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Abstract

We prove that there are no networks homeomorphic to the Greek “Theta” letter (a double cell) em-
bedded in the plane with two triple junctions with angles of 120 degrees, such that under the motion
by curvature they are self–similarly shrinking. This fact completes the classification of the self–similarly
shrinking networks in the plane with at most two triple junctions, see [5, 7, 18].

1 Introduction

Recently, the problem of the evolution by curvature of a network of curves in the plane got the interest of
several authors [3, 7, 11, 12, 15–19]. It is well known that, after the work of Huisken [8] in the smooth case
of the hypersurfaces in the Euclidean space and of Ilmanen [9, 10] in the more general weak settings of
varifolds, that a suitable sequence of rescalings of the subsets of Rn which are evolving by mean curvature,
approaching a singular time of the flow, converges to a so called “blow–up limit” set which, letting it flow
again by mean curvature, simply moves by homothety, precisely, it shrinks down self–similarly toward the
origin of the Euclidean space.

This procedure and the classification of these special sets (possibly under some hypotheses), called
shrinkers, is a key point in understanding the asymptotic behavior of the flow at a singular time.

Dealing with the evolution of a single curve in the plane, it is easy to see that any C2 curve γ : I →
R2 which moves by curvature, self–similarly shrinking, must satisfy the following “structural” equation
(which is actually an ODE for γ)

k + γ⊥ = 0, (1.1)

where k is the vector curvature of the curve at the point γ and γ⊥ denotes the normal component of the
position vector γ. Introducing an arclength parameter s on the curve γ, we have a unit tangent vector field
τ = d

dsγ, a unit normal vector field ν which is the counterclockwise rotation of π/2 in R2 of the vector τ
and the curvature vector given by k = kν = d2

ds2 γ, where k is then simply the curvature of γ. With these
notations, the above equation can be rewritten as

k + 〈γ | ν〉 = 0. (1.2)

It is then known, by the work of Abresch–Langer [1] and independently of Epstein–Weinstein [6], that the
only complete, embedded, self–similarly shrinking curves in R2 without end–points, are the lines through
the origin and the unit circle (they actually classify all the closed, embedded or not, self–similarly shrinking
curves in the plane).
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Figure 1: The only complete, embedded, self–similarly shrinking curves in R2: lines through the origin and
the unit circle.

The same equation k + γ⊥ = 0 (that is, k + 〈γ | ν〉 = 0) must be satisfied by every curve of a network
in the plane which self–similarly shrinks to the origin moving by curvature (see [14, 15], for instance).
Moreover, for “energetic” reasons, it is natural to consider networks with only triple junctions and such
that the three concurring curves (which are C∞) form three angles of 120 degrees between each other
– “Herring” condition – such networks are called regular. In such class, the embedded shrinking regular
networks (without self–intersections) play a crucial role, indeed, they “reasonably” arise as blow–up limits
of the motion of networks without self–intersections (this is still a conjecture for a general network, but
there holds for networks with at most two triple junctions - see the end of the section).

Our goal in this paper is to complete and describe the classification of the complete, embedded, self–
similarly shrinking regular networks in the plane with at most two triple junctions, after the contributions
in [5, 7, 18].

If one consider networks with only one triple junction, the only complete, embedded, regular shrinkers
are given (up to rotations) by the “standard triod” and the “Brakke spoon” (first described in [4]), as in the
following figure. Actually, the loop of the Brakke spoon is the only possible shape for a region of every
regular shrinker (with any number of triple junctions) bounded by a single curve (and the curve “exiting”
by such region is straight).

O O

Figure 2: A standard triod and a Brakke spoon.

About networks with two triple junction, it is not difficult to show that the possible topological shapes
for a connected, complete, embedded, regular network without end–points, are the ones depicted in the
following figure.
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Figure 3: The possible topological shapes of a complete, connected, embedded network with two triple
junctions.

Then, looking for shrinkers with one of these structure, by the cited work of Abresch and Langer [1],
it follows that any unbounded curve of such shrinkers must be a piece of a halfline from the origin, going
to infinity. Then, differentiating in arclength s the equation k = −〈γ | ν〉, we get the ODE for the curvature
ks = k〈γ | τ〉. Suppose that at some point k = 0, then it must also hold ks = 0 at the same point, hence, by
the uniqueness theorem for ODEs we conclude that k is identically zero and we are dealing with a piece of
a straight line, as 〈x | ν〉 = 0 for every x ∈ γ. Notice that, if a curve γ contains the origin at such point its
curvature is zero, by the equation k + 〈γ | ν〉 = 0, hence, it must be straight.

Now, if a regular shrinker would have the topological shape of the first drawing on the top of Figure 3,
the four unbounded curves should be halflines, which implies that the two triple junctions should coincide
with the origin, which is a contradiction (the curve γ5 should be a non trivial segment between the triple
junctions), thus, such a shape is excluded.
Then, by an argument of Hättenschweiler [7, Lemma 3.20], if a regular shrinker contains a region bounded
by a single curve, the shrinker must be a Brakke spoon, that is, no other triple junctions can be present. This
excludes the possibility for a regular shrinker also to have a shape like the second one in the first row of
Figure 3 or the two in the second row.

It remains to discuss the last two cases: one is the “lens/fish” shape and the other is the shape of the
Greek “theta” letter (or “double cell”). It is well known that there exist unique (up to a rotation) lens–
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shaped or fish–shaped, complete, embedded, regular shrinkers which are symmetric with respect to a line
through the origin of R2 (see [5, 18]).

O O

Figure 4: A lens–shaped and a fish–shaped shrinker.

It was instead unknown whether regular Θ–shaped shrinkers (or simply Θ–shrinkers) exist, with nu-
merical evidence in favor of the conjecture of non–existence (see [7]). We are going to show that this is
actually the case.

O

Figure 5: A hypothetical Θ–shrinker.

Theorem 1.1. There are no regular Θ–shrinkers.

As a consequence, we have the following classification result.

Theorem 1.2. The shrinkers of Figure 4 (“lens ” and “fish”) are the only (up to rotations) complete, embedded,
self–similarly shrinking regular networks in the plane with two triple junctions.

We conclude this discussion mentioning that the main motivation for this problem is given by the fact
that for an evolving network with at most two triple junctions, the so called multiplicity–one conjecture holds
(see [14]), saying that any limit shrinker of a sequence of rescalings of the network at different times is again
a “genuine” embedded network without “double” or “multiple” curves (curves that in such convergence
go to coincide in the limit). This is a key point in the singularity analysis (actually, in general, for mean
curvature flow), together with the classification of these limit shrinkers, which is complete after our result
Theorem 1.1, for such “low complexity” networks, thus leading to a detailed description of their motion
in [13].

To show Theorem 1.1 we first analyze the geometric properties that an hypothetical Θ–shrinker must
satisfy, reducing the proof of non–existence to show that a certain parametric integral is always smaller than
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π/2, for every value of the parameter. The proof of such estimate, mixing some approximation techniques
and numerical computations based on interval arithmetic is shown in full detail in [2].

Acknowledgments. We wish to thank Matteo Novaga and Alessandra Pluda for several discussions on the subject
of this paper. This research was financially supported by UniNA and Compagnia di San Paolo, in the frame of Pro-
gramme STAR, by the European Research Council under FP7 (ERC Project 306414) and by PRIN 2012 “Variational
and perturbative aspects of nonlinear differential problems”.

2 Basic properties of shrinking curves

Consider a shrinking curve γ : I → R2 parametrized in arclength s, where I ⊂ R is an interval. We denote
with R : R2 → R2 the counterclockwise rotation of 90 degrees. Then, the relation

γss =
d2γ

ds2
= k = −〈γ | ν〉 = −

〈
γ
∣∣∣R(dγ

ds

)〉
gives an ODE satisfied by γ. It follows that the curve is smooth and it is not difficult to see that for every
point x0 ∈ R2 and unit velocity vector τ0, there exists a unique shrinking curve (solution of such ODE)
parametrized in arclength, passing at s = 0 through the point x0 with velocity τ0, defined for all s ∈ R.

Differentiating in arclength the equation k = −〈γ | ν〉, we get the ODE for the curvature ks = k〈γ | τ〉.
Suppose that at some point k = 0, then it must also hold ks = 0 at the same point, hence, by the uniqueness
theorem for ODEs we conclude that k is identically zero and we are dealing with a line L which, as 〈x | ν〉 =
0 for every x ∈ L, must contain the origin of R2.

So we suppose that k is always nonzero and, by looking at the structural equation k + 〈γ | ν〉 = 0, we
can see that the curve is then strictly convex with respect to the origin of R2. Another consequence (by
the uniqueness theorem for ODE) is that the curve must be symmetric with respect to any critical point
(maximum or minimum) of its curvature function: Notice that if the curve is not a piece of a circle, they are
all nondegenerate and isolated (if the curve has bounded length, their number is finite).

Computing the derivative of |γ|2,

d|γ|2

ds
= 2〈γ | τ〉 = 2ks/k = 2

d log k

ds

we get k = Ce|γ|
2/2 for some constant C ∈ R, that is, the quantity

E = E(γ) := ke−|γ|
2/2, (2.1)

that we call Energy, is constant along the curve. Equivalently, 〈γ | ν〉e−|γ|2/2 is constant. A solution γ has
positive energy if k > 0, so that γ runs counterclockwise around the origin, γ has negative energy if k < 0,
so that γ runs clockwise around the origin, γ has energy zero if k = 0, so that γ is a piece of a straight line
through the origin.

We consider now a new coordinate θ = arccos 〈e1 | ν〉; this can be done for the whole curve as we know
that it is convex (obviously, θ is only locally continuous, since it “jumps” after a complete round).

Differentiating with respect to the arclength parameter we have dθ
ds = k and

kθ = ks/k = 〈γ | τ〉 kθθ =
1

k

dkθ
ds

=
1 + k〈γ | ν〉

k
=

1

k
− k. (2.2)

Multiplying both sides of the last equation by 2kθ we get d
dθ [k2θ + k2 − log k2] = 0, that is, the quantity

E := k2θ + k2 − log k2

is constant along all the curve. Notice that such quantity E cannot be less than 1 (if k 6= 0), moreover, if
E = 1 we have that k2 must be constant and equal to one along the curve, which consequently must be a
piece of the unit circle centered at the origin of R2.
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As E ≥ 1, it follows that k2 is uniformly bounded from above and away from zero, hence, recalling that
k = Ee|γ|2/2, the curve γ is contained in a ball of R2 (and it is outside some small ball around the origin).

Since we are interested in the curves of a nontrivial connected, compact (Θ–shaped), regular network,
there will be no unbounded lines or complete circles and all the curves of the network will be images of a
closed bounded interval, once parametrized in arclength.

Resuming, either γ is a segment or k2 > 0, the equations (2.2) hold, the Energy E = ke−|γ|
2/2 and the

quantity E = k2θ + k2 − log k2 > 1 are constant along the curve, where θ = arccos 〈e1 | ν〉. Moreover, the
curve is locally symmetric with respect to the critical points of the curvature, hence the curvature k(θ) is
oscillating between its maximum and its minimum.

Suppose now that kmin < kmax are these two consecutive critical values of k. It follows that they are two
distinct positive zeroes of the function k2θ = E + log k2 − k2, when E > 1, with 0 < kmin < 1 < kmax.
We have then that the change ∆θ in the angle θ along the piece of curve delimited by two consecutive points
where the curvature assumes the values kmin and kmax, is given by the integral

∆θ = I(E) =

∫ kmax

kmin

dk√
E − k2 + log k2

. (2.3)

Proposition 2.1 (Abresch and Langer [1]). The function I : (1,+∞)→ R satisfies

1. limE→1+ I(E) = π/
√

2,

2. limE→+∞ I(E) = π/2,

3. I(E) is monotone nonincreasing.

As a consequence I(E) > π/2.

We write now the curve γ in polar coordinates, that is, γ(s) = (ρ(s) cosφ(s), ρ(s) sinφ(s)), then, the
arclength constraint and the shrinker equation (1.2) become

ρ2s + ρ2φ2s = 1, (2.4)

ρ2φs + ρρssφs − 2ρ2sφs − ρ2φ3s − ρρsφss = 0,

moreover,
cos
(
angle between γ and γs

)
=

γ · γs
|γ||γs|

= ρs. (2.5)

Notice that shrinking curves with positive energy have φs > 0 everywhere, indeed, either φs is always
different by zero or the curve is a segment of a straight line for the origin of R2.

The curvature and the Energy E = ke−|γ|
2/2 are given by

k = ρ2φs, E = ρ2φse
− 1

2ρ
2

(2.6)

and, when the energy is positive, it will be useful to consider also the quantity F := − log(E), that is,

F = − log(E) =
1

2
ρ2 − log(ρ2φs). (2.7)

Since 0 < ρφs ≤ 1, by equation (2.4), one has

F ≥ 1

2
ρ2 − log(ρ) ≥ 1

2
.

Let us assume that γ is a shrinking curve with k > 0 (the assumption on the sign of k is not restrictive,
up to a change of orientation of the curve). Then, by the definition of the Energy (2.1), it is immediate to see
that the points where k attains its maximum (resp. minimum) coincide with the points where ρ attains its
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maximum (resp. minimum). Thus, at any extremal point of k there hold kθ = 0, ρs = 0 and also ρφs = 1,
by equation (2.4), hence, by equation (2.6), we have k = ρ. Then, computing E and F at such point (clearly,
kθ = 0), we get

E = k2 − 2 log k and F = k2/2− log k,

that is, E = 2F = log
(

1
E2
)
.

Since the Energy and the quantity F are constant, this relation must hold along all the curve γ and
F = ρ2min/2− log ρmin = ρ2max/2− log ρmax.

Since the function µ(t) = t2/2 − log t is strictly convex with a minimum value 1/2 at t = 1, to each
value of F ≥ 1

2 , there correspond two values ρmin(F) and ρmax(F) which are the admissible (interior)
minimum and maximum of ρ on γ, with ρmin(F) < 1 < ρmax(F) if F > 1

2 . It follows easily that ρmax :
(1/2,+∞) → (1,+∞) is an increasing function and ρmin : (1/2,+∞) → (0, 1) is a decreasing function.
Viceversa, the quantity F can be seen as a decreasing function of ρmin ∈ (0, 1] and an increasing function of
ρmax ∈ [1,+∞).

Let smin, smax ∈ R with smin < smax be two consecutive (interior) extremal points of ρ (hence, also of k)
such that ρ(smin) = ρmin(F), ρ(smax) = ρmax(F). Since at the interior extremal points of ρ the vectors γ, γs
must be orthogonal, it follows that the quantity considered in formula (2.3) satisfies

∆θ =

∫ smax

smin

φs(s) ds := I(F), (2.8)

that is, the integral I(F) is the variation of the angle φ on the shortest arc such that ρ passes from ρmin to
ρmax.
Then, by the above discussion, I(F) = I(E) = I(2F) and we can rephrase Proposition 2.1 in terms of the
integral I(F) as follows.

Proposition 2.2. The function I : (1/2,+∞)→ R satisfies

1. limF→(1/2)+ I(F) = π√
2

,

2. limF→+∞ I(F) = π
2 ,

3. I(F) is monotone nonincreasing.

As a consequence I(F) > π
2 for all F > 1

2 .

3 The proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma whose proof can be found in [2].

Lemma 3.1. Let γ be a shrinking curve, parametrized counterclockwise by arclength, with positive curvature and let
(s0, s1) be an interval where s 7→ ρ(s) is increasing. If ρs(s0) ≥ 1

2 , namely, if the angle formed by the vectors γ(s0)
and γs(s0) is ≤ π

3 , then ∫ s1

s0

φs(s) ds <
π

2
. (3.1)

Similarly, if s 7→ ρ(s) is decreasing on (s0, s1) and ρs(s1) ≤ − 1
2 , namely the angle formed by the vectors γ(s1) and

γs(s1) is ≥ 2π
3 , then the same conclusion holds.

Remark 3.2. Proving estimate (3.1) is equivalent to show that∫ s1

s0

θs(s) ds <
2π

3
, (3.2)
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where θ(s) is the angle formed by e1 = (1, 0) and the normal vector ν(s). Indeed, clearly∫ s1

s0

θs(s) ds ≤
∫ σ1

σ0

θs(s) ds,

∫ s1

s0

φs(s) ds ≤
∫ σ1

σ0

φs(s) ds,

where k(σ1) = kmax, and σ0 is the maximum σ ≤ s0, assuming it exists, such that the angle formed by
the vectors γ(σ) and γs(σ) equals π

3 and the map s 7→ ρ(s) is increasing on (σ, σ1). Then one observes (by
elementary angle geometry) that ∫ σ1

σ0

θs(s) ds =

∫ σ1

σ0

φs(s) ds+
π

6
.

The integral in (3.2) can be expressed as before∫ s1

s0

θs(s) ds =

∫ k(s1)

k(s0)

dk√
E − k2 + log k2

,

hence it is bounded by I(E), defined in formula (2.3) (because, in general, kmin ≤ k(s0) ≤ k(s1) ≤ kmax). We
know that I(E) < π√

2
, but being 2π

3 < π√
2

, estimate (3.2) is not a direct consequence of Proposition 2.1.
Even if such integral is well studied, we found it easier to prove estimate (3.1) than to show that∫ s1

s0

θs(s) ds =

∫ k(s1)

k(s0)

dk√
E − k2 + log k2

<
2π

3

and this is the reason for our introduction and computation in polar coordinates (ρ, φ).

We assume now that a Θ–shrinker exists, described by three embedded shrinking curves γi : [si, si] →
R2, parametrized by arclength, expressed in polar coordinates by γi = (ρi cos(φi), ρi sin(φi)), for i ∈ {1, 2, 3}.
The two triple junctions will be denoted with A,B and the three curves intersect each other only at A and
B (which are their endpoints) forming angles of 120 degrees. Since the shrinker equation (1.1) is invariant
by rotation, we can assume that the segment AB is contained in the straight line {(x, q) : x ∈ R}with q ≥ 0
and we let A = (xA, q), B = (xB , q) with xA < xB .

We begin with some preliminary elementary lemmas. To simplify the notation, in all this section we will
denote the arclength derivative d

ds with ′.

Lemma 3.3. For all i ∈ {1, 2, 3}, the curve γi is either a straight line or such that∣∣∣∣∫ si

si

φ′i(s) ds

∣∣∣∣ < 2π.

Proof. Without loss of generality, assume that all γ1, γ2, γ3 start at B and end at A, namely γi(si) = B,
γi(si) = A, for i ∈ {1, 2, 3}.

Assume, by contradiction, that γ1 is a curve with positive energy and curvature such that∫ s1

s1

φ′1(s) ds ≥ 2π.

Then there exist σ1, τ1 ∈ S1 such that∫ σ1

s1

φ′1(s) ds = 2π,

∫ s1

τ1

φ′1(s) ds = 2π.

Since γ1 does not intersect itself, one has (ρ1(σ1) − ρ1(s1))(ρ1(s1) − ρ1(τ1)) > 0. Assume, without loss of
generality, that

ρ1(σ1) < ρ1(s1), ρ1(τ1) > ρ1(s1).
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Now consider the triple junction at the point B, the straight line r passing through B and the origin, and
let H1 and H2 be the open half-planes in which r divides R2, where H1 is the one containing γ′1(s1). Since
the three curves γ1, γ2, γ3 form angles of 2π

3 at B, at least one among γ′2(s2) and γ′3(s3) belongs to H2.
Without loss of generality, let γ′2(s2) ∈ H2. Since φ′2 never vanishes, the curve γ2 cannot reach the endpoint
A without crossing the curve γ1 at some interior point, which is a contradiction.

Lemma 3.4. Let S = [s, s] and γ : S → R2 be a shrinking curve parametrized by arclength, expressed in polar
coordinates by γ = (ρ cos(φ), ρ sin(φ)). Assume that φ′(s) > 0 in S and

0 < ∆ ≤ π, where ∆ :=

∫ s

s

φ′(s) ds.

Let L be the straight line passing through the two points γ(s), γ(s) and H1 and H2 be the two closed half–planes in
which L divides the plane R2. Then the arc γ(S) is entirely contained in H1 or H2.

Moreover, if ∆ < π and γ(S) ⊂ H1, then the origin of R2 belongs to the interior of H2.

Proof. By the assumption φ′ > 0, we have k > 0 and the arc γ(S) is contained in the cone C := {φ(s) ≤
φ ≤ φ(s)}, which is convex by the assumption 0 < ∆ ≤ π. Since the curvature is positive, the closed set
T delimited by the arc γ(S) and by the two line segments joining the origin with γ(s) and γ(s) is a convex
subset of R2, hence, the line segment joining γ(s) with γ(s) is contained in T , which implies the thesis.

Coming back to our Θ–shrinker, because of its topological structure, one of the curves is contained in the
region delimited by the other two, moreover the curvature of both these two “external” curves is always
non zero, otherwise any such curve is a segment of a straight line passing for the origin, then the 120 degrees
condition at its endpoints would imply that it must be contained in the region bounded by the other two
curves, hence it could not be “external”. Notice that, on the contrary, the “inner” curve could actually be a
segment for the origin.

We call γ2 the “inner” curve and, recalling that the origin of R2 is not over the straight line through the
two triple junctions A and B, parametrizing counterclockwise the three curves, that is φ′i > 0 (in the case
that the “inner” curve γ2 is not a segment), we call γ1 the “external” curve which starts atB. By Lemma 3.3,
γ1 reaches the point A after φ1 changes of an angle ∆ =

∫ s1
s1
φ′1(s) ds < 2π equal to the angle B̂OA, which is

smaller or equal than π. Hence, by Lemma 3.4, all such curve γ1 stays over the straight line passing for the
two triple junctions A and B.

We call γ3 the other extremal curve, hence since φ1, φ3 > 0, we have

γ1(s1) = γ3(s3) = B, γ1(s1) = γ3(s3) = A.

Because of the shrinker equation (1.2), all the three curves are convex with respect to the origin. This
implies that the origin is contained in the interior of the bounded area A13 enclosed by γ1 and γ3 (if the
origin belongs to γ1 or γ3 such curve is a segment and cannot be “external”, as we said before), which also
contains γ2 ⊂ A13. We let A12 be the region enclosed by the curves γ1 and γ2 and we split the analysis into
two cases.

Case 1. The origin does not belong to the interior of A12.

Since the curve γ2 is convex with respect to the origin, by the same argument used above for γ1, it is
contained in the upper half–plane determined by the straight line for the points A and B.

By the 120 degrees condition it follows that the angle β at B formed by the vector (1, 0) and γ′1 is at most
π
3 . Similarly, also the angle α at A formed by the vector (1, 0) and γ′1 is at most π

3 . By the convexity of the
region delimited by γ2 and γ3 containing the origin and again the 120 degrees condition at B, it is then easy
to see that the angle at B formed by the vectors γ1 and γ′1 is less or equal than π

3 and analogously, the angle
at A formed by γ1 and γ′1 is greater or equal than 2π

3 .
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Hence, by equality (2.5), it follows

ρ′1(s1) ≥ 1

2
> 0, ρ′1(s1) ≤ −1

2
< 0.

As a consequence, there is a point of maximum radius s∗1 ∈ (s1, s1) such that ρ1(s∗1) ≥ ρ1(s) for all s ∈
(s1, s1).

The vector γ1(s∗1) forms an angle σ ≥ π
2 with (1, 0) or (−1, 0). Assume that the angle between γ1(s∗1) and

(1, 0) is greater or equal than π
2 (the other case is analogous, switching A and B). We extend the curve γ1

(still parametrized by arclength) “before” the point B till it intersects the x–axis at some s̃1 ≤ s1 (this must
happen because φ1(s) > 0 everywhere also on the extended curve) and we consider the (non relabeled)
curve γ1 defined in the interval L1 = [s̃1, s

∗
1]. Calling β0 the angle formed by the vectors γ′1(s̃1) and (1, 0),

by convexity and the fact that the angle β at B formed by the vector (1, 0) and γ′1 is at most π3 , we have that
β0 ≤ β ≤ π

3 . Hence, by equality (2.5), we have ρ′1(s̃1) ≥ 1
2 > 0.

Considering now the function s 7→ ρ1(s) on the interval L1 = [s̃1, s
∗
1], since ρ′1(s̃1) > 0 and s∗1 is a

maximum point for ρ1, either ρ1 is increasing on L1, or ρ1 has another maximum and then a minimum in
the interior of L1 (notice that the map ρ1 cannot be constant on an interval, otherwise γ1 would be an arc of
a circle centered at the origin, which is impossible since ρ1 is not constant). But we know from formula (2.3)
and Proposition 2.1 that the angle φ1 must increase more than π

2 to go from a minimum to a maximum or
viceversa (we can apply such proposition since γ1 is not an arc of a circle). Since∫ s∗1

s̃1

φ′1(s) ds ≤ π,

there cannot be a maximum, then a minimum, then a second maximum in L1. It follows that ρ1 is increasing
in such interval.
This, combined with the fact that β0 ≤ π

3 and that the angle σ is at least π
2 , that is,

∫ s∗1
s̃1
φ′1(s) ds ≥ π

2 , is in
contradiction with Lemma 3.1. Therefore, this case cannot happen.

Case 2. The origin belongs to the interior of A12.
Being the region A12 convex (by the shrinker equation (1.2), since it contains the origin), the curve γ2

(which is oriented counterclockwise) goes from A to B. The fact that γ′2 and γ′3 form angles of 2π
3 at the

points A and B implies that:
(i) the angle in A formed by the vectors γ3(s3) and γ′3(s3) and the angle in B formed by the vectors

γ2(s2) and γ′2(s2) are both less or equal than π
3 ;

(ii) the angle in B formed by the vectors γ3(s3) and γ′3(s3) and the angle in A formed by the vectors
γ2(s2) and γ′2(s2) are both greater or equal than 2π

3 .
In particular, by equality (2.5), it follows

ρ′2(s2) ≤ −1

2
< 0, ρ′2(s2) ≥ 1

2
> 0, ρ′3(s3) ≥ 1

2
> 0, ρ′3(s3) ≤ −1

2
< 0. (3.3)

Hence, the function s 7→ ρ3(s) has a maximum at some point s∗3 ∈ (s3, s3), while the function s 7→ ρ2(s) has
a minimum at some point s◦2 ∈ (s2, s2).

If s∗3 is the only point of maximum of ρ3 in the interval [s3, s3], then the function ρ3 is strictly monotone
on each of the two subintervals [s3, s

∗
3] and [s∗3, s3], moreover,∫ s∗3

s3

φ′3(s) ds+

∫ s3

s∗3

φ′3(s) ds =

∫ s3

s3

φ′3(s) ds ≥ π,

since the origin is “below” the segment AB. Thus, at least one of the two integrals on the left–hand side is
greater or equal than π

2 and, by Lemma 3.1, this is not possible. As a consequence, there must be another
point of maximum radius s∗∗3 ∈ (s3, s3) (notice that the maximum points cannot be an interval, otherwise
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γ3 would be an arc of a circle centered at the origin, hence with ρ′3 = 0, against relations (3.3)). Hence,
between these two points of maximum radius there is a minimum point s◦3. Without loss of generality, we
assume that s3 < s∗3 < s◦3 < s∗∗3 < s3.

We observe that there cannot be a third maximum point for ρ3 (hence also another minimum point) in
the interval [s3, s3] because, by Lemma 2.2, each of the four angles at the origin formed by the segment
connecting the origin with two consecutive of the five extremal points for ρ3 on γ3 is greater than π

2 and,
by Lemma 3.3, there holds

∫ s3
s3
φ′3(s) ds < 2π. Moreover, also the case of two minimum points and two

maximum points for ρ3 in the interval [s3, s3] is not possible, because of the sign of the derivative ρ′3 at the
endpoints in relations (3.3). Hence, we conclude that s∗3, s◦3, s∗∗3 are the only extremal points for ρ3 in the
interval [s3, s3].

Now consider the quantities F2,F3 of the curves γ2, γ3, respectively, given by formula (2.7). By rela-
tions (3.3), the curves γ2 and γ3 are not the unit circle (they would have ρ′2 or ρ′3 equal to zero everywhere),
therefore F2,F3 >

1
2 . If we draw the line from the origin to γ3(s◦3), this must intersect γ2 in an intermediate

point, implying that the minimal radius of the curve γ2 is smaller than the minimal radius of the curve γ3.
By the discussion about the value of the quantity F in relation with the extremal values of ρ at the end of
Section 2, we have F2 > F3. Then, if a maximum of ρ2 is taken in the interior of γ2, it must be larger than
the maximal radius of γ3 (which is taken in the interior of γ3), which is not possible as γ2 is contained in
the region bounded by γ3 and the segment AB. From this argument we conclude that there are no points
of maximal radius in the interior of γ2, thus, the only extremal point for ρ2 in the interval [s2, s2] is the
minimum point s◦2.

Defining the angle

α :=

∫ s2

s2

φ′2(s) ds =

∫ s3

s3

φ′3(s) ds,

by formula (2.8) and the symmetry of the curve γ3 with respect to the straight line through the origin and
the point γ3(s◦3) of minimum distance, we have

I(F3) =

∫ s◦3

s∗3

φ′3(s) ds =

∫ s∗∗3

s◦3

φ′3(s) ds <
α

2

while, since γ2 does not contain any interior point of maximum radius,

I(F2) > max

{∫ s◦2

s2

φ′2(s) ds,

∫ s2

s◦2

φ′2(s) ds

}
≥ α

2
.

Thus, I(F2) > I(F3) and F2 > F3, which is in contradiction with the monotonicity of the function I given
by Proposition 2.2. Hence, also this case can be excluded.

Since we excluded both cases, our hypothetical Θ–shrinker cannot exist and we are done with the proof
of Theorem 1.1.
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[19] O. C. Schnürer and F. Schulze, Self–similarly expanding networks to curve shortening flow, Ann. Sc. Norm.
Super. Pisa 6 (2007), no. 4, 511–528.

12


	Introduction
	Basic properties of shrinking curves
	The proof of Theorem 1.1

