < ety =t 4 2235 R0 3ialillls <o €2 (|llsto + Tsllsro [Ellsoro) s (8:51
lp — LB < et P23 1500 1930l <s €2 ([Tlsro + 1 Tslsto |l soro) 8.52

10:(px — B~ o) @lls <o €2y ([@llsso + |Tslloro [Tsoto) (854
1B~ gs2 | 5P <, &3 4 £%|35][5 00, 8.55
18: (B g=2)lls <o & ([llsto + [1T5 |0 llsoto) - 8.56

The terms ¢ >4, co,>4 satisfy the bounds (8.37)-(8.38)). The transformations B, B~! satisfy the estimates
8.39), (8.40). The remainder R. has the form (7.7)), and the functions g;(7), x;(T) satisfy the estimates

7.41)-(7.42)) for all T € [0,1].

Proof. (8.50)) follows from (8.44)),(8.36)). The estimate ||a||s <s ¥y~ 4+e*T2y71||Ts|| 510 and the inequality
for 9;c in (8.51)) follow by (8.44)),(8.36)),(8.50). For the first bound in (8.51]) we also differentiate (8.44)
with respect to the parameter w. The estimates for p follow from p — 1 = B~1(bg — mg3)/ms3. O

(8.50)
(8.51)
(8.52)
lpr — B~ 1pe|[SPO) <, ety 4+ 2135 SR, k= 1,2 (8.53)
(8.54)
(8.55)
(8.56)
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8.3 Translation of the space variable

In view of the next linear Birkhoff normal form steps (whose goal is to eliminate the terms of size € and

£%), in the expressions (8.47), we split p1 = Py + (p1 — 1), p2 = P2 + (p2 — P2) (see (7.35)), where
pmbn, = bml0 ) ae) = Y VG, (857
and ¢: S — Z is the odd injective map (see (1.8))
0:S =77, L3):=e; L=F)=—LT)=—€, i=1,...,v, (8.58)
denoting by e; = (0,...,1,...,0) the i-th vector of the canonical basis of R”.

Remark 8.8. All the functions p;, p2, p1 — D1, P2 — P2 have zero average in z. ]

We write the variable coefficients ¢, ¢o of the operator Lo in (8.45) (see (8.47)), (8.48)) as

¢ = —ep1 — P2+ Gy + 1,24, co=—(p1)e — X (P2) + e + C0,24 (8.59)
where we define
ey = q+4ABoza + (@1)zw s Geo = Gz + Braaa, (8.60)
q:=e(p1 — B~ 'p1) +&(p1 — p1) + €% (p2 — B~ 'p2) + (P2 — p2) — B 'qs2 + DufB. (8.61)
Remark 8.9. The functions ¢.,, ¢, have zero average in = (see Remarks and Lemma . O
Lemma 8.10. The functions pp — pr, k = 1,2 and q.,,, m = 0,1, satisfy

15 — pell EPO) < 13515, 10:(Pr = pi) @l s <s [ells + 11351l [[2llso » (8.62)
i — Li i ~
e, 5P <5 97 +ell T 1887, 10ite, AIEPD <5 (@lsto + 135 lstol@lsoo) - (8.63)

Proof. The bound (8.62) follows from (8.57)), (7.35)), (7.11), (7.8)). Then use (8.62)), (8.53)-(8.56)), (8.35),
(7.38) to prove (8.63). The biggest term comes from €(p; — p1). O

We now apply the transformation 7 defined in (8.64) whose goal is to remove the space average from
the coefficient in front of 0,,.
Consider the change of the space variable z = y + p(¢J) which induces on H (T*+1) the operators

(Tw)(¥,y) = w(®,y+p)), (T 'h)(J,2) =,z —p() (8.64)

(which are a particular case of those used in section [8.1). The differential operator becomes T 1w - 99T
=w- 0+ {w-9p(9)}0,, T710,T = 9,. Since T, T ~* commute with II¢, we get

Ls:=T "LoT =15 (w -y + m30s.. + d10, + do) g + Rs,, (8.65)
dy = (T ter) +w-p, do =T 'eo, Ry =T R, T. (8.66)
We choose ) )
._ . . -1 o
my = Gy /'ﬂwrl c1dddy, p:=(w-0y) (ml 5 /Tcldy), (8.67)
so that 5= [ d1(0,2) dz = my for all ¥ € T”. Note that, by (8.59),
1
[awai= [ sy, o om@) =m -5 [ sy (8.68)
T T 21 Jr

because Py, P2, ¢, have all zero space-average. Also note that 913 has the form (7.7). Since T is symplectic,
the operator L3 in (8.65)) is Hamiltonian.
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Remark 8.11. We require Hypothesis (1) so that the function ¢gso has zero space average (see Lemma

. If g>2 did not have zero average, then p in would have size O(e3y71) (see (7.31))) and, since
T—' — I =0(3y~1), the function dy in would satisfy dy = O(e*y~1). Therefore it would remain

a term of order 9! which is not perturbatlve for the reducibility scheme of section O
We put in evidence the terms of size ¢,£2 in dg, di, R3. Recalling (8.66), (8.59), we split

di = —epr — 2pe + dv, do= —e(p1)e — 2(P2)e + do, Rz = —e2M£,Ro + R (8.69)

where R is obtained replacing vs with © in Ry (see (7.29)), and

di = e(pr — T 'p1) + %P2 — T p2) + T ge, + c1,>4) +w - Oyp, (8.70)
do:=e(Pr — T 1)e + 2Bz — T 'P2)e + T (qeo + Co,4), (8.71)
Ry =T "R.T + 20, (Ry — T 'RoT) + 21150, (Ro — Ra), (8.72)

and R, is defined in (8.49). We have also used that 7! commutes with 9, and with IIZ.
Remark 8.12. The space average 3- [, di(0,2)dz = 5= [pdi(¥,2)dz = my for all ¥ € T". O

Lemma 8.13. There is 0 := o(v,7) > 0 (possibly larger than in Lemma[8.7) such that

[ [P < Ot |0ima [i]] < Ce"*2fillso+o (8.73)
i - Li _
IplIXPO) <, ety 4+ e 2T EET dipfllls <o €2 (st + 1 Tsllsto Tllsotre)  (8.74)
7 i Li 7
ldk 5P <, &%yt + ¢35 18:dk[@llls <s e([Tlls+o + 1Fs5ls+0fEllso+0) (8.75)

for k =0,1. Moreover the matriz s-decay norm (see (2.16))

|7€*|5ip(7) Ss 63 + 62H36H5.i~3£7) ) |az7€*m|s Ss 52||ﬂ|8+a + 52b71||36||8+a‘m|s()+0~ (8~76)
The transformations T, T ' satisfy (8.39), (8.40).
Proof. The estimates (8.73)), (8.74) follow by (8.67),(8.59),(8.68), and the bounds for c¢i >4,c0,>4 in
Lemma The estlmates (8.75) follow similarly by (8.63), (8.68]), (8.74). The estimates (8.76)
follow because T 'R,T satisfies the bounds (7.41) like R. does (use Lemma and (8.74)) and
2158, (Ra — Ra) |50 < 2|35 207 O

It is sufficient to estimate R, (which has the form (7.7)) only in the s-decay norm (see (8.76)) because
the next transformations will preserve it. Such norms are used in the reducibility scheme of section

8.4 Linear Birkhoff normal form. Step 1

Now we eliminate the terms of order € and €2 of £3. This step is different from the reducibility steps
that we shall perform in section because the diophantine constant v = o(g?) (see (5.4)) and so terms
O(e),0(?) are not perturbative. This reduction is possible thanks to the special form of the terms /3y,
€2, defined in : the harmonics of eB;, and £27 in , which correspond to a possible small
divisor are naught, see Corollary and Lemma In this section we eliminate the term €B;. In
section 8.5 we eliminate the terms of order 2.

Note that, since the previous transformations ®, B, 7 are O(e*y~!)-close to the identity, the terms
of order € and €2 in L3 are the same as in the original linearized operator.

We first collect all the terms of order ¢ and £2 in the operator L3 defined in (8.65). By (8.69), (7.29),
(8.57) we have, renaming ¥ = ¢, z = x,

L3 =15 (w- 0y + M3yus + B1 + 2 Bo + d19, + do) 15 + R
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where dy, dy, R, are defined in (8.70)-(8.72) and (recall also 2:2))
Bih := —60,(vh), Bah:=—60,{vlls[(0, 'v)d, 'h] + hmo[(0, *0)?]} + 6m0{ (0, '0)IIs[oh]}.  (8.77)

Note that B; and By are the linear Hamiltonian vector fields of H é generated, respectively, by the
Hamiltonian z — 3 [ vz? in (3.6)), and the fourth order Birkhoff Hamiltonian H, o in (8.7) at v = v.
We transform L3 by a symplectic operator ®, : Hg, (TY*') — H§, (T**!) of the form

€k_3 &

A2 ~
Dy = exp(edy) = Iyy +eAr + 8271 +e%4;, A= Zk>37A1 ) (8.78)

where Ai(p)h = Zj7j,esc(A1)§/(<p)hj/eijz is a Hamiltonian vector field. The map ®; is symplectic,
because it is the time-1 flow of a Hamiltonian vector field. Therefore
L3®1 — &1115(Dyy + M30r0a) g (8.79)
= T (D Ar + 5[0z, Aa] 4 Br} + {Brds + By + 5[0, AT+ 5 (DuAD} + i + Ry
where

. - ~ ~ —~ 1 ~
Ry = d10,(®1 — I)+do®1+R.®1 +&>Bo (1 — I)+*{ Dy A1 +m3[0s0, A1]+581A§+581A1} . (8.80)

Remark 8.14. Rj has no longer the form (7.7). However Ry = O(92) because A; = O(9; ') (see Lemma
, and therefore @1 — I;1 = O(9;1). Moreover the matrix decay norm of Rj is o(g?). O

In order to eliminate the order € from (8.79)), we choose

’ - (B1); (0 if @ l+5°—j°#0 o
(A1) (1) =% i(w- L+ ms(5® — j3)) © g ese len. (8.81)
0 otherwise,
This definition is well posed. Indeed, by (8.77) and (8.57)),
iy )0 =g e S, 1= —-]")
(B1); (1) == . (8.82)
0 otherwise.

In particular (81)?(1) = 0 unless |I| < 1. Thus, for @ -1+ ;% — j3 # 0, the denominators in (8.81]) satisfy

jw - L+ma(§7 = 5°) = ms(@ -1+ 57 = 5°) + (w — maw) - 1|
> [mall@ 1+ = 5% = lw—msalll] > 1/2, V| <1, (8.83)

for £ small, because the non zero integer |w -1+ 53 — j3| > 1, (8.50), and w = @ + O(£?).
A1 defined in (8.81)) is a Hamiltonian vector field as B;.

Remark 8.15. This is a general fact: the denominators d; ; 5 := i(w-1+m3(k3—32)) satisfy Ok =0_1k;

and an operator G(y) is self-adjoint if and only if its matrix elements satisfy Gf () = Gi(—l), see [2]-
Remark 4.5. In a more intrinsic way, we could solve the homological equation of this Birkhoff step directly
for the Hamiltonian function whose flow generates @ . O

Lemma 8.16. Ifj,j' € 5, j—j' €S, 1 =10(j — j'), then @ -+ j — j3 = 3j5'(j — j) # 0.

Proof. We have @ -1 =@ -£(j —j') = (j — j')% because j — j € S (see (2.10) and (8.58)). Note that
4,3 # 0 because 7,5’ € S¢, and j — j' # 0 because j — j' € S. O

Corollary 8.17. Let j,7' € S¢. Ifw -1+ j"® — j3 =0 then (Bl)gl(l) =0.
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Proof. If (Bl)gl (1) # 0 then j —j'€S,1 = £(j —j) by (8.82)). Hence @-1+ ;" — j3+# 0 by Lemma O
By and the previous corollary, the term of order ¢ in is
g (Do A1 + M3 (040, A1) + B1)g = 0. (8.84)
We now estimate the transformation A;.
Lemma 8.18. (i) For alll € Z", j,j € S°,
(A7 O < Ul +1D™ . 1(AD] O < e (] + 17D (8.85)
(i) (Al)g/(l) =0 foralll € Z”, j,j' € S¢ such that |j — j'| > Cs, where Cs := max{|j| : j € S}.

Proof. (i) We already noted that (Al)gl (1) =0, V|l| > 1. Since |w| < |@| + 1, one has, for |I| <1, j # 7/,

. . . ) 1, . . 1, . . . .
w1 ma (5% = 50| 2 mall® = 5 =l U 2 207 +5°) = lwl 2 g7 +5%), V(7 +5%) 2 C,

for some constant C' > 0. Moreover, recalling that also (8.83)) holds, we deduce that for j # j’,
(A)] W #0 = Jw-l+ma( =) > e(lil +15)°. (8.86)
On the other hand, if j = j/, j € S¢, the matrix (Al);:(l) =0, VI € Z¥, because (Bl)g(l) = 0 by (8.82)

(recall that 0 ¢ S). Hence (8.86) holds for all 7, 5. By (8.81)), (8.86), (8.82) we deduce the first bound in
(8.85). The Lipschitz bound follows similarly (use also |j — j/| < Cg). (i) follows by (8.81)-(8.82). O

The previous lemma means that A = O(|0,|~!). More precisely we deduce that

Lemma 8.19. |A,0, |5 + |9, 4,570 < C(s).
Proof. Recalling the definition of the (space-time) matrix norm in (2.23)), since (Al);f (1) = 0 outside the
set of indices |I| < 1, |j1 — j2| < Cs, we have
A 2
il = > (s Lll(ADZO)) 00 < CGs)

<, ljl<cs TR

by Lemma The estimates for |A10;|s and the Lipschitz bounds follow similarly. O
It follows that the symplectic map ®; in (8.78]) is invertible for ¢ small, with inverse

—1

n . ~ .
S (A, A8, [HPO) 119, A, |UPO) < O(s) . (8.87)

<I>;1 =exp(—cA;) = IHé_ +edy, A = Z

n>1 nl

Since A; solves the homological equation (8.84)), the e-term in (8.79) is zero, and, with a straightforward
calculation, the 2-term simplifies to By + 5[B1, A1]. We obtain the Hamiltonian operator

L= 07 L3®) = 11E(Dy + m30pse + d10y + 2 {Bo + 3[B1, A1)} + Ra)IIE (8.88)
R4 = ((I)l_l — I)H§[62(62 + %[Bl, A1]) + Jlal] + ‘I’IIH§R3 . (889)

We split A; defined in (8.81), (8.82) into A; = A; + A where, for all j,j' € S¢, 1 € 7,

T 67/Ei—j v ‘ . o o
(A1) @) iszsj_jg if w-l4+5°-%#0, j—j' €8, 1=10G-j, (8.90)
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and (f_ll)g/(l) := 0 otherwise. By Lemma|3.16} for all j,j' € §¢, 1 € Z, (14_11);:/@) = 3,7”(;5,’:;), ifj—j5 €8,
l=14(j—3"), and (A, )g/(l) = 0 otherwise, namely (recall the definition of ¥ in (8.57))

Arh = 2115([(0;'0)(0; 'h)], Vh € Hg. (T"H). (8.91)
The difference is

(A (1) = (Ay— AT (1) = 2V Gy {lw =) 1+ (ms —1)(® — 1)} (8.92)

| (w.l+m3(j’3*jg))(@'l+j/3*j3)

1j

for j,j' €S j—j5 €S, 1=40(j—3), and (gl)gl(l) = 0 otherwise. Then, by (8.8,

L4 =105 (Do + M30yas + d10y + 2T + Ry) 115 (8.93)
where
1 _ g2 ~ -
T := BQ + 5[81, Al] 5 R4 = E[Bl,Al] + R4 . (894)

The operator T is Hamiltonian as Ba, Bi, A; (the commutator of two Hamiltonian vector fields is
Hamiltonian).

Lemma 8.20. There is 0 = o(v,7) > 0 (possibly larger than in Lemma such that
i — ~ L ~
‘R4|§ p(M) <s 557 T+ 8”‘15”54557) ) |aiR4m|s <s 5(||/Z\”s+0 + ||J6||s+0|m‘50+cr) . (8.95)

Proof. We first estimate [B1, A1) = (B19; 1) (8, A1) — (410,)(9; ' By). By (8:92), |w—w| < Ce? (asw € Q.
in (5.2)) and (8.50), arguing as in Lemmata we deduce that |/~118w\];ip(7)+ |8xgl|I;ip(7) <s el
e norm |818;1|I;ip(ﬂ’) + 10518, |MP() < C(s). Hence 52|[Bl,ﬁ1]|lgip(7) <, ¢’. Finally (8.94),
(8-89), (8.87), (8-80), (8.75), (8.76)), and the interpolation estimate imply (B.95). O

8.5 Linear Birkhoff normal form. Step 2

The goal of this section is to remove the term €27 from the operator L4 defined in (8.93). We conjugate
the Hamiltonian operator £4 via a symplectic map

£2(k—2)

Py = exp(e?Ay) = Iy + 24y + ' Ay, Ay = Z Ab (8.96)

k>2 k!

where As(p) =3, jese (Ag)g/(go)hj/eij” is a Hamiltonian vector field. We compute

L1®y — PoIT5 (Do + M0y ) I = TG (e2{ Dy Az + m3[0psa, As] + T} + d18, + R)IIE,  (8.97)
Ry = ITE{e* (D A3) + m3[0nea, As]) + (d10, + 2T) (P — I) 4+ R4y IS . (8.98)

We define
(A2);I'(z) = — 5w if @-1+5°—5°#0; (Ag)g'(l) :=0 otherwise.  (8.99)

(w-T+ms(j" = %))

This definition is well posed. Indeed, by (8.94), (8.82), (8.90), (8.77), th? matrix entries T]? (=0
for all |j — j'| > 2Cs, | € Z", where Cs := max{[j[,j € S}. Also 77 (I) = 0 for all j,j" € S°,
|I| > 2 (see also (8.100)), (8.103)), (8.104) below). Thus, arguing as in (8.83), if @ - I + j"* — j2 # 0, then
lw -1 +m3(j — j3)| > 1/2. The operator Ay is a Hamiltonian vector field because T is Hamiltonian and

by Remark

Now we prove that the Birkhoff map ®; removes completely the term 27

38



Lemma 8.21. Let j,j' € S°. If@ 1+ j — j* =0, then T/ () = 0.

Proof. By §77), (B31) we et By Avh = —120,{oT1&((0;0)(0; 'h)]}, AxBh = —120T4((0; o)LL (o)
for all h € Hf, , whence, recalling (8.57)), for all j, j' € S¢, [ € Z7,

N . Ji—J3'j2
([Br, A1]) (1) = 12i > T Vi & s (8.100)
J1,42€8, j1+j2=j—J'
J'+i2€8°, L(j1)+L(j2)=1

If ([Bl,Al])j'(l) # 0 there are ji, jo € S such that j; + jo = j — j§/, ' + jo € S¢, £(j1) + £(j2) = I. Then

O A+P =P =00+ @ () +5° - 3- P L e L (8.101)

Thus, if @ - 1+ j”® — j* = 0, Lemma [3.3) implies (j1 + j2)(j1 + j')(j2 + ) = 0. Now j1 +j', jo +j' # 0
because ji,j2 € 9, j/ € S¢ and S is symmetric. Hence j; + jo = 0, which implies j = j’ and [ = 0 (the
map £ in (8.58)) is odd). In conclusion, if @ -1+ j"® — j2 = 0, the only nonzero matrix entry ([B, /_11])5- )
is

ORIV @100 .. _
(B, ADJO) “="241 > &uia (8.102)
J2€S, jo+jES®
Now we consider By in (8.77). Split B, = By + By + Bz, where Bih = —60,{vll5[(0,10)d, 1h]},

Bah := —60,{hmo[(0;0)?]}, Bsh := 6m{Ils(vh)d,; 1v}. Their Fourier matrix representation is

o= Y Yo myg-e Y Yol (8.103)

] )

j1,j2€8S,j1+5'€S J1 J1,42€S, j1+7j2#0 Jijz
Ji+ie=i—3’, €(j1)+L(j2)=l Jitda=i—3", L(j1)+L(j2)=l
(B3)) (1) =6 > 7V£JI€” . §iesc len”. (8.104)

=, ij2
J1,J2€85,j1+j' €S
Jitia=j—3", €(j1)+£(j2)=1
We study the terms Bi, Bs, Bs separately. If (Bl)gl(l) # 0, there are ji, j2 € S such that j; +jo =j— 7',
j1+3 €8S, 1 =£001)+ £(2) and m holds. Thus, if @ -1 + j® — 52 = 0, Lemma implies
(J1+72)G1 + 7)) (G2 +4') =0, and, since j' € SC and S is symmetric, the only possibility is j; +j2 =0.
Hence j = 5/, I = 0. In conclusion, if & -1 + j"® — 53 = 0, the only nonzero matrix element (B1)] (l) is

(Bj0)=6i > &t (8.105)
J1E€S,j1+j€S
By the same arguments, if (Bs) '/( I)#0and @-1+ 5% — 53 =0 we find (j1 + j2)(j1 + 5')(ja + ') = 0,
which is impossible because also ]1 + jo # 0. Finally, arguing as for By, if @ - + ' — 2 = 0, then the
only nonzero matrix element (B3)] (l) is

(Bl (0)=6i > &r " (8.106)

J1ES,j1+jES

From (8.102)), (8.105]), (|8 106) we deduce that, if & - + j’3 — j2 = 0, then the only non zero elements
(5[B1, A1] + By +B3) (l) must be for (I, 4,7") = (0,4, 7). In this case, we get

%([Bhﬁl])ﬁ(O)Jr(Bl);i(O) +(Bs)(0) =121 > fﬁ +12i ) 5” = 12i Z gh = (8.107)
J1€S J1€S 1ES
j1+]€5r ]1+]€S

because the case j; + j = 0 is impossible (j; € S, j/ € S¢ and S is symmetric), and the function

S3j1 =&, /j1 € Ris odd. The lemma follows by (8.94)), (8.107]). O
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The choice of Az in (8.99) and Lemma imply that
115 (D As + m3[0pge, A2] + T)Ig = 0. (8.108)

Lemma 8.22. |9, Ao|Y™) 44,0, 5P < ¢(s).

Proof. First we prove that the diagonal elements Tjj (I) =0 for all I € Z”. For | = 0, we have already
proved that Tf(O) = 0 (apply Lemma [8.21| with j = j/, I = 0). Moreover, in each term [Bi, A1], By,
Bs, Bs (see (8.100)), (8.103)), (8.104)) the sum is over j; + jo = j — j', I = £(j1) + £(j2). If j = j/, then
J1+3j2 =0, and I = 0. Thus T(l) = TJ(O) = 0. For the off- diagonal terms j # j’ we argue as in

Lemmata [8.18 u [8.19] using that all the denominators |w - I +m3(j"® — j3)| > c(|j] + |5'])2. O
For € small, the map ®, in (8.96)) is invertible and ®5 = exp(—e2?Ay). Therefore , (18.108)) imply

£5 = q)51£4q)2 = Hé’_(Dw + m38zzx + dlax + RS)Hé_ ) (8]‘09)

Rs := (051 — )15 d, 0, + ®; 'TIL Rs . (8.110)

Since As is a Hamiltonian vector field, the map ®5 is symplectic and so L5 is Hamiltonian.
Lemma 8.23. Rj satisfies the same estimates (8.95) as Ry (with a possibly larger o).
Proof. Use (8.110)), Lemma/(8.22] (8.75]), (8.98)), (8.95)) and the interpolation inequalities (2.18]), (2.20)).

8.6 Descent method

The goal of this section is to transform L5 in (8.109) so that the coefficient of 0, becomes constant. We
conjugate L5 via a symplectic map of the form

~

S = exp(Il§ (wdy; HIIE = I (I +wd, DI +S, S:= Zk>2k' (115 (wo; )]FIIS (8.111)

Where w T**1 — R is a function. Note that I (wdy; H)IIE is the Hamiltonian vector field generated by
—3 Jpw(87 h)*dx, h € Hg. Recalling (2.2), we calculate

L5S — Sﬂé (Dw + m3Oppe + 7’TL18$)HL = H§(3m3ww + Cil — m1)31H§ + fzg R (8112)
Rg := Hﬁ{(?)mgwm + cilﬂﬁw —miw)mo + ((Dyw) + M3Wapse + dlﬂﬁww)(?;l + (Dwg)
+ m3[Opaes S| + d10,S — m1 80, + RsSHIE

where Rg collects all the terms of order at most dY. By Remark [8.12 we solve 3msw, + dy —my =0 by
choosing w := —(3mg3) =10, 1(d; — m;). For € small, the operator S is invertible and, by (8.112)),

Ls:=81L58 =TI5(Dyy + Mm3dpwe + mi10:)IE + R,  Re:=S 'Rs. (8.113)
Since S is symplectic, Lg is Hamiltonian (recall Definition .
Lemma 8.24. There is 0 = o(v,7) > 0 (possibly larger than in Lemma [8.23) such that
1 Li ~
[SE = IJEPO) <, &5yt e[ 35[50 108 E ills s (lfillsvo + [Tsllstol s ro)-

The remainder Rg satisfies the same estimates (8.95)) as Ry.

Proof. By (8:75).(:73),(8:50). [w]| 5P <, ey~ ]| 35|22 and the lemma follows by (B.111). Since
S = 0(8;2) the commutator [9yzz, 8] = O(82) and |[Drza, SJ|5P7 <, w]| 25 w|| X0, 0
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8.7 KAM reducibility and inversion of L,

The coefficients mg, m1 of the operator Lg in (8.113) are constants, and the remainder Rg is a bounded
operator of order 99 with small matrix decay norm, see (8.116)). Then we can diagonalize Lg by applying
the iterative KAM reducibility Theorem 4.2 in [2] along the sequence of scales

N, =N, n=0,1,2,..., x:=3/2, Np>0. (8.114)

In section EL the initial Ny will (slightly) increase to infinity as ¢ — 0, see (9.5). The required smallness
condition (see (4.14) in [2]) is (written in the present notations)

NEo|Rg|E 1 <1 (8.115)

where 3 := 77+ 6 (see (4.1) in [2]), 7 is the diophantine exponent in (5.4]) and (8.120)), and the constant
Cy := Co(7,v) > 0 is fixed in Theorem 4.2 in [2]. By Lemma the remainder Rg satisfies the bound

(8.95), and using (7.8]) we get (recall (5.10))

[Rel 3 < Ce™27h = 02, |RellBPy 7t < oot (8.116)

We use that g in (7.8)) is assumed to satisfy u > o + 8 where o := o(7,v) is given in Lemma

Theorem 8.25. (Reducibility) Assume that w — is(w) is a Lipschitz function defined on some subset

Oy C Qe (recall (5.2))), satisfying (7.8)) with 1 > o +  where o := o(1,v) is given in Lemma and
B =177 + 6. Then there exists &y € (0,1) such that, if

NGoe™2072 = NEoel=3e < 5y :=e2T% ) ae(0,1/6), (8.117)
then:
(i) (Eigenvalues). For all w € Q. there exists a sequence
130 (W) = 5P (w,i5 (W) = i( = 1t (w)j° + 1 (w)f) +75°(w),  j € S°, (8.118)
where Mg, My coincide with the coefficients ms, my of Lg in for allw € Q,, and
g — 1HPO) 4 |y |[MPO) < Ot [roeMPO) < 08720 e §°, (8.119)

for some C > 0. All the eigenvalues u5° are purely imaginary. We define, for convenience, ug®(w) := 0.
(i1) (Conjugacy). For all w in the set

29]5° — |
M

there is a real, bounded, invertible linear operator ®oo(w) : HE (T ') — Hg, (T**h), with bounded
inverse ® 2 (w), that conjugates Lg in (8.113)) to constant coefficients, namely

020 = Q2 (i5) == {w €0t fiw- 1+ (W) — P (w)] > VieZ”, jke S U {0}} (8.120)

Loo(w) := O (w) 0 Lg(w) 0 Poo(w) = w - Iy + Doo(w), Doo(w) := diagjege{p3°(w)} - (8.121)
The transformations ®,, @3l are close to the identity in matriz decay norm, with
[@oc — 11900 + 100 — 11V <, 6%y 4 ey 35107 (8.122)

Moreover ®.,, ®2! are symplectic, and Lo, is a Hamiltonian operator.

Proof. The proof is the same as the one of Theorem 4.1 in [2], which is based on Theorem 4.2, Corollaries
4.1, 4.2 and Lemmata 4.1, 4.2 of [2]. A difference is that here w € R”, while in [2] the parameter A € R is
one-dimensional. The proof is the same because Kirszbraun’s Theorem on Lipschitz extension of functions
also holds in R (see, e.g., Lemma A.2 in [25]). The bound (8.122)) follows by Corollary 4.1 of [2] and the
estimate of Rg in Lemma We also use the estimates for 0;ms, 0;my which correspond
to (3.64) in [2]. Another difference is that here the sites j € S¢ C Z\ {0} unlike in [2] where j € Z. We
have defined pg° := 0 so that also the first Melnikov conditions are included in the definition of
0. O
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Remark 8.26. Theorem 4.2 in [2] also provides the Lipschitz dependence of the (approximate) eigen-
values i with respect to the unknown (i), which is used for the measure estimate Lemma O

All the parameters w € Q% satisfy (specialize (8.120) for k = 0)
w1+ p2 W) = 2P0, Wez, je s, (8.123)
and the diagonal operator L, is invertible.
In the following theorem we finally verify the inversion assumption (6.32)) for £,,.

Theorem 8.27. (Inversion of L) Assume the hypotheses of Theorem[8.25 and (8.117). Then there
exists o1 := o1(7,v) > 0 such that, Yw E Q21 (i5) (see (8.120)), for any function g € Ho ' (T**1) the
equation L,h = g has a solution h = L g € HZ, (TY*+1), satisfying

_ i _ Li —1ny~ nLi i
1£51glIEPD <o 41 ([l SR 4 ey~ 35| SR g | LiPO)) (8.124)

s+o1
_ Li _ L —11y~ nLi L
<o v (ISR + ey 1T X R + 4 1Tl EED 2| 20 Y gl B

Proof. Collecting Theorem with the results of sections|8.1}i8.6] we have obtained the (semi)-conjugation
of the operator £, (defined in (7.34)) to Lo (defined in (8.121))), namely

= ML MG, My = OBpT®15,8P., My := PBTP1P:8P, (8.125)

where p means the multiplication operator by the function p defined in (8.41)). By (8.123) and Lemma

4.2 of [2] we deduce that ||[£31g||5P?) <, '771”9”1;?2(:-);1- In order to estimate My, M ', we recall that
the composition of tame maps is tame, see Lemma 6.5 in [2]. Now, &, &~ ! are estimated in Lemma

B,B~! and p in Lemma 7,7 ! in Lemma 8.1 31 The decay norms |<I>1 Lip(™) |<I>171|I§ip(7), |<I>2|I§ip K
|Q>2_1|£‘1p(7) < C(s) by Lemmata 8.1 9L 8.2 21 The decay norm of S,87 ! is estlmated in Lemma and
O, 7! in (8.122). The decay norm controls the Sobolev norm by lb Thus, by (8.125)),
i — i Li — Li i
[ MR 4 MR < AT + ey Ts1 5 DalRl P

and (8.124) follows. The last inequality in (8.124)) follows by and ((6.4)). O

9 The Nash-Moser nonlinear iteration
In this section we prove Theorem It will be a consequence of the Nash-Moser Theorem [0.1] below.
Consider the finite-dimensional subspaces
{J (©,y,2)(¢): ©=11,0, y =1y, z = an}

where N, := Ng‘n are introduced in (8.114)), and II,, are the projectors (which, with a small abuse of
notation, we denote with the same symbol)

> o, Mayle) = Y we?, where O(p) = > 01", ylp) = > ye?,
[l|< Ny, [l|< Ny, lezv lezv

I, z(p,x) := Z 2T where 2(p, x) = Z 2 el eI, (9.1)
[(LI<Ny lezv jese

We define IT;- := I — II,,. The classical smoothing properties hold: for all o, s > 0,
I3 < Ng|3]EP0), vaw) € B, IS0 < N |alin), vaw) € B (9.2)
We define the constants

1 :=3u+9, a:=3u +1, ay = (a—3u)/2, (9.3)
1—3a
Ci(1+a)’
where p := u(r,v) is the “loss of regularity” defined in Theorem (see (6.40)) and C; is fixed below.

ke=3(u+p ) +1,  Bri=6u+3p 43, 0<p< (9.4)
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Theorem 9.1. (Nash-Moser) Assume that f € C? with g > S :=so+ 1 +p+3. Let 7 > v+2. Then
there exist C1 > max{u1 + «,Co} (where Co := Co(1,v) is the one in Theorem [8.25), 8o := o(7,v) >0
such that, if

NO(’HEZ’*Jrlff2 <8y, yi=etr=g®_ Ny:=(ev1)?, b,:=6-2b, (9.5)
then, for alln > 0:

(P1),, there exists a function (J,,(n) @ Gn C Qe — En 1 X RY, w— (Tp(w),(w)), (Jo,¢) == 0,
E_y := {0}, satisfying |G,["") < C|F(U) [,

Li Li

13allE5D < Cucy ™t IF W) < Cue® (9.6)

where Uy, = (in, Cn) with in(v) = (p,0,0) + T, (¢). The sets G, are defined inductively by:
Go={we€:: [w-l=>29()"", VI € Z"\ {0} },

2'771‘] | c v
T Vi, k € S¢U {0}, leZ} (9.7)

where v, := y(1+27") and p5°(w) = p5°(w, in(w)) are defined in (8.118) (and pg°(w) = 0).
The differences ﬁn =T, — Jn—1 (where we set /jg :=0) is defined on G, and satisfy

Grir 1= {w € G ¢ fiw- 14 15" (6n) — ¥ (i) 2

3550 < Cueb ™t TallERD) < Cueby NS, Wn> 1. (9.8)

(P2)n ||f(Un)||L1P(W) < C,e™N N, % where we set N_y :=

(P3), (High norms). [|7,]|5%0) < Ceb*y'Nj_ and | F(UL)||505) < Cueb*Np_,

(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

|QE \ gOl S C*EQ(V_1)77 |gn \ gn+1’ S C*EQ(V_U’YNT:E]_ . (99)

Li Li
PO — 10

All the Lip norms are defined on G,,, namely || ||s s gn

Proof. To simplify notations, in this proof we denote || ||“P() by || ||. We first prove (P1,2,3),,.

STEP 1: Proof of (P1,2,3)p. Recalling (5.6) we have || F(Uo)|ls = | F(¢,0,0,0)|s = | Xp(p,0,0)]s <,
g6=20 by (5.15). Hence (recall that b, = 6 — 2b) the smallness conditions in (P1)g-(P3)o hold taking
C. = Cy(so + p1) large enough.

STEP 2: Assume that (P1,2,3), hold for some n >0, and prove (P1,2,3),+1. By (9.5) and (9.4)),

N()le(gb*—}-l,_y—Q — NglEl_Sa — 61—3a—pC’1(1+a) < 50

for ¢ small enough, and the smallness condition (8.117)) holds. Moreover imply (6.4) (and so (7.8))

and Theorem applies. Hence the operator £, := L, (w,i,(w)) defined in (6.31) is invertible for all
w € Gp41 and the last estimate in (8.124]) holds. This means that the assumption (6.32]) of Theorem

is verified with Qo = G,,+1. By Theorem there exists an approximate inverse T, (w) := To(w, in(w))
of the linearized operator L, (w) := d; ¢F(w,in(w)), satisfying (6.40). Thus, using also (9.5)), (92)), (9.6),

ITnglls <s v (gllstn + &7 NTnllsrn + 7 1 Tnllso sl F O lls 4 gl s011) (9.10)
||TngH50 <so '7_1||g||50+u (9.11)
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and, by (6.41)), using also (9.6), (9.5), (9-2),

1(Zn © T = D glls <s v~ (IFUn)lsorsallgllsr + 1FUn)lsullgllso+s
+ e Tl F U)ot lgllso+n) (9-12)
I(Zn o To = 1)gllso <so v~ IFUn)llsorllgllso+n
<50 ¥ I F (Un) lsgpe + 10 F(Un)llso-t10) 190+
<so NEYTHIIFOn) 5o + Ny P IF Un) lso50) 19l - (9-13)

Then, for all w € G, 41, n > 0, we define
Upsr :=Up+Hps1, Hppq = Gng1,Cnsr) == —IL,T,IL,F(U,) € E, x R, (9.14)

where T1,,(3,¢) := (I1,3,¢) with I, in (0.1). Since L, := d; F(in), we write F(Uny1) = F(Uy,) +
Lan—H + Qna where

Qn =QUn, Hpt1), QU,H)=FU,+H)-FU, —L,H, HeE,xR". (9.15)
Then, by the definition of H,, 4 in (9.14), and writing IT-(3,¢) := (IIL3,0), we have
F(Uns1) = F(Un) = LIl TRl F(Up) + Qn = F(Uy) — Lo Toll, F(Up) + Lol T ILF(Uy) + Qu

= F(Up) =, L, T, I, F(Uy,) + (LpIL: — L) T I, F(U,) + @y
=T, F(Un) + Rn + Qn + Q) (9.16)

where _
R, := (LIt =11} L,)T, 11, F(U,), Q= -1,(L, T, — DI, F(U,). (9.17)

Lemma 9.2. Define
Wy 1= 57_2”}—((]71)”80 ; Bpi= 5’7_1Hjn”80+61 "’57_2“?([]71)”50-&-61 . (9.18)
Then there exists K := K (sg, 1) > 0 such that, for all n >0, setting p1 := 3u+9 (see (9.3))),

/H-‘r% Hl"r%

wnpr < KNP B A KNP, Bu <KNETUB,. (9.19)

Proof. We estimate separately the terms @Q,, in (9.15) and @),, R,, in (9.17).
Estimate of Q.. By (9.15), (5.6, (5.20) and , (19.2), we have the quadratic estimates

Qs H)ls <s e(I13lls43 013l s0+3 + 1Tl T2, 15) (9.20)
1Q(Un, H)|lso <50 eNSITI2,, VI € E,. (9.21)

S0 0

Now by the definition of H,4; in (9.14) and (9.2), (9.10), (9-11)), (9.6)), we get

Bt llsotpr Ssorsn NE(VHIFUn) oot + v 2 IF Oallsotrul1nllst + 7 IFUn)llso:})

SSo-‘rﬂ N#(,y_lH]:(Un)”So-i'Bl + ||jn||so+51) ) (9'22)
1Tnt1llse <so V_INﬁ”]:(Un)HSO . (9.23)
Then the term @, in (9.15)) satisfies, by (9.20), (9:21)), (9:22), (9-23), (9-5), (9-6), (P2),, (9-3).
||Q71H80+51 S«‘50-"-[31 N3M+97(7_1||‘7:'(Un)||80+ﬂ1 + ”j’ﬂHSo-‘rﬁl) ) (924)
1@nllso <so Nt Pey 2| F(Un)|3, - (9.25)
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Estimate of Q!,. The bounds (9.12)), (9.13)), (9.2), (9.3), imply

||Q ||So+ﬁ1 >so+061 NQM(”]:( )||80+51 + ||j ||So+ﬁ1H]:( )||50)7 (926)
1@Qnllso <so v NI(IFUn)llso + NP IF (Un)llso0) 1F (Un) I - (9.27)

Estimate of R,. For H := (3,() we have (L,II+ — IIXL,)H = [D,,II-]3 = [M,,, D,]3 where D, :=

di X (in) + (0,0, 0445). Thus Lemmal[5.3] (9.6), (9.2) and (5.19) imply

N(LaTTE = T L) H Ly <o, N 25 ([Bllags s + [FulansrnlBllonss) s (9:28)
H(Lnni - H#LH)HHSoﬁ-ﬂl <s 5N5+3(||3”80+B1—u + ||3n||50+,61—u||JH80+3) : (9.29)
Hence, applying (9.10)), (9.28), (9-29), (9.5), , 19.2), the term R,, defined in ([9.17)) satisfies

HR HSO =s0+p61 N#Jrﬁ & (57_1”]:( )||80+B1 +€||J H50+51) (930)
”R ”SoJrBl =sot+h N#+6(€’y 1||~F( n)”SoJrBl +E||Jn‘|80+ﬁ1)' (931)

Estimate of F(Up41). By (9.16) and (9.24)), (9-25), (9-26), (9.27)), (9-30), (9-31), (9.5), (9.6)), we get
IFUns0)llso Ssorsr Nit ™ (v IF(Un)llso+ + el Tnllsorps) + Nirey 2| F (U3, , (9.32)
||‘F(UTL+1)||30+§1 >s50+01 Nﬂl (E’Y 1||‘F( n)||30+,31 +€||jn||$0+51)’ (933)

where @y :=3u + 9. N
Estimate of Jp41. Using (9.22) the term J,,41 = J,, + J,,41 is bounded by

1T ns1llso+: <sorsn Ni(ITnllsorss + 7 IF(Un)llsorp) - (9-34)

Finally, recalling (9.18)), the inequalities (9.19) follow by (9.32)-(9.34]), and ey~ ! = Né/p < N,ll/p. O
Proof of (P3)n+1. By (9.19) and (P3),,

H1+

1
Bpir < KNY' 7B, < 20, Ky 2NE TN < 0Lty m2NE (9.35)

provided 2K N, ity N,’f_l <1, Vn > 0. This inequality holds by (9.4), taking Ny large enough (i.e e
small enough). By (9.18), the bound B,,;1 < C.e®Ft1y=2N/ implies (P3),41.

Proof of (P2)11. Usmg [©19), ©18) and (P2),., (P3),., we get

M1+ M1+

Wt < KNSR L KNMw? < KNP TP 90,0y m2NE | KNB (Ot T2 N0 )2

which is < C,e?*T1y~2N < provided that

4}.{]\fltl-l— —Bita

The inequalities in (9.36]) hold by (9.3))-(9.4), (9.5), C1 > w1 + «, taking &g in (9.5) small enough. By
(9.18)), the inequality w11 < Cie®T1y~2N® implies (P2),41.
Proof of (P1)p+1. The bound for 3 follows by (9.14)), (0.10)) (for s = so-+x) and IF(Uo)lsot20 =

1 F(,0,0,0)] 50424 <so-+2u €2 The bound for 3,11 follows by (9.2)), (0.23), (P2)n, (0.3). It remains
to prove that holds at the step n + 1. We have

NF_, <1, 2KC.ebTly2NmtanN—20 <1 vn > (. (9.36)

Futtllopn < 3o Wl < Coe?9 S0 N < Cucty ! (937)

for Ny large enough, i.e. ¢ small. Moreover, using (9.2), (P2)n+1, (P3)n+1, (9.3), we get

[F(Uns1)lsoruss < NEPNF(Ungr)llso + NEP P F(Ungr) |l so40
< Ot NFF3=a L Ol NEF3=Bitr < O g |
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which is the second inequality in at the step n + 1. The bound |¢, 1 |“P() < C’||.7:(Un+1)||1;;p(7) is
a consequence of Lemma (it is not inductive).

STEP 3: Prove (P4),, for alln > 0. For all n > 0,

gn \ gn+1 = U lek(in) (938)

lez”, j,keS°u{0}
where
Ryji(in) = {w € G : liw -1+ p3°(in) — i (in)] < 29l5° = K31 ()77 }. (9.39)
Notice that Ryjx(i,) = 0 if j = k, so that we suppose in the sequel that j # k.
Lemma 9.3. For alln > 1, |l| < N,,_1, the set Riji(in) C Rijk(in—1).
Proof. Like Lemma 5.2 in [2] (with w in the role of Aw, and N,,_; instead of N,,). O

By definition, Ryjx(in) C Gy (see (9.39)) and Lemma [9.3] implies that, for all n > 1, [I| < N,_1, the
set Rijk(in) € Rijk(in—1). On the other hand Ryjx(in—1) NGy = 0 (see ) As a consequence, for all
|l‘ < Nn—17 lek:(in) = (Z) and7 by ‘ )

[l|>Np_1,j,keScu{o}

Lemma 9.4. Let n > 0. If Ry, (in) # 0 then |I| > C|j3 — k3| > $C(52 + k?) for some C > 0.

Proof. Like Lemma 5.3 in [2]. The only difference is that w is not constrained to a fixed direction. Note
also that |53 — k3| > (j2 + k?)/2, Vj # k. =

By usual arguments (e.g. see Lemma 5.4 in [2]), using Lemma and (8.119) we have:
Lemma 9.5. For alln >0, the measure |Ryjx(i,)] < Ce?=HD~ ()77,

By (9-38) and Lemmata [9.4] we get

; Oy 1 2(v—1)
‘go\gﬂé Z |lek(10)|§ ZQTSO& ~.
1€Z7 |51, |k|<C|1|1/2 lezv
For n > 1, by (9.40),
062(1/71),7

G\ Gt < 3 |Ru(in) <Y < C'PUTUyN

[U|>Np_1,l5],|kI<C|/2 [1]>Nyp—1

N

because 7 > v 4 2. The estimate Q. \ Go| < Ce2*~ D is elementary. Thus is proved. O

Proof of Theorem concluded. Theorem implies that the sequence (J,,,(,) is well defined for

W € Goo = Ny>0Gn, that J, is a Cauchy sequence in || ”533(3,)900’ see (0.8), and |, |*P() — 0. Therefore

J,, converges to a limit J, in norm || H;;i(:)goo and, by (P2),, for all w € G, iao (@) := (,0,0) + T (),
is a solution of

Flice,0) =0 with [Too|SP0) < Ceb2n1
by (recall that b, := 6 — 2b). Therefore ¢ = i () is an invariant torus for the Hamiltonian vector

field Xp. (see (5.5)). By (9:9),
192\ Goel < 192\ Gol + 3 16 \ G| < 20,20 Dy 4 CL® Dy 3TN < 020Dy

n>0 n>1

The set Q. in (5.2)) has measure Q.| = O(¢?”). Hence |Q: \ Goo|/|Q] — 0 as ¢ — 0 because v = o(g?),
and therefore the measure of C. := G, satisfies (5.11)).

46



In order to complete the proof of Theorem [5.1| we show the linear stability of the solution i (wt). By
section |§| the system obtained linearizing the Hamiltonian vector field X at a quasi-periodic solution
oo (wt) is conjugated to the linear Hamiltonian system

P = Koo(wt)n + K&} (wt)w
7 =0 (9.41)
w — 8xK02(wt)w = axKn(wt)’l]

(recall that the torus i, is isotropic and the transformed nonlinear Hamiltonian system is (6.20) where
Koo, K10, Ko1 = 0, see Remark [6.5)). In section [8] we have proved the reducibility of the linear system
w — 0, K2 (wt)w, conjugating the last equation in (9.41) to a diagonal system

v+ ptv; = fi(wt), je€S°, p €iR, (9.42)

see (8.121), and f(p,x) = 3 i s fi(p)e¥® € Hg (T**1). Thus (9.41)) is stable. Indeed the actions
n(t) =no € R, Vt € R. Moreover the solutions of the non-homogeneous equation (9.42)) are

o _ ~ .f'l eiwlt
v;(t) = cjeti '+ 9;(t), where o;(t) = Z m
lez~ J
is a quasi-periodic solution (recall that the first Melnikov conditions (8.123) hold at a solution). As
a consequence (recall also p$° € iR) the Sobolev norm of the solution of (9.42) with initial condition
v(0) = jese v;(0)e® € H*(T,), so < s, does not increase in time. O

Construction of the set S of tangential sites. We finally prove that, for any v > 1, the set S in
satisfying (S1)-(S2) can be constructed inductively with only a finite number of restriction at any
step of the induction.

First, fix any integer 7; > 1. Then the set J; := {71} trivially satisfies (51)-(S2). Then, assume
that we have fixed n distinct positive integers 7i,...,Jn, n > 1, such that the set J, := {£J,..., £}
satisfies (81)-(S2). We describe how to choose another positive integer J,,4+1, which is different from all
J € Jp, such that Jp41 := Jp U {EJn41} also satisfies (S1), (S2).

Let us begin with analyzing (S1). A set of 3 elements ji, jo2, j3 € J,t1 can be of these types: (i) all
“old” elements j1,ja,J5 € Jn; (44) two “old” elements ji,jo € J, and one “new” element j3 = 037n+1,
o3 = +1; (#i1) one “old” element j; € J, and two “new” elements jo = 097,41, j3 = 03Jn+1, With
09,03 = £1; (iv) all “new” elements j; = 0;Jn+1, 05 = £1, 1 =1,2,3.

In case (i), the sum j; + j2 + j3 is nonzero by inductive assumption. In case (i7), j1 + j2 + j3 is
nonzero provided 7,411 ¢ {j1 + Jj2 : Jj1,J2 € Jn}, which is a finite set. In case (iii), for oo + 03 =
0 the sum j; + jo + js = j1 is trivially nonzero because 0 ¢ J,, while, for o3 + 03 # 0, the sum
J14d2+js = j1+ (02 + 03)Jng1 # 0 if Juy1 ¢ {37 : j € Jp}, which is a finite set. In case (iv), the sum
1+ Jo + 73 = (01 + 02 + 03)Jns1 # 0 because 7,41 > 1 and o7 + 02 + 03 € {£1,£3}.

Now we study (S2) for the set J,,11. Denote, in short, b := j5 + 43 + 45 + 53 — (j1 + jo + j3 + ja)>.

A set of 4 elements j1, jo, j3,j4 € Jnt1 can be of 5 types: (7) all “old” elements j1, jo, j3,j4 € Jn; (i)
three “old” elements ji, j2,J3 € J,, and one “new” element j4 = 047,41, 04 = £1; (i4i) two “old” element
J1,72 € Jp, and two “new” elements js = 037,41, ja = 04Jn+1, With 03,04 = £1; (iv) one “old” element
j1 € J, and three “new” elements j; = 07,41, 0; = £1, i = 2,3,4; (v) all “new” elements j; = 0711,
oi=+1,i=1,2,3,4.

In case (i), b # 0 by inductive assumption.

In case (ii), assume that j; + jo + js + ja # 0, and calculate

b= —3(j1 + j2 + J3)Tor1 — 3(J1 + Jo + J3) 0adns1 + [7 + 45 + 75 — (1 + 2 + 53)°] =t Djs gaissoa nt1)-

This is nonzero provided pj, j, js.04(Jn+1) 7 0 for all j1, jo, js € Jpn, 04 = £1. The polynomial pj, j, js.o4
is never identically zero because either the leading coeflicient —3(j1 + j2 + j3) # 0 (and, if one uses (S3),
this is always the case), or, if j; + ja + j3 = 0, then j§ + 75 + 43 # 0 by (3.12)) (using also that 0 ¢ .J,,).
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In case (iii), assume that j; 4+ ...+ jas = j1 + J2 + (03 + 04)Jnt1 # 0, and calculate
b= —3a7 1 —3a%(j1 + j2)Tos1 — 3(J1 + o) % aTns1 — J1J2(G1 + J2) =t @y jo,a (Gnt1)s

where a := 03 + 04. We impose that ¢j, j, o (Jn+1) # 0 for all ji,js € J,, o € {£2,0}. The polynomial
Gj1 ja,c 1S Never identically zero because either the leading coefficient —3a # 0, or, for oo = 0, the constant
term —j172(j1 + j2) # 0 (recall that 0 ¢ J,, and j1 + j2 + aJnt1 # 0).

In case (iv), assume that j; + ...+ js = j1 + @Jn+1 # 0, where a := 09 + 03 + 04 € {£1,£3}, and
calculate

b=alnt17j.0Gns1), Tja(®) = (1-a?)2? - 3ajz — 357

The polynomial r;, o is never identically zero because ji # 0. We impose 7, o(Jn+1) # 0 for all j1 € J,,
a € {£1,43}.

In case (v), assume that j; + ...+ js = afpt1 # 0, with @ := o1 + ... + 04 # 0, and calculate
b=a(l —a?)7> ;. This is nonzero because 7,41 > 1 and o € {£2, £4}.

We have proved that, in choosing 7,41, there are only finitely many integers to avoid.
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