Periodic solutions of wave equations for asymptotically full measure sets of frequencies

Pietro Baldi,∗ Massimiliano Berti†

1 Introduction

The aim of this Note is to prove existence and multiplicity of small amplitude periodic solutions of the completely resonant wave equation

\[
\begin{align*}
\Box u + f(x, u) &= 0 \\
u(t, 0) &= u(t, \pi) = 0
\end{align*}
\]

where \(\Box := \partial_{tt} - \partial_{xx}\) is the D’Alambertian operator and

\[
f(x, u) = a_2 u^2 + a_3(x) u^3 + O(u^4) \quad \text{or} \quad f(x, u) = a_4 u^4 + O(u^5)
\]

for a Cantor-like set of frequencies \(\omega\) of asymptotically full measure at \(\omega = 1\).

Equation (1) is called completely resonant because any solution \(v = \sum_{j \geq 1} a_j \cos(jt + \vartheta_j) \sin(jx)\) of the linearized equation at \(u = 0\)

\[
\begin{align*}
u_{tt} - \nu_{xx} &= 0 \\
u(t, 0) &= u(t, \pi) = 0
\end{align*}
\]

is \(2\pi\)-periodic in time.

Existence and multiplicity of periodic solutions of completely resonant wave equations had been proved for a zero measure, uncountable Cantor set of frequencies in [4] for \(f(u) = u^3 + O(u^5)\) and in [5]-[6] for any nonlinearity \(f(u) = a_p u^p + O(u^{p+1})\), \(p \geq 2\).

Existence of periodic solutions for a Cantor-like set of frequencies of asymptotically full measure has been recently proved in [7] where, due to the well known “small divisor difficulty”, the “0th order bifurcation equation” is required to possess non-degenerate periodic solutions. Such property was verified in [7] for nonlinearities like \(f = a_2 u^2 + O(u^4)\), \(f = a_3(x) u^3 + O(u^4)\). See also [11] for \(f = u^3 + O(u^5)\).

In this Note we shall prove that, for quadratic, cubic and quartic nonlinearities \(f(x, u)\) like in (2), the corresponding 0th order bifurcation equation possesses non-degenerate periodic solutions – Propositions [11] and [12] –, implying, by the results of [7], Theorem [11] and Corollary [11] below.

We remark that our proof is purely analytic (it does not use numerical calculations) being based on the analysis of the variational equation and exploiting properties of the Jacobi elliptic functions.

∗Sissa, via Beirut 2-4, 34014, Trieste, Italy. E-mail: baldi@sissa.it.†Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II” , via Cintia, 80126, Napoli, Italy. E-mail: m.berti@unina.it.

Keywords: Nonlinear Wave Equation, Infinite dimensional Hamiltonian Systems, Periodic solutions, Lyapunov-Schmidt reduction, Small divisors problem.

2000AMS Subject Classification: 35L05, 35B10, 37K50.

Supported by MURST within the PRIN 2004 “Variational methods and nonlinear differential equations”.
1.1 Main results

Normalizing the period to 2π, we look for solutions of

\[
\begin{align*}
\omega^2 u_{tt} - u_{xx} + f(x, u) &= 0 \\
u(t, 0) &= u(t, \pi) = 0
\end{align*}
\]

in the Hilbert algebra (for $s > 1/2$, $\sigma > 0$)

\[
X_{\sigma,s} := \left\{ u(t, x) = \sum_{l \geq 0} \cos(l t)\ u_l(x) \mid u_l \in H^1_0((0, \pi), \mathbb{R}) \ \forall l \in \mathbb{N} \text{ and } \right. \\
\left. ||u||^2_{\sigma,s} := \sum_{l \geq 0} \exp(2\sigma l)(l^2 + 1)||u_l||^2_{H^1_0} < +\infty \right\}.
\]

It is natural to look for solutions which are even in time because equation (1) is reversible. We look as well for solutions of (1) in the subalgebras

\[
X_{\sigma,s,n} := \left\{ u \in X_{\sigma,s} \mid u \text{ is } \frac{2\pi}{n}\text{-periodic} \right\} \subset X_{\sigma,s}, \ n \in \mathbb{N}
\]

(they are particular 2π-periodic solutions).

The space of the solutions of the linear equation (2) that belong to $H^1_0(\mathbb{T} \times (0, \pi), \mathbb{R})$ and are even in time is

\[
V := \left\{ v(t, x) = \sum_{l \geq 1} \cos(l t)\sin(l x) \mid u_l \in \mathbb{R}, \ \sum_{l \geq 1} l^2|u_l|^2 < +\infty \right\} \\
= \left\{ v(t, x) = \eta(t + x) - \eta(t - x) \mid \eta \in H^1(\mathbb{T}, \mathbb{R}) \text{ with } \eta \text{ odd} \right\}.
\]

Theorem 1. Let

\[
f(x, u) = a_2 u^2 + a_3(x)u^3 + \sum_{k \geq 4} a_k(x)u^k
\]

where $(a_2, \langle a_3 \rangle) \neq (0, 0)$, $\langle a_3 \rangle := \pi^{-1}\int_0^\pi a_3(x)dx$, or

\[
f(x, u) = a_4 u^4 + \sum_{k \geq 5} a_k(x)u^k
\]

where $a_4 \neq 0$, $a_5(-\pi - x) = -a_5(x)$, $a_6(-\pi - x) = a_6(x)$, $a_7(-\pi - x) = -a_7(x)$. Assume moreover $a_k(x) \in H^1((0, \pi), \mathbb{R})$ with $\sum_k \|a_k\|_{H^1} \rho^k < +\infty$ for some $\rho > 0$.

Then there exists $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$ there is $\delta_0 > 0$, $\sigma > 0$ and a C^∞-curve $\{0, \delta_0 \} \ni \delta \to u_\delta \in X_{\sigma,2,s,n}$ with the following properties:

- (i) $\|u_\delta - \delta \tilde{v}_n\|_{\sigma/2,s,n} = O(\delta^2)$ for some $\tilde{v}_n \in V \cap X_{\sigma,s,n} \setminus \{0\}$ with minimal period $2\pi/n$;
- (ii) there exists a Cantor set $C_n \subset (0, \delta_0)$ of asymptotically full measure, i.e. satisfying

\[
\lim_{\varepsilon \to 0^+} \frac{\text{meas}(C_n \cap (0, \varepsilon))}{\varepsilon} = 1,
\]

such that, $\forall \delta \in C_n$, $u_\delta(\omega(\delta)t, x)$ is a $2\pi/(\omega(\delta)n)$-periodic, classical solution of (1) with

\[
\omega(\delta) = \begin{cases} \\
\sqrt{1 - 2s^* \delta^2} & \text{if } f \text{ is like in } (\mathcal{A}) \\
\sqrt{1 - 2s^\star \delta^2} & \text{if } f \text{ is like in } (\mathcal{B})
\end{cases}
\]

and

\[
s^* = \begin{cases} \\
-1 & \text{if } \langle a_3 \rangle \geq \pi^2 a_2^2/12 \\
\pm 1 & \text{if } 0 < \langle a_3 \rangle < \pi^2 a_2^2/12 \\
1 & \text{if } \langle a_3 \rangle \leq 0.
\end{cases}
\]

\(^1\) Note how the interaction between the second and the third order terms $a_2 u^2$, $a_3(x)u^3$ changes the bifurcation diagram, i.e. existence of periodic solutions for frequencies ω less or/and greater of $\omega = 1$.

By (6) also each Cantor-like set of frequencies \(W_n := \{ \omega(\delta) \mid \delta \in \mathcal{C}_n \} \) has asymptotically full measure at \(\omega = 1 \).

Corollary 1. (Multiplicity) There exists a Cantor-like set \(W \) of asymptotically full measure at \(\omega = 1 \), such that \(\forall \omega \in \mathcal{C} \), equation (1) possesses geometrically distinct periodic solutions

\[
u_{n_0}, \ldots, \nu_n, \ldots, \nu_{N_\omega}, \quad N_\omega \in \mathbb{N}
\]

with the same period \(2\pi/\omega \). Their number increases arbitrarily as \(\omega \) tends to 1:

\[
\lim_{\omega \to 1} N_\omega = +\infty.
\]

Proof. The proof is like in [7] and we report it for completeness. If \(\delta \) belongs to the asymptotically full measure set (by (6))

\[D_n := \mathcal{C}_{n_0} \cap \ldots \cap \mathcal{C}_n, \quad n \geq n_0\]

there exist \((n - n_0 + 1)\) geometrically distinct periodic solutions of (1) with the same period \(2\pi/\omega(\delta) \) (each \(\nu_n \) has minimal period \(2\pi/\omega(\delta) \)).

There exists a decreasing sequence of positive \(\varepsilon_n \to 0 \) such that

\[\text{meas}(D_n \cap (0, \varepsilon_n)) \leq \varepsilon_n 2^{-n}.\]

Let define the set \(\mathcal{C} \equiv D_n \) on each \([\varepsilon_{n+1}, \varepsilon_n]\). \(\mathcal{C} \) has asymptotically full measure at \(\delta = 0 \) and for each \(\delta \in \mathcal{C} \) there exist \(N(\delta) := \max\{n \in \mathbb{N} : \delta < \varepsilon_n\} \) geometrically distinct periodic solutions of (1) with the same period \(2\pi/\omega(\delta) \). \(N(\delta) \to +\infty \) as \(\delta \to 0 \).

Remark 1. Corollary 1 is an analogue for equation (1) of the well known multiplicity results of Weinstein-Moser [15]-[13] and Fadell-Rabinowitz [10] which hold in finite dimension. The solutions form a sequence of functions with increasing norms and decreasing minimal periods. Multiplicity of solutions was also obtained in [6] (with the "optimal" number \(N_\omega \approx C/\sqrt{|\omega - 1|} \)) but only for a zero measure set of frequencies.

The main point for proving Theorem 1 relies in showing the existence of non-degenerate solutions of the 0th order bifurcation equation for \(f \) like in (2). In these cases the 0th order bifurcation equation involves higher order terms of the nonlinearity, and, for \(n \) large, can be reduced to an integro-differential equation (which physically describes an averaged effect of the nonlinearity with Dirichlet boundary conditions).

Case \(f(x, u) = a_4 u^4 + O(u^5) \). Performing the rescaling

\[u \to \delta u, \quad \delta > 0\]

we look for \(2\pi/n \)-periodic solutions in \(X_{\sigma,s,n} \) of

\[
\begin{align*}
\omega^2 u_{tt} - u_{xx} + \delta^3 g(\delta, x, u) &= 0 \\
u(t, 0) = u(t, \pi) &= 0
\end{align*}
\]

(7)

where

\[g(\delta, x, u) := \frac{f(x, \delta u)}{\delta^4} = a_4 u^4 + \delta a_5(x) u^5 + \delta^2 a_6(x) u^6 + \ldots.\]

To find solutions of (7) we implement the Lyapunov-Schmidt reduction according to the orthogonal decomposition

\[X_{\sigma,s,n} = (V_n \cap X_{\sigma,s,n}) \oplus (W \cap X_{\sigma,s,n})\]

where

\[V_n := \left\{ v(t, x) = \eta(nt + nx) - \eta(nt - nx) \mid \eta \in H^1(T, \mathbb{R}) \text{ with } \eta \text{ odd} \right\}\]
and

\[W := \left\{ w = \sum_{i \geq 0} \cos(lt) \, w_l(x) \in X_{0,s} \mid \int_0^\pi w_l(x) \sin(lx) \, dx = 0, \forall l \geq 0 \right\}. \]

Looking for solutions \(u = v + w \) with \(v \in V_n \cap X_{\sigma,s,n}, \) \(w \in W \cap X_{\sigma,s,n} \), and imposing the frequency-amplitude relation

\[\frac{(\omega^2 - 1)}{2} = -\delta^6 \]

we are led to solve the bifurcation equation and the range equation

\[\begin{cases} \Delta v = \delta^{-3} \Pi_{V_n} g(\delta, x, v + w) \\ L_\omega w = \delta^3 \Pi_{W_n} g(\delta, x, v + w) \end{cases} \tag{8} \]

where

\[\Delta v := v_{xx} + v_{tt}, \quad L_\omega := -\omega^2 \partial_{tt} + \partial_{xx} \]

and \(\Pi_{V_n} : X_{\sigma,s,n} \to V_n \cap X_{\sigma,s,n}, \) \(\Pi_{W_n} : X_{\sigma,s,n} \to W \cap X_{\sigma,s,n} \) denote the projectors.

With the further rescaling \(w \to \delta^3 w \)

and since \(v^4 \in W_n \) (Lemma 3.4 of [3]), \(a_5(x) v^5, a_6(x) v^6, a_7(x) v^7 \in W_n \) because \(a_5(\pi - x) = -a_5(x), \)
\(a_6(\pi - x) = a_6(x), \) \(a_7(\pi - x) = -a_7(x) \) (Lemma 7.1 of [7]), system (8) is equivalent to

\[\begin{cases} \Delta v = \Pi_{V_n} \left(4a_4 v^5 \delta + \tilde{r}(\delta, x, v, w) \right) \\ L_\omega w = a_4 v^4 + \delta \Pi_{W_n} \tilde{r}(\delta, x, v, w) \end{cases} \tag{9} \]

where \(\tilde{r}(\delta, x, v, w) = a_5(x) v^8 + 5a_5(x) v^4 w + O(\delta) \) and \(\tilde{r}(\delta, x, v, w) = a_5(x) v^5 + O(\delta). \)

For \(\delta = 0 \) system (9) reduces to \(w = -a_4 \Box^{-1} v^4 \) and to the 0th order bifurcation equation

\[\Delta v + 4a_4^2 \Pi_{V_n} (v^3 \Box^{-1} v^4) = 0 \tag{10} \]

which is the Euler-Lagrange equation of the functional \(\Phi_0 : V_n \to \mathbb{R} \)

\[\Phi_0(v) = \frac{||v||^2_{H_4}}{2} - \frac{a_4^2}{2} \int_\Omega v^4 \Box^{-1} v^4 \tag{11} \]

where \(\Omega := \mathbb{T} \times (0, \pi). \)

Proposition 1. Let \(a_4 \neq 0. \) \(\exists n_0 \in \mathbb{N} \) such that \(\forall n \geq n_0 \) the 0th order bifurcation equation (11) has a solution \(\tilde{v}_n \in V_n \) which is non-degenerate in \(V_n \) (i.e. \(\text{Ker} D^2 \Phi_0 = \{0\} \)), with minimal period \(2\pi/n. \)

Case \(f(x, u) = a_2 u^2 + a_3(x) u^3 + O(u^4). \) Performing the rescaling \(u \to \delta u \) we look for \(2\pi/n \)-periodic solutions of

\[\begin{cases} \omega^2 u_{tt} - u_{xx} + \delta g(\delta, x, u) = 0 \\ u(t, 0) = u(t, \pi) = 0 \end{cases} \]

where

\[g(\delta, x, u) := \frac{f(x, \delta u)}{\delta^2} = a_2 u^2 + \delta a_3(x) u^3 + \delta^2 u_4(x) u^4 + \ldots. \]

With the frequency-amplitude relation

\[\frac{\omega^2 - 1}{2} = -s^* \delta^2 \]

where \(s^* = \pm 1 \), we have to solve

\[\begin{cases} -\Delta v = -s^* \delta^{-1} \Pi_{V_n} g(\delta, x, v + w) \\ L_\omega w = \delta \Pi_{W_n} g(\delta, x, v + w). \end{cases} \tag{12} \]
With the further rescaling \(w \to \delta w \) and since \(v^2 \in W_n \), system (12) is equivalent to

\[
\begin{aligned}
-\Delta v &= s^4 \Pi_v V_n \left(-2a_2 w - a_2 \delta w^2 - a_3(x)(v + \delta w)^3 - \delta r(\delta, x, v + \delta w)\right) \\
L_w w &= a_2 v^2 + \delta \Pi W_n \left(2a_2 w + \delta a_2 w^2 + a_3(x)(v + \delta w)^3 + a_8(x)v^5 r(\delta, x, v + \delta w)\right)
\end{aligned}
\]

where \(r(\delta, x, u) := \delta^{-4}[f(x, \delta u) - a_2 \delta^2 u^2 - \delta^3 a_3(x)u^3] = a_4(x)u^4 + \ldots \)

For \(\delta = 0 \) system (13) reduces to \(w = -a_2 \square^{-1} v^2 \) and the 0th order bifurcation equation

\[
-s^4 \Delta v = 2a_2^2 \Pi V_n (v \square^{-1} v^2) - \Pi V_n (a_3(x)v^3)
\]

which is the Euler-Lagrange equation of \(\Phi_0 : V_n \to \mathbb{R} \)

\[
\Phi_0(v) := s^4 \frac{\|v\|_{H^1}^2}{2} - \frac{a_2^2}{2} \int_\Omega v^2 \square^{-1} v^2 + \frac{1}{4} \int_\Omega a_3(x)v^4.
\]

Proposition 2. Let \((a_2, \langle a_3 \rangle) \neq 0\). \(\exists \ n_0 \in \mathbb{N} \) such that \(\forall n \geq n_0 \) the 0th order bifurcation equation (14) has a solution \(\bar{v}_n \in V_n \) which is non-degenerate in \(V_n \), with minimal period \(2\pi/n \).

2 Case \(f(x, u) = a_4 u^4 + O(u^5) \)

We have to prove the existence of non-degenerate critical points of the functional

\[
\Phi_n : V \to \mathbb{R}, \quad \Phi_n(v) := \Phi_0(\mathcal{H}_n v)
\]

where \(\Phi_0 \) is defined in (11). Let \(\mathcal{H}_n : V \to V \) be the linear isomorphism defined, for \(v(t, x) = \eta(t + x) - \eta(t - x) \in V \), by

\[
a_8(x)v^5(\mathcal{H}_n v)(t, x) := \eta(n(t + x)) - \eta(n(t - x))
\]

so that \(V_n \equiv \mathcal{H}_n V \).

Lemma 1. See [6]. \(\Phi_n \) has the following development: for \(v(t, x) = \eta(t + x) - \eta(t - x) \in V \)

\[
\Phi_n(\beta n^{1/3} v) = 4\pi \beta^2 n^{2/3} \left[\Psi(\eta) + \frac{\mathcal{R}(\eta)}{n^2} \right]
\]

where \(\beta := (3/(\pi^2 a_4^2))^{1/6}, \alpha := a_2^2/(8\pi), \)

\[
\Psi(\eta) := \frac{1}{2} \int_T \eta^2(t) \, dt - \frac{2\pi}{8} \left(\langle \eta^4 \rangle + 3\langle \eta^2 \rangle^2 \right)^2,
\]

\(\langle \rangle \) denotes the average on \(T \), and

\[
\mathcal{R}(\eta) := -\int_\Omega v^{4} \square^{-1} v^4 \, dt \, dx + \frac{\pi^4}{6} \left(\langle \eta^4 \rangle + 3\langle \eta^2 \rangle^2 \right)^2.
\]

Proof. Firstly the quadratic term writes

\[
\frac{1}{2} \left\| \mathcal{H}_n v \right\|_{H^1}^2 = \frac{n^2}{2} \left\| v \right\|_{H^1}^2 = n^2 2\pi \int_T \eta^2(t) \, dt.
\]

By Lemma 4.8 in [6] the non-quadratic term can be developed as

\[
\int_\Omega (\mathcal{H}_n v)^4 \square^{-1} (\mathcal{H}_n v) = \frac{\pi^4}{6} m^2 - \frac{\mathcal{R}(\eta)}{n^2}
\]

where \(m : T^2 \to \mathbb{R} \) is \(m(s_1, s_2) := (\eta(s_1) - \eta(s_2))^4 \), \(\langle m \rangle := (2\pi)^{-2} \int_{T^2} m(s_1, s_2) \, ds_1 \, ds_2 \) denotes its average, and

\[
\mathcal{R}(\eta) := \left(-\int_\Omega v^{4} \square^{-1} v^4 + \frac{\pi^4}{6} \langle m \rangle^2 \right)
\]
is homogeneous of degree 8. Since η is odd we find
\[
\langle m \rangle = 2\left(\langle \eta^4 \rangle + 3\langle \eta^2 \rangle^2 \right)
\]
(22)
where $\langle \cdot \rangle$ denotes the average on \mathbb{T}.

Collecting (14), (20), (21) and (22) we find out
\[
\Phi_n(\eta) = 2\pi n^2 \int_{\mathbb{T}} \eta^2(t) \, dt - \frac{\pi^4}{3} a_4^2 \left(\langle \eta^4 \rangle + 3\langle \eta^2 \rangle^2 \right)^2 + \frac{a_4^2}{2n^2} R(\eta).
\]
Via the rescaling $\eta \to \beta n^{1/3} \eta$ we get the expressions (17) and (18).

By (16), in order to find for n large enough a non-degenerate critical point of Φ_n, it is sufficient to find a non-degenerate critical point of $\Psi(\eta)$ defined on
\[
E := \left\{ \eta \in H^1(\mathbb{T}), \eta \text{ odd} \right\},
\]
namely non-degenerate solutions in E of
\[
\ddot{\eta} + A(\eta) \left(3\langle \eta^2 \rangle \eta + \eta^3\right) = 0 \quad A(\eta) := \langle \eta^4 \rangle + 3\langle \eta^2 \rangle^2.
\]
(23)

Proposition 3. There exists an odd, analytic, 2π-periodic solution $g(t)$ of (23) which is non-degenerate in E. $g(t) = V sn(\Omega t, m)$ where sn is the Jacobi elliptic sine and $V > 0$, $\Omega > 0$, $m \in (-1, 0)$ are suitable constants (therefore $g(t)$ has minimal period 2π).

We will construct the solution g of (23) by means of the Jacobi elliptic sine in Lemma 4. The existence of a solution g follows also directly applying to $\Psi : E \to \mathbb{R}$ the Mountain-Pass Theorem [2]. Furthermore such solution is an analytic function arguing as in Lemma 2.1 of [11].

2.1 Non-degeneracy of g

We now want to prove that g is non-degenerate. The linearized equation of (23) at g is
\[
\ddot{h} + 3A(g) \left([g^2]h + g^2 h \right) + 6A(g)g(gh) + A'(g)[h] \left(3\langle g^2 \rangle + g^3 \right) = 0
\]
\[
\ddot{h} + 3A(g) \left([g^2] + g^2 \right) h + 6g(gh) \left([g^4] + 3\langle g^2 \rangle^2 \right) + 4g \left([g^2] + 3\langle g^2 \rangle \langle gh \rangle \right) \left(3\langle g^2 \rangle + g^2 \right) = 0
\]
that we write as
\[
\ddot{h} + 3A(g) \left([g^2] + g^2 \right) h = -\langle gh \rangle I_1 - \langle g^3 h \rangle I_2
\]
(24)
where
\[
\begin{align*}
I_1 & := 6 \left(9\langle g^2 \rangle^2 + \langle g^4 \rangle \right) g + 12\langle g^2 \rangle g^3 \\
I_2 & := 12g\langle g^2 \rangle^2 + 4g^3.
\end{align*}
\]
(25)
For $f \in E$, let $H := L(f)$ be the unique solution belonging to E of the non-homogeneous linear system
\[
\ddot{h} + 3A(g) \left([g^2] + g^2 \right) H = f;
\]
(26)
an integral representation of the Green operator L is given in Lemma 4. Thus (24) becomes
\[
\ddot{h} = -\langle gh \rangle L(I_1) - \langle g^3 h \rangle L(I_2).
\]
(27)
Multiplying (24) by g and taking averages we get
\[
\langle gh \rangle \left[1 + \langle gL(I_1) \rangle \right] = -\langle g^3 h \rangle \langle gL(I_2) \rangle,
\]
(28)
while multiplying (27) by g^3 and taking averages
\[
\langle g^3 h \rangle \left[1 + \langle g^3 L(I_2) \rangle \right] = -\langle gh \rangle \langle g^3 L(I_1) \rangle.
\]
(29)
Since g solves (23) we have the following identities.
Lemma 2. There holds
\[2 A(g) (g^2 L(g)) = \langle g^2 \rangle \] \hfill (30)
\[2 A(g) (g^3 L(g^3)) = \langle g^4 \rangle. \] \hfill (31)

Proof. \ref{30} is obtained by the identity for \(L(g) \)
\[\frac{d^2}{dt^2} (L(g)) + 3 A(g) \left(\langle g^2 \rangle + \langle g^2 \rangle \right) L(g) = g \]
multiplying by \(g \), taking averages, integrating by parts,
\[\langle g L(g) \rangle + 3 A(g) \left[\langle g^2 \rangle L(g) + \langle g^3 L(g) \rangle \right] = \langle g^2 \rangle \]
and using that \(g \) solves \ref{23}.

Analogously, \ref{31} is obtained by the identity for \(L(g^3) \)
\[\frac{d^2}{dt^2} (L(g^3)) + 3 A(g) \left(\langle g^2 \rangle + \langle g^3 \rangle \right) L(g^3) = g^3 \]
multiplying by \(g \), taking averages, integrating by parts, and using that \(g \) solves \ref{23}.

Since \(L \) is a symmetric operator we can compute the following averages using \ref{20}, \ref{30}, \ref{31}:
\[
\begin{align*}
\langle g L(I_1) \rangle &= 6 \langle \langle g^4 \rangle + 9 \langle g^2 \rangle^2 \rangle L(g) + 6 A(g)^{-1} \langle g^2 \rangle^2 \\
\langle g L(I_2) \rangle &= 12 \langle g^2 \rangle \langle g L(g) \rangle + 2 A(g)^{-1} \langle g^2 \rangle \\
\langle g^3 L(I_1) \rangle &= 9 \langle g^2 \rangle \\
\langle g^3 L(I_2) \rangle &= 2.
\end{align*}
\] \hfill (32)

Thanks to the identities \ref{32}, equations \ref{28}, \ref{29} simplify to
\[
\begin{align*}
\langle gh \rangle \left[A(g) + 6 \langle g^2 \rangle^2 \right] B(g) &= -2 \langle g^2 \rangle B(g) \langle g^3 h \rangle \\
\langle g^3 h \rangle &= -3 \langle g^2 \rangle \langle gh \rangle
\end{align*}
\] \hfill (33)

where
\[B(g) := 1 + 6 A(g) \langle g L(g) \rangle. \] \hfill (34)

Solving \ref{33} we get
\[B(g) \langle gh \rangle = 0. \]

We will prove in Lemma \ref{5} that \(B(g) \neq 0 \), so \(\langle gh \rangle = 0 \). Hence by \ref{33} also \(\langle g^3 h \rangle = 0 \) and therefore, by \ref{27}, \(h = 0 \). This concludes the proof of the non-degeneracy of the solution \(g \) of \ref{23}.

It remains to prove that \(B(g) \neq 0 \). The key is to express the function \(L(g) \) by means of the variation of constants formula.

We first look for a fundamental set of solutions of the homogeneous equation
\[\ddot{h} + 3 A(g) \left(\langle g^2 \rangle + \langle g^2 \rangle \right) h = 0. \] \hfill (HOM)

Lemma 3. There exist two linearly independent solutions of \((HOM) \), \(\bar{u} := \dot{g}(t)/\dot{g}(0) \) and \(\bar{v} \), such that
\[
\begin{align*}
\bar{u} \text{ is even, } 2\pi \text{ periodic } & \quad \bar{v} \text{ is odd, not periodic } \\
\bar{u}(0) = 1, \bar{u}(0) = 0 & \quad \bar{v}(0) = 0, \bar{v}(0) = 1
\end{align*}
\]
and
\[\bar{v}(t + 2\pi) - \bar{v}(t) = \rho \bar{u}(t) \] \hfill (35)

for some \(\rho > 0 \).
PROOF. Since (23) is autonomous, \(\dot{g}(t) \) is a solution of the linearized equation (HOM). \(\dot{g}(t) \) is even and \(2\pi \)-periodic.

We can construct another solution of (HOM) in the following way. The super-quadratic Hamiltonian system (with constant coefficients)

\[
\dot{y} + 3A(g)(g^2) y + A(g) y^3 = 0
\]

possesses a one-parameter family of odd, \(T(E) \)-periodic solutions \(y(E, t) \) close to \(g \), parametrized by the energy \(E \). Let \(\bar{E} \) denote the energy level of \(g \), i.e. \(g = \bar{g}(\bar{E}, t) \) and \(T(\bar{E}) = 2\pi \).

Therefore \(l(t) := (\partial_E y(E, t))_{|E = \bar{E}} \) is an odd solution of (HOM).

Deriving the identity \(y(E, t + T(E)) = y(E, t) \) with respect to \(E \) we obtain at \(E = \bar{E} \)

\[
l(t + 2\pi) - l(t) = - (\partial_E T(E))_{|E = \bar{E}} \dot{g}(t)
\]

and, normalizing \(\bar{v}(t) := l(t)/\bar{l}(0) \), we get (35) with

\[
\rho := - (\partial_E T(E))_{|E = \bar{E}} \left(\frac{\dot{g}(0)}{\bar{l}(0)} \right).
\]

Since \(y(E, 0) = 0 \) \(\forall E \), the energy identity gives \(E = \frac{1}{2} (\dot{g}(E, 0))^2 \). Deriving w.r.t \(E \) at \(E = \bar{E} \), yields \(1 = \dot{g}(0) \bar{l}(0) \) which, inserted in (37), gives

\[
\rho = - (\partial_E T(E))_{|E = \bar{E}} (\dot{g}(0))^2.
\]

\(\rho > 0 \) because \((\partial_E T(E))_{|E = \bar{E}} < 0 \) by the superquadraticity of the potential of (23). It can be checked also by a computation, see Remark after Lemma 3.

Now we write an integral formula for the Green operator \(L \).

Lemma 4. For every \(f \in E \) there exists a unique solution \(H = L(f) \) of (23) which can be written as

\[
L(f) = \left(\int_0^t f(s) \bar{u}(s) ds + \frac{1}{\rho} \int_0^{2\pi} f \bar{v}(s) ds \right) \bar{v}(t) - \left(\int_0^t f(s) \bar{v}(s) ds \right) \bar{u}(t) \in E.
\]

Proof. The non-homogeneous equation (24) possesses the particular solution

\[
\bar{H}(t) = \left(\int_0^t f(s) \bar{u}(s) ds \right) \bar{v}(t) - \left(\int_0^t f(s) \bar{v}(s) ds \right) \bar{u}(t)
\]

as can be verified noting that the Wronskian \(\bar{u}(t) \dot{v}(t) - \dot{u}(t) \bar{v}(t) \equiv 1, \forall t \). Notice that \(\bar{H} \) is odd.

Any solution \(\bar{H}(t) \) of (25) can be written as

\[
\bar{H}(t) = \bar{H}(t) + a\bar{u} + b\bar{v}, \quad a, b \in \mathbb{R}.
\]

Since \(\bar{H} \) is odd, \(\bar{u} \) is even and \(\bar{v} \) is odd, requiring \(\bar{H} \) to be odd, implies \(a = 0 \). Imposing now the \(2\pi \)-periodicity yields

\[
0 = \left(\int_0^{t+2\pi} f \bar{u} \right) \bar{v}(t + 2\pi) - \left(\int_0^t f \bar{v} \right) \bar{u}(t + 2\pi) - \left(\int_0^t f \bar{u} \right) \bar{v}(t) + \left(\int_0^t f \bar{v} \right) \bar{u}(t) + b(\bar{v}(t + 2\pi) - \bar{v}(t))
\]

\[
= b + \left(\int_0^t f \bar{u} \right) (\bar{v}(t + 2\pi) - \bar{v}(t)) - \bar{u}(t) \left(\int_0^{t+2\pi} f \bar{v} \right)
\]

using that \(\bar{u} \) and \(f \bar{u} \) are \(2\pi \)-periodic and \(\langle f \bar{u} \rangle = 0 \). By (10) and \(35 \) we get

\[
\rho \left(b + \int_0^t f \bar{u} \right) - \int_0^{t+2\pi} f \bar{v} = 0.
\]
The left hand side in (41) is constant in time because, deriving w.r.t. \(t \),
\[
\rho f(t) \dddot{u}(t) - f(t) \left(\dddot{v}(t) + 2\pi \right) - \dddot{v}(t) = 0
\]
again by (39). Hence evaluating (41) for \(t = 0 \) yields \(b = \rho^{-1} \int_0^{2\pi} \dddot{v} \). So there exists a unique solution \(H = L(f) \) of (26) belonging to \(E \) and (39) follows.

Finally

Lemma 5. There holds

\[
\langle gL(g) \rangle = \frac{\rho}{4\pi A(g)} + \frac{1}{2\pi \rho} \left(\int_0^{2\pi} g\dddot{v} \right)^2 > 0
\]
because \(A(g), \rho > 0 \).

Proof. Using (39) we can compute

\[
\langle gL(g) \rangle = \frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^t \dddot{u}(t)g(t) \right) dt + \frac{1}{2\pi \rho} \left(\int_0^{2\pi} g\dddot{v} \right)^2 - \frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^t \dddot{u}(t)g(t) \right) dt
\]

because, by \(\int_0^{2\pi} g\dddot{u} = 0 \), we have

\[
0 = \int_0^{2\pi} \frac{d}{dt} \left[\left(\int_0^t \dddot{u}(t)g(t) \right) \right] dt = \int_0^{2\pi} \left[\left(\int_0^t \dddot{u}(t)g(t) \right) + \left(\int_0^t \dddot{u}(t)g(t) \right) \right] dt.
\]

Now, since \(\dddot{u}(t) = \dddot{g}(t)/\dddot{g}(0) \) and \(g(0) = 0 \),

\[
\frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^t \dddot{u}(t)g(t) \right) dt = \frac{1}{2\pi \dddot{g}(0)} \int_0^{2\pi} \left(\int_0^t \frac{d}{d\tau} g^2(\tau) \right) d\tau = \frac{1}{4\pi \dddot{g}(0)} \int_0^{2\pi} g^3 \dddot{v}.
\]

We claim that

\[
\int_0^{2\pi} g^3 \dddot{v} = \frac{\rho \dddot{g}(0)}{2A(g)}.
\]

By (12), (33), (41), we have the thesyz.

Let us prove (41). Since \(g \) solves (26) multiplying by \(\dddot{v} \) and integrating

\[
\int_0^{2\pi} \dddot{v}(t)\dddot{g}(t) + 3A(g)(g^2)\dddot{v}(t)g(t) + A(g)g^3(t) \dddot{v}(t) dt = 0
\]

Next, since \(\dddot{v} \) solves (HOM), multiplying by \(g \) and integrating

\[
\int_0^{2\pi} g(t)\dddot{v}(t) + 3A(g)(g^2)\dddot{v}(t)g(t) + 3A(g)g^3(t) \dddot{v}(t) dt = 0.
\]

Subtracting (45) and (46), gives

\[
\int_0^{2\pi} \dddot{v}(t)\dddot{g}(t) - g(t)\dddot{v}(t) = 2A(g) \int_0^{2\pi} g^3 \dddot{v}.
\]

Integrating by parts the left hand side, since \(g(0) = g(2\pi) = 0, \dddot{u}(0) = 1 \) and (15), gives

\[
\int_0^{2\pi} \dddot{v}(t)\dddot{g}(t) - g(t)\dddot{v}(t) = \dddot{g}(0)[\dddot{v}(2\pi) - \dddot{v}(0)] = \rho \dddot{g}(0).
\]
2.2 Explicit computations

We now give the explicit construction of g by means of the Jacobi elliptic sine defined as follows. Let $\text{am}(\cdot,m): \mathbb{R} \rightarrow \mathbb{R}$ be the inverse function of the Jacobi elliptic integral of the first kind

$$\varphi \mapsto F(\varphi,m) := \int_0^\varphi \frac{d\vartheta}{\sqrt{1 - m \sin^2 \vartheta}}.$$

The Jacobi elliptic sine is defined by

$$\text{sn}(t,m) := \sin(\text{am}(t,m)).$$

$\text{sn}(t,m)$ is $4K(m)$-periodic, where $K(m)$ is the complete elliptic integral of the first kind

$$K(m) := F(\frac{\pi}{2},m) = \int_0^{\pi/2} \frac{d\vartheta}{\sqrt{1 - m \sin^2 \vartheta}},$$

and admits an analytic extension with a pole in $iK(1/(1-m))/\sqrt{1-m}$ for $m < 0$. Moreover, since

$$\partial_t \text{am}(t,m) = \sqrt{1 - m \text{sn}^2(t,m)},$$

the elliptic sine satisfies

$$(\text{sn})^2 = (1 - \text{sn}^2)(1 - m \text{sn}^2). \quad (49)$$

Lemma 6. There exist $V > 0$, $\Omega > 0$, $m \in (-1,0)$ such that $g(t) := V \text{sn}(\Omega t,m)$ is an odd, analytic, 2π-periodic solution of (23) with pole in $iK(1/(1-m))/\sqrt{1-m}$.

Proof. Deriving (49) we have

$$\ddot{g} + (1 + m)g - 2m \Omega^2 \text{sn}^3 = 0. \quad (50)$$

The function $g(V,\Omega,m)$ will be a solution of (23) if (V,Ω,m) verify

$$\begin{cases}
\Omega^2(1 + m) = 3A(g(V,\Omega,m)) \langle g^2(V,\Omega,m) \\
-2m\Omega^2 = V^2A(g(V,\Omega,m)) \\
2K(m) = \Omega \pi.
\end{cases} \quad (51)$$

Dividing the first equation of (51) by the second one

$$-\frac{1 + m}{6m} = \langle \text{sn}^2(\cdot,m) \rangle. \quad (52)$$

The right hand side can be expressed as

$$\langle \text{sn}^2(\cdot,m) \rangle = \frac{K(m) - E(m)}{mK(m)} \quad (53)$$

where $E(m)$ is the complete elliptic integral of the second kind

$$E(m) := \int_0^{\pi/2} \sqrt{1 - m \sin^2 \vartheta} d\vartheta = \int_0^{K(m)} 1 - m \text{sn}^2(\xi,m) d\xi$$

(in the last passage we make the change of variable $\vartheta = \text{am}(\xi,m)$).

Now, we show that system (51) has a unique solution. By (52) and (53)

$$(7 + m)K(m) - 6E(m) = 0. \quad (54)$$
By the definitions of $E(m)$ and $K(m)$ we have

$$\psi(m) := (7 + m)K(m) - 6E(m) = \int_0^{\pi/2} \frac{1 + m(1 + 6 \sin^2 \vartheta)}{(1 - m \sin^2 \vartheta)^{1/2}} d\vartheta. \quad (55)$$

For $m = 0$ it holds $\psi(0) = \pi/2 > 0$ and, for $m = -1$, $\psi(-1) = -\int_0^{\pi/2} 6 \sin^2 \vartheta (1 + \sin^2 \vartheta)^{-1/2} d\vartheta < 0$. Since ψ is continuous there exists a solution $\bar{m} \in (-1,0)$ of (54). Next the third equation in (51) fix $\bar{\Omega}$ and finally we find \bar{V}. Hence $g(t) = \bar{V} \text{ sn}(\bar{\Omega}, \bar{m})$ solves (58).

Analyticity and poles follow from [11], 16.2, 16.10.2, pp. 570, 573.

At last, \bar{m} is unique because $\psi'(m) > 0$ for $m \in (-1,0)$ as can be verified by (55). One can also compute that $\bar{m} \in (-0.30, -0.28)$.

Remark. We can compute explicitly the sign of dT/dE and ρ of (58) in the following way.

The functions $g(v, \Omega, m)$ are solutions of the Hamiltonian system (55) imposing

$$\begin{cases}
\Omega^2(1 + m) = \alpha \\
-2m\Omega^2 = V^2 \beta
\end{cases} \quad (56)$$

where $\alpha := 3A(g) \langle g^2 \rangle$, $\beta := A(g)$ and g is the solution constructed in Lemma [11].

We solve (56) w.r.t m finding the one-parameter family (y_m) of odd periodic solutions $y_m(t) := V(m) \text{ sn}(\Omega(m), t, m)$, close to g, with energy and period

$$E(m) = \frac{1}{2} V^2 m \Omega^2(m) = -\frac{1}{\beta} m \Omega^4(m), \quad T(m) = \frac{4K(m)}{\Omega(m)}.$$

It holds

$$\frac{dT(m)}{dm} = \frac{4K'(m)\Omega(m) - 4K(m)\Omega'(m)}{\Omega^2(m)} > 0$$

because $K'(m) > 0$ and from (56) $\Omega'(m) = -\Omega(m)(2(1 + m))^{-1} < 0$. Then

$$\frac{dE(m)}{dm} = -\frac{1}{\beta} \Omega^4(m) - \frac{1}{\beta} m 4\Omega^3(m)\Omega'(m) < 0,$$

so

$$\frac{dT}{dE} = \frac{dT(m)}{dm} \left(\frac{dE(m)}{dm} \right)^{-1} < 0$$

as stated by general arguments in the proof of Lemma [11].

We can also write an explicit formula for ρ,

$$\rho = \frac{m}{m - 1} \left[2\pi + (1 + m) \int_0^{2\pi} \frac{\text{ sn}^2(\Omega, t, m)}{\text{ dh}^2(\Omega, t, m)} dt \right]. \quad (57)$$

From (57) it follows that $\rho > 0$ because $-1 < m < 0$.

3. Case $f(x, u) = a_2 u^2 + a_3(x) u^3 + O(u^4)$

We have to prove the existence of non-degenerate critical points of the functional $\Phi_n(v) := \Phi_0(\mathcal{H}_n v)$ where Φ_0 is defined in [15].

Lemma 7. See [12]. Φ_n has the following development: for $v(t, x) = \eta(t + x) - \eta(t - x) \in V$,

$$\Phi_n(\beta_n v) = 4\pi \beta^2 n^4 \left[\Psi(\eta) + \frac{\beta^2}{4\pi} \left(R_2(\eta) + R_3(\eta) \right) \right] \quad (58)$$
where

\[\Psi(\eta) := \frac{s^*}{2} \int_\Omega \dot{\eta}^2 + \frac{\beta^2}{4\pi} \left[\alpha \left(\int_\Omega \eta^2 \right)^2 + \gamma \int_\Omega \eta^4 \right] \]

\[R_2(\eta) := -\frac{\alpha^2}{2} \left[\int_\Omega v^2 \partial^2 v^2 - \frac{\pi^2}{6} \left(\int_\Omega \eta^2 \right)^2 \right], \quad R_3(\eta) := \frac{1}{4} \int_\Omega (a_3(x) - \langle a_3 \rangle)(\mathcal{H}_n v)^4, \quad (59) \]

\[\alpha := (9a_3 - \pi^2 a_3^2)/12, \quad \gamma := \pi(a_3)/2, \quad \text{and} \]

\[\beta = \begin{cases} \frac{(2|\alpha|)^{-1/2}}{\alpha} & \text{if } \alpha \neq 0, \\ \left(\pi/\gamma\right)^{1/2} & \text{if } \alpha = 0. \end{cases} \]

PROOF. By Lemma 4.8 in [6] with \(m(s_1, s_2) = (\eta(s_1) - \eta(s_2))^2 \), for \(v(t, x) = \eta(t + x) - \eta(t - x) \) the operator \(\Phi_n \) admits the development

\[\Phi_n(v) = 2\pi s^* n^2 \int_\Omega \dot{\eta}^2(t) dt - \frac{\pi^2 a_3^2}{12} \left(\int_\Omega \eta^2(t) dt \right)^2 - \frac{a_3^2}{2n^2} \left(\int_\Omega v^2 \partial^2 v^2 - \frac{\pi^2}{6} \left(\int_\Omega \eta^2(t) dt \right)^2 \right) + \int_\Omega v^4 + \frac{1}{4} \int_\Omega (a_3(x) - \langle a_3 \rangle)(\mathcal{H}_n v)^4. \]

Since

\[\int_\Omega v^4 = 2\pi \int_\Omega \eta^4 + 3 \left(\int_\Omega \eta^2 \right)^2, \]

we write

\[\Phi_n(v) = 2\pi s^* n^2 \int_\Omega \dot{\eta}^2 + \alpha \left(\int_\Omega \eta^2 \right)^2 + \gamma \int_\Omega \eta^4 + \frac{R_2(\eta)}{n^2} + R_3(\eta), \]

where \(R_2, R_3 \) defined in [69] are both homogenous of degree 4. So

\[\Phi_n(v) = 2\pi s^* n^2 \int_\Omega \dot{\eta}^2 + \alpha \left(\int_\Omega \eta^2 \right)^2 + \gamma \int_\Omega \eta^4 + \frac{R_2(\eta)}{n^2} + R_3(\eta) \]

where \(\alpha, \gamma \) are defined above. With the rescaling \(\eta \rightarrow \eta/\eta_n \) we get decomposition [65].

In order to find for \(n \) large a non-degenerate critical point of \(\Phi_n \), by [58] it is sufficient to find critical points of \(\Psi \) on \(E = \{ \eta \in H^1(\Omega), \eta \text{ odd} \} \) (like in Lemma 6.2 of [71] also the term \(R_3(\eta) \) tends to 0 with its derivatives).

If \(\langle a_3 \rangle \in (-\infty, 0) \cup (\pi^2 a_3^2/9, +\infty) \), then \(\alpha \neq 0 \) and we must choose \(s^* = -\text{sign}(\alpha) \), so that the functional becomes

\[\Psi(\eta) = \text{sign}(\alpha) \left(-\frac{1}{2} \int_\Omega \dot{\eta}^2 + \frac{1}{8\pi} \left(\int_\Omega \eta^2 \right)^2 + \frac{\gamma}{\alpha} \int_\Omega \eta^4 \right). \]

Since in this case \(\gamma/\alpha > 0 \), the functional \(\Psi \) clearly has a mountain pass critical point, solution of

\[\ddot{\eta} + \langle \eta^2 \rangle \eta + \lambda \eta^3 = 0, \quad \lambda = \frac{\gamma}{2\pi \alpha} > 0. \quad (60) \]

The proof of the non-degeneracy of the solution of [60] is very simple using the analytical arguments of the previous section (since \(\lambda > 0 \) it is sufficient a positivity argument).

If \(\langle a_3 \rangle = 0 \), then the equation becomes \(\ddot{\eta} + \langle \eta^2 \rangle \eta = 0 \), so we find again what proved in [7] for \(a_3(x) \equiv 0 \).

If \(\langle a_3 \rangle = \pi^2 a_3^2/9 \), then \(\alpha = 0 \). We must choose \(s^* = -1 \), so that we obtain

\[\Psi(\eta) = -\frac{1}{2} \int_\Omega \dot{\eta}^2 + \int_\Omega \eta^4, \quad \ddot{\eta} + \eta^3 = 0. \]

This equation has periodic solutions which are non-degenerate because of non-isocronicity, see Proposition 2 in [5].
Finally, if \((a_3) \in (0, \pi^2a_2^2/9)\), then \(\alpha < 0\) and there are both solutions for \(s^* = \pm 1\). The functional

\[
\Psi(\eta) = \frac{s^*}{2} \int_T \dot{\eta}^2 + \frac{1}{8\pi} \left[- \left(\int_T \eta^2 \right)^2 + \frac{\gamma}{|\alpha|} \int_T \eta^4 \right]
\]

\[
= \frac{s^*}{2} \int_T \dot{\eta}^2 + \frac{1}{4} \int_T \eta^4 \left[\lambda - Q(\eta) \right]
\]

where

\[
\lambda := \frac{\gamma}{2\pi|\alpha|} > 0, \quad Q(\eta) := \frac{\left(\int_T \eta^2 \right)^2}{2\pi \int_T \eta^4}
\]

possesses Mountain pass critical points for any \(\lambda > 0\) because (like in Lemma 3.14 of \(\text{[6]}\))

\[
\inf_{\eta \in E \setminus \{0\}} Q(\eta) = 0, \quad \sup_{\eta \in E \setminus \{0\}} Q(\eta) = 1
\]

(for \(\lambda \geq 1\) if \(s^* = -1\), and for \(0 < \lambda < 1\) for both \(s^* = \pm 1\)).

Such critical points satisfy the Euler Lagrange equation

\[
-s^* \ddot{\eta} - (\eta^2)\dot{\eta} + \lambda \eta^3 = 0 \tag{61}
\]

but their non-degeneracy is not obvious. For this, it is convenient to express this solutions in terms of the Jacobi elliptic sine.

Proposition 4. (i) Let \(s^* = -1\). Then for every \(\lambda \in (0, +\infty)\) there exists an odd, analytic, \(2\pi\)-periodic solution \(g(t)\) of \(\text{[51]}\) which is non-degenerate in \(E\). \(g(t) = V \text{sn}(\Omega t, m)\) for \(V > 0\), \(\Omega > 0\), \(m \in (-\infty, -1)\) suitable constants.

(ii) Let \(s^* = 1\). Then for every \(\lambda \in (0, 1)\) there exists an odd, analytic, \(2\pi\)-periodic solution \(g(t)\) of \(\text{[51]}\) which is non-degenerate in \(E\). \(g(t) = V \text{sn}(\Omega t, m)\) for \(V > 0\), \(\Omega > 0\), \(m \in (0, 1)\) suitable constants.

We prove Proposition 4 in several steps. First we construct the solution \(g\) like in Lemma 6.

Lemma 8. (i) Let \(s^* = -1\). Then for every \(\lambda \in (0, +\infty)\) there exist \(V > 0\), \(\Omega > 0\), \(m \in (-\infty, -1)\) such that \(g(t) = V \text{sn}(\Omega t, m)\) is an odd, analytic, \(2\pi\)-periodic solution of \(\text{[51]}\) with a pole in \(\frac{\Omega^2(1 + m)}{\pi \sqrt{1 - m} K \left(\frac{1}{1 - m} \right)}\).

(ii) Let \(s^* = 1\). Then for every \(\lambda \in (0, 1)\) there exist \(V > 0\), \(\Omega > 0\), \(m \in (0, 1)\) such that \(g(t) = V \text{sn}(\Omega t, m)\) is an odd, analytic, \(2\pi\)-periodic solution of \(\text{[51]}\) with a pole in \(iK(1 - m)/\Omega\).

Proof. We know that \(g(V, \Omega, m)(t) := V \text{sn}(\Omega t, m)\) is an odd, \((4K(m)/\Omega)\)-periodic solution of \(\text{[50]}\), see Lemma 6. So it is a solution of \(\text{[51]}\) if \(V, \Omega, m\) verify

\[
\begin{cases}
\Omega^2(1 + m) = s^*V^2 \langle \text{sn}^2(\cdot, m) \rangle \\
2m\Omega^2 = s^*V^2 \lambda \\
2K(m) = \Omega \pi.
\end{cases} \tag{62}
\]

Conditions \(\text{[62]}\) give the connection between \(\lambda\) and \(m\):

\[
\lambda = \frac{2m}{1 + m} \langle \text{sn}^2(\cdot, m) \rangle. \tag{63}
\]

Moreover system \(\text{[62]}\) imposes

\[
\begin{cases}
m \in (-\infty, -1) \quad \text{if } s^* = -1 \\
m \in (0, 1) \quad \text{if } s^* = 1.
\end{cases}
\]

We know that \(m \mapsto \langle \text{sn}^2(\cdot, m) \rangle\) is continuous, strictly increasing on \((-\infty, 1)\), it tends to 0 for \(m \to -\infty\) and to 1 for \(m \to 1\), see Lemma 12. So the right-hand side of \(\text{[63]}\) covers \((0, +\infty)\) for \(m \in (-\infty, 0)\), and
it covers $(0, 1)$ for $m \in (0, 1)$. For this reason for every $\lambda > 0$ there exists a unique $\bar{m} < -1$ satisfying (06), and for every $\lambda \in (0, 1)$ there exists a unique $\bar{m} \in (0, 1)$ satisfying (03).

The value \bar{m} and system (02) determine uniquely the values \bar{V}, Ω. Analyticity and poles follow from [1], 16.2, 16.10.2, pp.570,573. □

Now we have to prove the non-degeneracy of g. The linearized equation of (01) at g is
\[\frac{\bar{h}}{s}(g^2) + 3\lambda g^2)h = -2s(gh)g. \] (64)

Let L be the Green operator, i.e. for $f \in E$, let $H := L(f)$ be the unique solution belonging to E of the non-homogeneous linear system
\[\bar{H} + s(g^2) - 3\lambda g^2)H = f. \]

We can write (64) as
\[h = -2s(gh)L(g). \] (65)

Multiplying by g and integrating we get
\[\langle gh \rangle[1 + 2s(gL(g))] = 0. \]

If $A_0 := 1 + 2s(gL(g)) \neq 0$, then $\langle gh \rangle = 0$, so by (65) $h = 0$ and the non-degeneracy is proved.

It remains to show that $A_0 \neq 0$. As before, the key is to express $L(g)$ in a suitable way. We first look for a fundamental set of solutions of the homogeneous equation
\[\bar{h} + s(g^2) - 3\lambda g^2)h = 0. \] (66)

Lemma 9. There exist two linearly independent solutions of (66), \bar{u} even, 2π-periodic and \bar{v} odd, not periodic, such that $\bar{u}(0) = 1$, $\bar{u}(0) = 0$, $\bar{v}(0) = 0$, $\bar{v}(0) = 1$, and
\[\bar{v}(t + 2\pi) - \bar{v}(t) = \rho \bar{u}(t) \quad \forall t \] (67)

for some $\rho \neq 0$. Moreover there hold the following expressions for \bar{u}, \bar{v}:
\[\bar{u}(t) = \bar{g}(t)\bar{g}(0) = \sin(\Omega t, \bar{m}) \] (68)
\[\bar{v}(t) = \frac{1}{\Omega(1 - \bar{m})}\sin(\Omega t) + \frac{\bar{m}}{\bar{m} - 1}\sin(\Omega t) \left[t + \frac{1 + \bar{m}}{\Omega} \int_0^{\Omega t} \frac{1}{\sin^2(\xi, \bar{m})} d\xi \right]. \] (69)

Proof. g solves (01) so \bar{g} solves (63); normalizing we get (68).

By (60), the function $y(t) = V\sin(\Omega t, m)$ solves
\[\bar{y} + s(g^2)y - s^*\lambda y^3 = 0 \] (70)

if (V, Ω, m) satisfy
\[\begin{cases} \Omega^2(1 + m) = s^*(g^2) \\ 2m\Omega^2 + 2sV^2\lambda. \end{cases} \] (71)

We solve (64) w.r.t. m finding the one-parameter family (y_m) of odd periodic solutions of (64), $y_m(t) = V(m)\sin(\Omega(m)t, m)$. So $l(t) := (\partial_m y_m)|_{m = \bar{m}}$ solves (66). We normalize $\bar{v}(t) := l(t)/l(0)$ and we compute the coefficients differentiating (64) w.r.t. m. From the definitions of the Jacobi elliptic functions it holds
\[\partial_m \sin(x, m) = -\sin(x, m) \frac{1}{2} \int_0^x \frac{\sin^2(\xi, m)}{\sin^2(\xi, m)} d\xi; \]

thanks to this formula we obtain (69).
Since $2\pi\tilde{\Omega} = 4K(\tilde{m})$ is the period of the Jacobi functions sn and dn, by (63), (64) we obtain (72) with

$$\rho = \frac{\tilde{m}}{m - 1} 2\pi \left(1 + (1 + \tilde{m})\left(\frac{\text{sn}^2}{\text{dn}^2}\right) \right).$$

If $s^* = 1$, then $\tilde{m} \in (0,1)$ and directly we can see that $\rho < 0$. If $s^* = -1$, then $\tilde{m} < -1$. From the equality $\langle \text{sn}^2/\text{dn}^2 \rangle = (1 - m)^{-1} (1 - \langle \text{sn}^2 \rangle)$ (see [3], Lemma 3, (L.2)), it results $\rho > 0$.

We can note that the integral representation (39) of the Green operator L holds again in the present case. The proof is just like in Lemma 1.

Lemma 10. We can write $A_0 := 1 + 2s^*(gL(g))$ as function of λ, \tilde{m},

$$A_0 = \frac{\lambda(1 - m)^2 q - (1 - \lambda)^2(1 + m)^2 + \tilde{m} q^2}{\lambda(1 - m)^2 q}, \quad q = q(\lambda, \tilde{m}) := 2 - \frac{(1 + \tilde{m})^2}{2\tilde{m}} > 0. \quad (72)$$

Proof. First, we calculate $gL(g)$ with the integral formula (39) of L. The equalities (12), (13) still hold, while similar calculations give

$$\int_0^{2\pi} g^3\bar{v} = -s^* \frac{\rho(0)}{2\lambda}$$

instead of (14). So

$$\langle gL(g) \rangle = -s^* \frac{\rho}{4\pi\lambda} + \frac{1}{2\pi\rho} \left(\int_0^{2\pi} g\bar{v} \right)^2 \quad (73)$$

and the sign of A_0 is not obvious. We calculate $\int_0^{2\pi} g\bar{v}$ recalling that $g(t) = \bar{V}\text{sn}(\tilde{\Omega}t, \tilde{m})$, using formula (10) for \bar{v} and integrating by parts

$$\int_0^{2\pi} \text{sn}(\bar{\Omega}t)\text{sn}(\bar{\Omega}t)\mu(t) dt = -\frac{1}{2\bar{\Omega}} \int_0^{2\pi} \text{sn}^2(\bar{\Omega}t)\bar{\mu}(t) dt$$

where $\mu(t) := t + (1 + \tilde{m})\bar{\Omega}^{-1} \int_0^{\tilde{\Omega}} \text{sn}^2(t)\text{dn}^2(t) dt$. From [3], (L.2), (L.3) in Lemma 3, we obtain the formula

$$\langle \text{sn}^4/\text{dn}^2 \rangle = \frac{1 + (m - 2)\langle \text{sn}^2 \rangle}{m(1 - m)}$$

and consequently

$$\int_0^{2\pi} g\bar{v} = \frac{\pi\bar{V}}{\bar{\Omega}(1 - \tilde{m})^2} (1 + \tilde{m} - 2\tilde{m}\langle \text{sn}^2 \rangle). \quad (74)$$

By the second equality of (12) and (13) we get

$$A_0 = 1 + \frac{2}{\lambda} \left[-\frac{\rho}{4\pi} + \frac{\pi\tilde{m}}{\rho(1 - \tilde{m})^4} (1 + \tilde{m} - 2\tilde{m}\langle \text{sn}^2 \rangle)^2 \right] \quad (75)$$

both for $s^* = \pm 1$. From the proof of Lemma 3 we have $\rho = -2\pi\tilde{m}q(1 - \tilde{m})^{-2}$, where q is defined in (72); inserting this expression of ρ in (75) we obtain (72).

Finally, for $\tilde{m} < -1$ we have immediately $q > 0$, while for $\tilde{m} \in (0,1)$ we get $q = 2 - (1 + \tilde{m})\langle \text{sn}^2 \rangle$ by (13). Since $\langle \text{sn}^2 \rangle < 1$, it results $q > 0$.

Lemma 11. $A_0 \neq 0$. More precisely, $\text{sign}(A_0) = -s^*$.

Proof. From (52), $A_0 > 0$ iff $\lambda(1 - \tilde{m})^2 q - (1 - \lambda)^2 (1 + \tilde{m})^2 + \tilde{m} q^2 > 0$. This expression is equal to $-(1 - \tilde{m})^2 p$, where

$$p = p(\lambda, \tilde{m}) = \frac{(1 + \tilde{m})^2}{4\tilde{m}} \lambda^2 - 2\lambda + 1,$$

so $A_0 > 0$ iff $p < 0$. The polynomial $p(\lambda)$ has degree 2 and its determinant is $\Delta = -(1 - \tilde{m})^2/\tilde{m}$. So, if $s^* = 1$, then $\tilde{m} \in (0, 1)$, $\Delta < 0$ and $p > 0$, so that $A_0 < 0$.

It remains the case $s^* = -1$. For $\lambda > 0$, we have $p(\lambda) < 0$ iff $\lambda > x^*$, where x^* is the positive root of p, $x^* := 2R(1 + R)^{-1}$, $R := |\tilde{m}|^{1/2}$. By (53), $\lambda > x^*$ iff

$$\langle \sin^2(\cdot, \tilde{m}) \rangle > \frac{R - 1}{(R + 1)R}.$$

By formula (53) and by definition of complete elliptic integrals K and E we can write (76) as

$$\int_0^{\pi/2} \left(\frac{R - 1}{(R + 1)R} - \sin^2 \vartheta \right) \frac{d\vartheta}{\sqrt{1 + R^2 \sin^2 \vartheta}} < 0. \tag{77}$$

We put $\sigma := R - 1/(R + 1)R$ and note that $\sigma < 1/2$ for every $R > 0$.

$\sigma - \sin^2 \vartheta > 0$ iff $\vartheta \in (0, \vartheta^*)$, where $\vartheta^* := \arcsin(\sqrt{\sigma})$, i.e. $\sin^2 \vartheta^* = \sigma$. Moreover $1 < 1 + R^2 \sin^2 \vartheta < 1 + R^2$ for every $\vartheta \in (0, \pi/2)$. So

$$\int_0^{\vartheta^*} \frac{\sigma - \sin^2 \vartheta}{\sqrt{1 + R^2 \sin^2 \vartheta}} d\vartheta < \int_0^{\vartheta^*} (\sigma - \sin^2 \vartheta) d\vartheta + \int_0^{\pi/2} \frac{\sigma - \sin^2 \vartheta}{\sqrt{1 + R^2}} d\vartheta. \tag{78}$$

Thanks to the formula

$$\int_a^b \sin^2 \vartheta d\vartheta = \frac{b - a}{2} - \frac{\sin(2b) - \sin(2a)}{4}$$

the right-hand side term of (78) is equal to

$$\frac{\sin(2\vartheta^*)}{4} \left((2\sigma - 1) \left(\frac{2\vartheta^*}{\sin(2\vartheta^*)} + \frac{1}{\sqrt{1 + R^2}} \right) + \left(1 - \frac{1}{\sqrt{1 + R^2}} \right) \right).$$

Since $2\sigma - 1 < 0$ and $\alpha > \sin \alpha$ for every $\alpha > 0$, this quantity is less than

$$\frac{\sin(2\vartheta^*)}{4} \left((2\sigma - 1) \left(1 + \frac{1}{\sqrt{1 + R^2}} \right) + \left(1 - \frac{1}{\sqrt{1 + R^2}} \right) \right).$$

By definition of σ, the last quantity is negative for every $R > 0$, so (78) is true. Consequently $\lambda > x^*$, $p < 0$ and $A_0 > 0$. \blacksquare

As Appendix, we show the properties of the function $m \mapsto \langle \sin^2(\cdot, m) \rangle$ used in the proof of Lemma S

Lemma 12. The function $\varphi : (-\infty, 1) \to \mathbb{R}$, $m \mapsto \langle \sin^2(\cdot, m) \rangle$ is continuous, differentiable, strictly increasing, and $\lim_{m \to -\infty} \varphi(m) = 0$, $\lim_{m \to 1} \varphi(m) = 1$.

Proof. By (53) and by definition of complete elliptic integrals K and E,

$$\varphi(m) = \frac{K(m) - E(m)}{mK(m)} = \int_0^{\pi/2} \frac{\sin^2 \vartheta d\vartheta}{\sqrt{1 - m \sin^2 \vartheta}} \left(\int_0^{\pi/2} \frac{d\vartheta}{\sqrt{1 - m \sin^2 \vartheta}} \right)^{-1},$$

so the continuity of φ is evident.

Using the equality $\sin^2 \vartheta + \cos^2 \vartheta = 1$ and the change of variable $\vartheta \to \pi/2 - \vartheta$ir in the integrals which define K and E, we obtain the formulæ

$$K(m) = \frac{1}{\sqrt{1 - m}} K\left(\frac{m}{m - 1} \right), \quad E(m) = \sqrt{1 - m} E\left(\frac{m}{m - 1} \right) \quad \forall m < 1. \tag{79}$$
We put $\mu := m/(m - 1)$, so it results

$$\varphi(m) = 1 - \frac{1}{\mu} + \frac{E(\mu)}{\mu K(\mu)}. \tag{80}$$

Since μ tends to 1 as $m \to -\infty$, $E(1) = 1$ and $\lim_{\mu \to 1} K(\mu) = +\infty$, (79), (80) give $\lim_{m \to -\infty} \varphi(m) = 0$. Since $E(m)/K(m)$ tends to 0 as $m \to 1$, (53) gives $\lim_{m \to 1} \varphi(m) = 1$.

Differentiating the integrals which define K and E w.r.t. m we obtain the formulae

$$E'(m) = \frac{E(m) - K(m)}{2m}, \quad K'(m) = \frac{1}{2m} \left(\int_0^{\pi/2} \frac{d\theta}{(1 - m \sin^2 \theta)^{3/2}} - K(m) \right),$$

so the derivative is

$$\varphi'(m) = \frac{1}{2m^2 K^2(m)} \left[E(m) \int_0^{\pi/2} \frac{d\theta}{(1 - m \sin^2 \theta)^{3/2}} - K^2(m) \right].$$

The term in the square brackets is positive by strict Hölder inequality for $(1 - m \sin^2 \theta)^{-3/4}$ and $(1 - m \sin^2 \theta)^{1/4}$.

Acknowledgements: The authors thank Philippe Bolle for useful comments.

References

