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ABSTRACT. We prove that there are no networks homeomorphic to the Greek “theta” letter (a
double cell) embedded in the plane with two triple junctions with angles of 120 degrees, such
that under the motion by curvature they are self–similarly shrinking.
This fact completes the classification of the self–similarly shrinking networks in the plane with
at most two triple junctions, see [4, 8, 22].

1. INTRODUCTION

Recently, the problem of the evolution by curvature of a network of curves in the plane
got the interest of several authors [2, 8, 14, 15, 18, 19, 21–23]. It is well known that, after the
work of Huisken [10] in the smooth case of the hypersurfaces in the Euclidean space and of
Ilmanen [12, 13] in the more general weak settings of varifolds, that a suitable sequence of
rescalings of the subsets of Rn which are evolving by mean curvature, approaching a singular
time of the flow, converges to a so called “blow–up limit” set which, letting it flow again by
mean curvature, simply moves by homothety, precisely, it shrinks down self–similarly toward
the origin of the Euclidean space.

This procedure and the classification of these special sets (possibly under some hypothe-
ses), called shrinkers, is a key point in understanding the asymptotic behavior of the flow at a
singular time.

In the special situation of a network of curves in the plane moving by curvature (see [17,18],
for instance), it is easy to see that every C2 curve γ : I → R2 of such a limit shrinking network
must satisfy the following “structural” equation (which is actually an ODE for γ)

k + γ⊥ = 0, (1.1)

where k is the vector curvature of the curve at the point γ and γ⊥ denotes the normal compo-
nent of the position vector γ. Introducing an arclength parameter s on the curve γ, we have a

unit tangent vector field τ = d
dsγ, a unit normal vector field ν which is the counterclockwise

rotation of π/2 in R2 of the vector τ and the curvature vector given by k = kν = d2

ds2
γ, where k

is then simply the curvature of γ. With these notations, the above equation can be rewritten as

k + 〈γ | ν〉 = 0. (1.2)
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It is known, by the work of Abresch–Langer [1] and independently of Epstein–Weinstein [5],
that the only complete, embedded shrinking curves in R2 are the lines through the origin and
the unit circle.

Dealing with the motion by curvature of networks of curves in the plane, it is natural (for
“energy reasons”) to consider networks with only triple junctions and such that the three con-
curring curves (which areC∞) form three angles of 120 degrees between each other (“Herring”
condition); such networks are called regular. Analogously, a shrinker is called regular if it sat-
isfies such geometric condition.

If one consider networks with only one triple junction, the only complete, embedded, con-
nected, regular shrinkers are given (up to a rotation) by the “standard triod” and the “Brakke
spoon” (first described in [3]) as in the following figures.

O OO

FIGURE 1. Easy examples of regular shrinkers: a line from the origin, the unit
circle S1 and an unbounded triod composed of three halflines from the origin
meeting at 120 degrees, called standard triod.

O

FIGURE 2. A less easy example of a regular shrinker: a Brakke spoon.

About shrinkers with two triple junctions, it is not difficult to show that there are only two
possible topological shapes for a complete embedded, regular shrinker: one is the “lens/fish”
shape and the other is the shape of the Greek “theta” letter (or “double cell”), as in the next
figure.
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γ2
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γ4

γ3
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γ2

γ1

γ3

O1

FIGURE 3. A lens/fish–shaped and a Θ–shaped network.

It is well known that there exist unique (up to a rotation) lens–shaped or fish–shaped, em-
bedded, regular shrinkers which are symmetric with respect to a line through the origin of
R2 (see [4, 22]). It was instead unknown whether regular Θ–shaped shrinkers (or simply Θ–
shrinkers) exist, with numerical evidence in favor of the conjecture of non–existence (see [8]).
In this paper we are going to show that this is actually the case.
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FIGURE 4. A lens–shaped and a fish–shaped shrinker.

O

FIGURE 5. A hypothetical Θ–shrinker.

Theorem 1.1. There are no regular Θ–shrinkers.

The main motivation for this problem is given by the fact that for an evolving network
with at most two triple junctions the so called multiplicity–one conjecture holds (see [17]), saying
that any limit shrinker of a sequence of rescalings of the network at different times is again
a “genuine” embedded network without “double” or “multiple” curves (curves that in such
convergence go to coincide). This is a key point in singularity analysis (in general, for mean
curvature flow), together with the classification of these limit shrinkers, which is complete after
our result Theorem 1.1, for such “low complexity” networks, thus leading to a full description
of their motion in [16]. Moreover, in the general case, the “generic” singularity should be
(locally) the collapse of a single curve (only two triple junction colliding), hence the study of
the evolution of networks with only two triple junctions is quite interesting since they locally
describe what happens at a “typical” singular time.

The line to show Theorem 1.1 will be first looking at the properties that an hypothetical
Θ–shrinker must satisfy and study the possible geometric structures that a priori it could have
(Sections 2 and 3). Such analysis will reduce the proof of non–existence to show that a certain
parametric integral is always smaller than π/2, for every value of the parameter. Section 4
is devoted to show such an estimate, mixing some approximation techniques and numerical
computations based on interval arithmetic.

1.1. Interval arithmetic. When performing standard analytical computations on a machine,
the computer routines repeatedly introduce unpleasant errors. This cannot be avoided since,
for instance:

• the real numbers that a machine can handle exactly in floating–point binary represen-
tation are only a finite subset of the rationals;

• transcendental functions cannot be computed exactly and have to be replaced by an
approximation based on a finite Taylor expansion.
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While these limitations make it impossible to get an exact result from – basically – any numer-
ical computation on a machine, it is however possible to guarantee that the value of a given
analytical expression is included between two values that can be represented exactly by the
computer, providing rigorous upper and lower bounds.

The term “interval arithmetic” refers to the arithmetic of quantities whose value lies within
a known interval, although the exact value of such quantities is not known. The simple consid-
erations presented above clearly demonstrate why the theory and implementation of interval
arithmetic is a fundamental tool for making rigorous computer–assisted proofs in mathemati-
cal analysis.

Remark 1.2. Interval arithmetic for rigorous computer–assisted proofs has been used in several
areas of mathematics (see, for example, the reviews [20] and [6]). See [7] for documentation
about correct rounding of elementary functions. Note that all the computations of the present
paper that we made with the computer involve only elementary functions (i.e. x+ y, x · y, x2,
1/x,

√
x, exp(x), log(x), arcsin(x)) and constants (π) whose correct rounding is guaranteed by

the IEEE Standard for Interval Arithmetic, IEEE 1788–2015 [11]. To perform interval arithmetic,
we used the software GNU Octave 4.0.0 with the package “interval”, which is conforming
(see [9]) to the standard IEEE 1788–2015.

We give a basic example of the use of interval arithmetic: to deal with the constant
√
3, we

write the command “sqrt(infsup(3))”: writing “infsup(3)” the integer number 3 is transformed
into the interval [3, 3] (which is just the singleton {3} since the integer number 3 is exactly
representable by the computer), then the function “square root” applies to the interval [3, 3]

and it gives a correct rounding of the exact mathematical value of
√
3, namely the output is an

interval [a, b] such that a2 < 3 < b2 and a, b are exactly representable in binary form.
The codes we have used are in Section A.

Acknowledgments. We wish to thank Matteo Novaga and Alessandra Pluda for several discussions
on the subject of this paper.
This research was financially supported by UniNA and Compagnia di San Paolo, in the frame of Pro-
gramme STAR, by the European Research Council under FP7 (ERC Project 306414) and by PRIN 2012
“Variational and perturbative aspects of nonlinear differential problems”.

2. BASIC PROPERTIES OF SHRINKING CURVES AND NOTATION

Consider a shrinking curve γ : I → R2 parametrized in arclength s, where I ⊂ R is an
interval. We denote with R : R2 → R2 the counterclockwise rotation of 90 degrees. Then, the
relation

γss =
d2γ

ds2
= k = −〈γ | ν〉 = −

〈
γ
∣∣∣R

(dγ
ds

)〉

gives an ODE satisfied by γ. It follows that the curve is smooth and it is not difficult to see
that for every point x0 ∈ R2 and unit velocity vector τ0, there exists a unique shrinking curve
(solution of such ODE) parametrized in arclength, passing at s = 0 through the point x0 with
velocity τ0, defined for all s ∈ R.

Differentiating in arclength the equation k = −〈γ | ν〉, we get the ODE for the curvature
ks = k〈γ | τ〉. Suppose that at some point k = 0, then it must also hold ks = 0 at the same point,
hence, by the uniqueness theorem for ODEs we conclude that k is identically zero and we are
dealing with a line L which, as 〈x | ν〉 = 0 for every x ∈ L, must contain the origin of R2.

So we suppose that k is always nonzero and, by looking at the structural equation k +
〈γ | ν〉 = 0, we can see that the curve is then strictly convex with respect to the origin of R2.
Another consequence (by the uniqueness theorem for ODE) is that the curve must be symmet-
ric with respect to any critical point (maximum or minimum) of its curvature function: Notice
that if the curve is not a piece of a circle, they are all nondegenerate and isolated (if the curve
has bounded length, their number is finite).
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Computing the derivative of |γ|2,

d|γ|2
ds

= 2〈γ | τ〉 = 2ks/k = 2
d log k

ds

we get k = Ce|γ|
2/2 for some constant C ∈ R, that is, the quantity

E = E(γ) := ke−|γ|2/2, (2.1)

that we call Energy, is constant along the curve. Equivalently, 〈γ | ν〉e−|γ|2/2 is constant. A
solution γ has positive energy if k > 0, so that γ runs counterclockwise around the origin, γ
has negative energy if k < 0, so that γ runs clockwise around the origin, γ has energy zero if
k = 0, so that γ is a piece of a straight line through the origin.

We consider now a new coordinate θ = arccos 〈e1 | ν〉; this can be done for the whole curve
as we know that it is convex (obviously, θ is only locally continuous, since it “jumps” after a
complete round).

Differentiating with respect to the arclength parameter we have dθ
ds = k and

kθ = ks/k = 〈γ | τ〉 kθθ =
1

k

dkθ
ds

=
1 + k〈γ | ν〉

k
=

1

k
− k. (2.2)

Multiplying both sides of the last equation by 2kθ we get d
dθ [k

2
θ + k2 − log k2] = 0, that is, the

quantity

E := k2θ + k2 − log k2

is constant along all the curve. Notice that such quantity E cannot be less than 1 (if k 6= 0),
moreover, if E = 1 we have that k2 must be constant and equal to one along the curve, which
consequently must be a piece of the unit circle centered at the origin of R2.

As E ≥ 1, it follows that k2 is uniformly bounded from above and away from zero, hence,

recalling that k = Ee|γ|2/2, the curve γ is contained in a ball of R2 (and it is outside some small
ball around the origin).

Since we are interested in the curves of a non–trivial connected, compact (Θ–shaped), reg-
ular network, there will be no unbounded lines or complete circles and all the curves of the
network will be images of a closed bounded interval, once parametrized in arclength.

Resuming, either γ is a segment or k2 > 0, the equations (2.2) hold, the Energy E = ke−|γ|2/2

and the quantityE = k2θ+k
2−log k2 > 1 are constant along the curve, where θ = arccos 〈e1 | ν〉.

Moreover, the curve is locally symmetric with respect to the critical points of the curvature,
hence the curvature k(θ) is oscillating between its maximum and its minimum.

Suppose now that kmin < kmax are these two consecutive critical values of k. It follows that
they are two distinct positive zeroes of the function k2θ = E + log k2 − k2, when E > 1, with
0 < kmin < 1 < kmax.
We have then that the change ∆θ in the angle θ along the piece of curve delimited by two
consecutive points where the curvature assumes the values kmin and kmax, is given by the
integral

∆θ = I(E) =

∫ kmax

kmin

dk√
E − k2 + log k2

. (2.3)

Proposition 2.1 (Abresch and Langer [1]). The function I : (1,+∞) → R satisfies

(1) limE→1+ I(E) = π/
√
2,

(2) limE→+∞ I(E) = π/2,
(3) I(E) is monotone nonincreasing.

As a consequence I(E) > π/2.

We write now the curve γ in polar coordinates, that is, γ(s) = (ρ(s) cos φ(s), ρ(s) sin φ(s)),
then, the arclength constraint and the shrinker equation (1.2) become

ρ2s + ρ2φ2s = 1, (2.4)
5
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ρ2φs + ρρssφs − 2ρ2sφs − ρ2φ3s − ρρsφss = 0,

moreover,

cos
(
angle between γ and γs

)
=

γ · γs
|γ||γs|

= ρs. (2.5)

Notice that shrinking curves with positive energy have φs > 0 everywhere, indeed, either φs
is always different by zero or the curve is a segment of a straight line for the origin of R2.

The curvature and the Energy E = ke−|γ|2/2 are given by

k = ρ2φs, E = ρ2φse
− 1

2
ρ2 (2.6)

and, when the energy is positive, it will be useful to consider also the quantity F := − log(E),
that is,

F = − log(E) = 1

2
ρ2 − log(ρ2φs). (2.7)

Since 0 < ρφs ≤ 1, by equation (2.4), one has

F ≥ 1

2
ρ2 − log(ρ) ≥ 1

2
.

Let us assume that γ is a shrinking curve with k > 0 (the assumption on the sign of k is
not restrictive, up to a change of orientation of the curve). Then, by the definition of the En-
ergy (2.1), it is immediate to see that the points where k attains its maximum (resp. minimum)
coincide with the points where ρ attains its maximum (resp. minimum). Thus, at any extremal
point of k there hold kθ = 0, ρs = 0 and also ρφs = 1, by equation (2.4), hence, by equation (2.6),
we have k = ρ. Then, computing E and F at such point (clearly, kθ = 0), we get

E = k2 − 2 log k and F = k2/2− log k,

that is, E = 2F = log
(

1
E2

)
.

Since the Energy and the quantity F are constant, this relation must hold along all the curve
γ and F = ρ2min/2− log ρmin = ρ2max/2− log ρmax.

Since the function µ(t) = t2/2 − log t is strictly convex with a minimum value 1/2 at t = 1,
to each value of F ≥ 1

2 , there correspond two values ρmin(F) and ρmax(F) which are the
admissible (interior) minimum and maximum of ρ on γ, with ρmin(F) < 1 < ρmax(F) if
F > 1

2 . It follows easily that ρmax : (1/2,+∞) → (1,+∞) is an increasing function and
ρmin : (1/2,+∞) → (0, 1) is a decreasing function. Viceversa, the quantity F can be seen
as a decreasing function of ρmin ∈ (0, 1] and an increasing function of ρmax ∈ [1,+∞).

Let smin, smax ∈ R with smin < smax be two consecutive (interior) extremal points of ρ (hence,
also of k) such that ρ(smin) = ρmin(F), ρ(smax) = ρmax(F). Since at the interior extremal points
of ρ the vectors γ, γs must be orthogonal, it follows that the quantity considered in formula (2.3)
satisfies

∆θ =

∫ smax

smin

φs(s) ds := I(F), (2.8)

that is, the integral I(F) is the variation of the angle φ on the shortest arc such that ρ passes
from ρmin to ρmax.
Then, by the above discussion, I(F) = I(E) = I(2F) and we can rephrase Proposition 2.1 in
terms of the integral I(F) as follows.

Proposition 2.2. The function I : (1/2,+∞) → R satisfies

(1) limF→(1/2)+ I(F) = π√
2

,

(2) limF→+∞ I(F) = π
2 ,

(3) I(F) is monotone nonincreasing.

As a consequence I(F) > π
2 for all F > 1

2 .
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3. THE PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on the following lemma whose proof is postponed to
Section 4.

Lemma 3.1. Let γ be a shrinking curve, parametrized counterclockwise by arclength, with positive
curvature and let (s0, s1) be an interval where s 7→ ρ(s) is increasing. If ρs(s0) ≥ 1

2 , namely, if the
angle formed by the vectors γ(s0) and γs(s0) is ≤ π

3 , then
∫ s1

s0

φs(s) ds <
π

2
. (3.1)

Similarly, if s 7→ ρ(s) is decreasing on (s0, s1) and ρs(s1) ≤ −1
2 , namely the angle formed by the

vectors γ(s1) and γs(s1) is ≥ 2π
3 , then the same conclusion holds.

Remark 3.2. Proving estimate (3.1) is equivalent to show that
∫ s1

s0

θs(s) ds <
2π

3
, (3.2)

where θ(s) is the angle formed by e1 = (1, 0) and the normal vector ν(s). Indeed, clearly
∫ s1

s0

θs(s) ds ≤
∫ σ1

σ0

θs(s) ds,

∫ s1

s0

φs(s) ds ≤
∫ σ1

σ0

φs(s) ds,

where k(σ1) = kmax, and σ0 is the maximum σ ≤ s0, assuming it exists, such that the angle
formed by the vectors γ(σ) and γs(σ) equals π

3 and the map s 7→ ρ(s) is increasing on (σ, σ1).
Then one observes (by elementary angle geometry) that

∫ σ1

σ0

θs(s) ds =

∫ σ1

σ0

φs(s) ds+
π

6
.

The integral in (3.2) can be expressed as before
∫ s1

s0

θs(s) ds =

∫ k(s1)

k(s0)

dk√
E − k2 + log k2

,

hence it is bounded by I(E), defined in formula (2.3) (because, in general, kmin ≤ k(s0) ≤
k(s1) ≤ kmax). We know that I(E) < π√

2
, but being 2π

3 < π√
2
, estimate (3.2) is not a direct

consequence of Proposition 2.1.
Even if such integral is well studied, we found it easier to prove estimate (3.1) than to show

that ∫ s1

s0

θs(s) ds =

∫ k(s1)

k(s0)

dk√
E − k2 + log k2

<
2π

3

and this is the reason for our introduction and computation in polar coordinates (ρ, φ).

We assume now that a Θ–shrinker exists, described by three embedded shrinking curves γi :
[si, si] → R2, parametrized by arclength, expressed in polar coordinates by γi = (ρi cos(φi), ρi sin(φi)),
for i ∈ {1, 2, 3}. The two triple junctions will be denoted with A,B and the three curves in-
tersect each other only at A and B (which are their endpoints) forming angles of 120 degrees.

Since the shrinker equation (1.1) is invariant by rotation, we can assume that the segment AB
is contained in the straight line {(x, q) : x ∈ R} with q ≥ 0 and we let A = (xA, q), B = (xB , q)
with xA < xB.

We begin with some preliminary elementary lemmas. To simplify the notation, in all this

section we will denote the arclength derivative d
ds with ′.

Lemma 3.3. For all i ∈ {1, 2, 3}, the curve γi is either a straight line or such that
∣∣∣∣
∫ si

s
i

φ′i(s) ds

∣∣∣∣ < 2π.

7
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Proof. Without loss of generality, assume that all γ1, γ2, γ3 start at B and end at A, namely
γi(si) = B, γi(si) = A, for i ∈ {1, 2, 3}.

Assume, by contradiction, that γ1 is a curve with positive energy and curvature such that
∫ s1

s1

φ′1(s) ds ≥ 2π.

Then there exist σ1, τ1 ∈ S1 such that
∫ σ1

s1

φ′1(s) ds = 2π,

∫ s1

τ1

φ′1(s) ds = 2π.

Since γ1 does not intersect itself, one has (ρ1(σ1)−ρ1(s1))(ρ1(s1)−ρ1(τ1)) > 0. Assume, without
loss of generality, that

ρ1(σ1) < ρ1(s1), ρ1(τ1) > ρ1(s1).

Now consider the triple junction at the point B, the straight line r passing through B and the
origin, and let H1 and H2 be the open half-planes in which r divides R2, where H1 is the one
containing γ′1(s1). Since the three curves γ1, γ2, γ3 form angles of 2π

3 at B, at least one among
γ′2(s2) and γ′3(s3) belongs to H2. Without loss of generality, let γ′2(s2) ∈ H2. Since φ′2 never
vanishes, the curve γ2 cannot reach the endpoint A without crossing the curve γ1 at some
interior point, which is a contradiction. �

Lemma 3.4. Let S = [s, s] and γ : S → R2 be a shrinking curve parametrized by arclength, expressed
in polar coordinates by γ = (ρ cos(φ), ρ sin(φ)). Assume that φ′(s) > 0 in S and

0 < ∆ ≤ π, where ∆ :=

∫ s

s
φ′(s) ds.

Let L be the straight line passing through the two points γ(s), γ(s) and H1 and H2 be the two closed
half–planes in which L divides the plane R2. Then the arc γ(S) is entirely contained in H1 or H2.

Moreover, if ∆ < π and γ(S) ⊂ H1, then the origin of R2 belongs to the interior of H2.

Proof. By the assumption φ′ > 0, we have k > 0 and the arc γ(S) is contained in the cone
C := {φ(s) ≤ φ ≤ φ(s)}, which is convex by the assumption 0 < ∆ ≤ π. Since the curvature
is positive, the closed set T delimited by the arc γ(S) and by the two line segments joining the
origin with γ(s) and γ(s) is a convex subset of R2, hence, the line segment joining γ(s) with
γ(s) is contained in T , which implies the thesis. �

Coming back to our Θ–shrinker, because of its topological structure, one of the curves is
contained in the region delimited by the other two, moreover the curvature of both these two
“external” curves is always non zero, otherwise any such curve is a segment of a straight line
passing for the origin, then the 120 degrees condition at its endpoints would imply that it must
be contained in the region bounded by the other two curves, hence it could not be “external”.
Notice that, on the contrary, the “inner” curve could actually be a segment for the origin.

We call γ2 the “inner” curve and, recalling that the origin of R2 is not over the straight line
through the two triple junctions A and B, parametrizing counterclockwise the three curves,
that is φ′i > 0 (in the case that the “inner” curve γ2 is not a segment), we call γ1 the “external”
curve which starts at B. By Lemma 3.3, γ1 reaches the point A after φ1 changes of an angle

∆ =
∫ s1
s1
φ′1(s) ds < 2π equal to the angle B̂OA, which is smaller or equal than π. Hence, by

Lemma 3.4, all such curve γ1 stays over the straight line passing for the two triple junctions A
and B.

We call γ3 the other extremal curve, hence since φ1, φ3 > 0, we have

γ1(s1) = γ3(s3) = B, γ1(s1) = γ3(s3) = A.

Because of the shrinker equation (1.2), all the three curves are convex with respect to the
origin. This implies that the origin is contained in the interior of the bounded areaA13 enclosed
by γ1 and γ3 (if the origin belongs to γ1 or γ3 such curve is a segment and cannot be “external”,

8
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as we said before), which also contains γ2 ⊂ A13. We let A12 be the region enclosed by the
curves γ1 and γ2 and we split the analysis into two cases.

Case 1. The origin does not belong to the interior of A12.

Since the curve γ2 is convex with respect to the origin, by the same argument used above for
γ1, it is contained in the upper half–plane determined by the straight line for the points A and
B.

By the 120 degrees condition it follows that the angle β at B formed by the vector (1, 0) and
γ′1 is at most π

3 . Similarly, also the angle α at A formed by the vector (1, 0) and γ′1 is at most π
3 .

By the convexity of the region delimited by γ2 and γ3 containing the origin and again the 120
degrees condition at B, it is then easy to see that the angle atB formed by the vectors γ1 and γ′1
is less or equal than π

3 and analogously, the angle at A formed by γ1 and γ′1 is greater or equal

than 2π
3 .

Hence, by equality (2.5), it follows

ρ′1(s1) ≥
1

2
> 0, ρ′1(s1) ≤ −1

2
< 0.

As a consequence, there is a point of maximum radius s∗1 ∈ (s1, s1) such that ρ1(s
∗
1) ≥ ρ1(s) for

all s ∈ (s1, s1).
The vector γ1(s

∗
1) forms an angle σ ≥ π

2 with (1, 0) or (−1, 0). Assume that the angle between
γ1(s

∗
1) and (1, 0) is greater or equal than π

2 (the other case is analogous, switching A and B).
We extend the curve γ1 (still parametrized by arclength) “before” the point B till it intersects
the x–axis at some s̃1 ≤ s1 (this must happen because φ1(s) > 0 everywhere also on the
extended curve) and we consider the (non relabeled) curve γ1 defined in the interval L1 =
[s̃1, s

∗
1]. Calling β0 the angle formed by the vectors γ′1(s̃1) and (1, 0), by convexity and the fact

that the angle β at B formed by the vector (1, 0) and γ′1 is at most π
3 , we have that β0 ≤ β ≤ π

3 .

Hence, by equality (2.5), we have ρ′1(s̃1) ≥ 1
2 > 0.

Considering now the function s 7→ ρ1(s) on the interval L1 = [s̃1, s
∗
1], since ρ′1(s̃1) > 0 and

s∗1 is a maximum point for ρ1, either ρ1 is increasing on L1, or ρ1 has another maximum and
then a minimum in the interior of L1 (notice that the map ρ1 cannot be constant on an interval,
otherwise γ1 would be an arc of a circle centered at the origin, which is impossible since ρ1
is not constant). But we know from formula (2.3) and Proposition 2.1 that the angle φ1 must
increase more than π

2 to go from a minimum to a maximum or viceversa (we can apply such
proposition since γ1 is not an arc of a circle). Since

∫ s∗
1

s̃1

φ′1(s) ds ≤ π,

there cannot be a maximum, then a minimum, then a second maximum in L1. It follows that
ρ1 is increasing in such interval.

This, combined with the fact that β0 ≤ π
3 and that the angle σ is at least π

2 , that is,
∫ s∗

1

s̃1
φ′1(s) ds ≥

π
2 , is in contradiction with Lemma 3.1. Therefore, this case cannot happen.

Case 2. The origin belongs to the interior of A12.

Being the region A12 convex (by the shrinker equation (1.2), since it contains the origin), the
curve γ2 (which is oriented counterclockwise) goes from A to B. The fact that γ′2 and γ′3 form
angles of 2π

3 at the points A and B implies that:
(i) the angle in A formed by the vectors γ3(s3) and γ′3(s3) and the angle in B formed by the

vectors γ2(s2) and γ′2(s2) are both less or equal than π
3 ;

(ii) the angle in B formed by the vectors γ3(s3) and γ′3(s3) and the angle in A formed by the
vectors γ2(s2) and γ′2(s2) are both greater or equal than 2π

3 .
In particular, by equality (2.5), it follows

ρ′2(s2) ≤ −1

2
< 0, ρ′2(s2) ≥

1

2
> 0, ρ′3(s3) ≥

1

2
> 0, ρ′3(s3) ≤ −1

2
< 0. (3.3)

9
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Hence, the function s 7→ ρ3(s) has a maximum at some point s∗3 ∈ (s3, s3), while the function
s 7→ ρ2(s) has a minimum at some point s◦2 ∈ (s2, s2).

If s∗3 is the only point of maximum of ρ3 in the interval [s3, s3], then the function ρ3 is strictly
monotone on each of the two subintervals [s3, s

∗
3] and [s∗3, s3], moreover,

∫ s∗3

s3

φ′3(s) ds +
∫ s3

s∗
3

φ′3(s) ds =
∫ s3

s3

φ′3(s) ds ≥ π,

since the origin is “below” the segment AB. Thus, at least one of the two integrals on the left–
hand side is greater or equal than π

2 and, by Lemma 3.1, this is not possible. As a consequence,
there must be another point of maximum radius s∗∗3 ∈ (s3, s3) (notice that the maximum points
cannot be an interval, otherwise γ3 would be an arc of a circle centered at the origin, hence with
ρ′3 = 0, against relations (3.3)). Hence, between these two points of maximum radius there is a
minimum point s◦3. Without loss of generality, we assume that s3 < s∗3 < s◦3 < s∗∗3 < s3.

We observe that there cannot be a third maximum point for ρ3 (hence also another minimum
point) in the interval [s3, s3] because, by Lemma 2.2, each of the four angles at the origin formed
by the segment connecting the origin with two consecutive of the five extremal points for ρ3 on

γ3 is greater than π
2 and, by Lemma 3.3, there holds

∫ s3
s3
φ′3(s) ds < 2π. Moreover, also the case

of two minimum points and two maximum points for ρ3 in the interval [s3, s3] is not possible,
because of the sign of the derivative ρ′3 at the endpoints in relations (3.3). Hence, we conclude
that s∗3, s

◦
3, s

∗∗
3 are the only extremal points for ρ3 in the interval [s3, s3].

Now consider the quantities F2,F3 of the curves γ2, γ3, respectively, given by formula (2.7).
By relations (3.3), the curves γ2 and γ3 are not the unit circle (they would have ρ′2 or ρ′3 equal
to zero everywhere), therefore F2,F3 >

1
2 . If we draw the line from the origin to γ3(s

◦
3), this

must intersect γ2 in an intermediate point, implying that the minimal radius of the curve γ2
is smaller than the minimal radius of the curve γ3. By the discussion about the value of the
quantity F in relation with the extremal values of ρ at the end of Section 2, we have F2 > F3.
Then, if a maximum of ρ2 is taken in the interior of γ2, it must be larger than the maximal
radius of γ3 (which is taken in the interior of γ3), which is not possible as γ2 is contained in

the region bounded by γ3 and the segment AB. From this argument we conclude that there
are no points of maximal radius in the interior of γ2, thus, the only extremal point for ρ2 in the
interval [s2, s2] is the minimum point s◦2.

Defining the angle

α :=

∫ s2

s2

φ′2(s) ds =
∫ s3

s3

φ′3(s) ds,

by formula (2.8) and the symmetry of the curve γ3 with respect to the straight line through the
origin and the point γ3(s

◦
3) of minimum distance, we have

I(F3) =

∫ s◦
3

s∗
3

φ′3(s) ds =
∫ s∗∗

3

s◦
3

φ′3(s) ds <
α

2

while, since γ2 does not contain any interior point of maximum radius,

I(F2) > max

{∫ s◦2

s2

φ′2(s) ds,
∫ s2

s◦
2

φ′2(s) ds

}
≥ α

2
.

Thus, I(F2) > I(F3) and F2 > F3, which is in contradiction with the monotonicity of the
function I given by Proposition 2.2. Hence, also this case can be excluded.

Since we excluded both cases, our hypothetical Θ–shrinker cannot exist (under the validity
of Lemma 3.1 which we are going to prove in the next section).

10
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4. THE PROOF OF LEMMA 3.1

We prove Lemma 3.1 in the case of ρ increasing, for ρ decreasing the proof is similar and it
can be deduced by changing the orientation of the curve.

Let γ = (ρ cos φ, ρ sinφ) be a counterclockwise arclength parametrized shrinking curve, that
we suppose defined for every s ∈ R, and let [s0, s1] be an interval where ρ(s) is increasing. As
a first step, we prove a formula for the integral in Lemma 3.1, using ρ as a new integration
variable. Let µ : R+ → R be the function

µ(x) :=
1

2
x2 − log(x), (4.1)

so that relation (2.7) gives

F = µ(ρ(s))− log(ρ(s)φs(s)) ∀s ∈ R. (4.2)

Let R be the maximum value of ρ along the whole γ, namely R = ρmax(F) in the notation at
the end of Section 2. We consider R > 1, namely we exclude the case when γ is the unit circle
(for the unit circle Lemma 3.1 trivially holds, as ρs = 0 everywhere). Since ρs = 0 when ρ = R,
by equation (2.4) one has ρφs = 1 at that point, therefore, by relation (4.2), we deduce

F = µ(R), (4.3)

which gives a link between the quantity F and the maximum distanceR of the curve γ. Notice
that, for the same reason, F = µ(r) where r = ρmin(F).

By equations (4.2) and (4.3), it follows

ρφs = exp(µ(ρ)− µ(R)),

hence,

φs =
1

ρ
eµ(ρ)−µ(R) ,

then, since ρs > 0 in [s0, s1], by equation (2.4), we conclude

ρs =
√

1− e2[µ(ρ)−µ(R)]. (4.4)

Therefore, changing the integration variable as ρ = ρ(s), we get
∫ s1

s0

φs(s) ds =

∫ ρ(s1)

ρ(s0)
f(ρ,R) dρ (4.5)

where

f(ρ,R) :=
eµ(ρ)−µ(R)

ρ
√

1− e2[µ(ρ)−µ(R)]
. (4.6)

The function f(ρ,R) is defined for R > 1 and ρ ∈ (r,R), where r = ρmin(µ(R)) ∈ (0, 1).

Let smin < smax be two points such that

ρs(smin) = 0, ρs(smax) = 0, ρs(s) > 0 ∀s ∈ (smin, smax),

so that ρ(smin) = r = ρmin(F) and ρ(smax) = R = ρmax(F). By equation (2.4), ρs(s) is in-
creasing when ρ(s)φs(s) is decreasing; being the quantity F constant along the curve γ, by
equation (4.2), this happens when µ(ρ(s)) is decreasing, namely when µ′(ρ(s)) < 0, that is, for
ρ(s) < 1 (the function µ is strictly convex with a minimum at x = 1). Therefore, ρs is increas-
ing on [smin, σ] and decreasing on [σ, smax], where σ ∈ (smin, smax) is the only point such that
ρ(σ) = 1.

We analyze now the points where ρs ≥ 1
2 . First we observe that if the quantity F is too low,

then there are no such points. Indeed, since ρs has its maximum when ρ = 1, namely at s = σ,
by equation (4.4), we have

ρs(σ) =
√

1− e1−2µ(R) =
√

1− e1−2F ,
11
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as µ(ρ(σ)) = µ(1) = 1/2.
It follows that ρs(σ) ≥ 1

2 if and only if

F ≥ 1

2
− log

(√3

2

)
,

that is, if and only if R ≥ R, where R is the unique real number such that

µ(R) =
1

2
− log

(√3

2

)
, R > 1. (4.7)

As a consequence, Lemma 3.1 trivially holds for curves γ such that R < R (because the as-
sumption ρs(s0) ≥ 1

2 is simply not satisfied).

Let R ≥ R. Let ŝ be the smallest number in the interval (smin, smax) such that ρs(ŝ) ≥ 1
2 ,

namely ŝ is the unique number in (smin, σ] such that ρs(ŝ) =
1
2 , then, clearly

∫ s1

s0

φs(s) ds ≤
∫ smax

ŝ
φs(s) ds. (4.8)

Letting d(R) = ρ(ŝ), by equation (4.4), d(R) is the unique solution of

µ(d(R)) = µ(R) + log
(√3

2

)
, 0 < d(R) ≤ 1, (4.9)

for any R ≥ R. Notice that d(R) = 1 and 0 < d(R) < 1 for R > R. Finally, by equations (4.5)
and (4.8), we have

∫ s1

s0

φs(s) ds ≤
∫ smax

ŝ
φs(s) ds =

∫ R

d(R)
f(x,R) dx =: J(R).

Lemma 3.1 is then proved once we get the following bound.

Proposition 4.1. For all R ≥ R there holds

J(R) <
π

2
.

4.1. Proof of Proposition 4.1 – Preliminaries.
It is easy to see by the definition of d(R) in formula (4.9) thatR 7→ d(R) is a strictly decreasing

function on [R,+∞) with d(R) = 1. We let

ψ(t) :=
t√

1− t2
, t ∈ (0, 1), (4.10)

then, the function f , defined by formula (4.6), can be expressed as

f(ρ,R) =
e

1

2
(ρ2−R2)R

ρ2
√

1− eρ2−R2R2ρ−2
=

eµ(ρ)−µ(R)

ρ
√

1− e2[µ(ρ)−µ(R)]
=

1

ρ
ψ
(
exp{µ(ρ)− µ(R)}

)
,

for ρ ∈ [d(R), R). Indeed, µ(ρ)− µ(R) < 0 for all ρ ∈ [d(R), R).
Notice that, even if f(ρ,R) → +∞ as ρ → R−, the integral J(R) is finite for all R ≥ R,

because f diverges like (R− ρ)−1/2 as ρ→ R−.

Lemma 4.2 (Approximation of R). Recalling the defining formula (4.7) for R, we have
√

1 + log(cn) < R <
√

1 + log(dn) ∀n = 0, 1, 2, . . . (4.11)

where (cn) is the increasing sequence defined by

c0 = 1, cn+1 =
4

3
(1 + log(cn)), n ≥ 0 (4.12)

and (dn) is the decreasing sequence defined by

d0 = 3, dn+1 =
4

3
(1 + log(dn)), n ≥ 0. (4.13)

12
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Proof. By definition (4.7), R > 1 and the first inequality in (4.11) for n = 0 holds. Since 5

4 >

log(3), one directly proves that µ(
√

1 + log(3)) > 1
2 − log(

√
3
2 ) = µ(R), where µ is defined by

formula (4.1). Since µ is strictly increasing on (1,+∞), it follows that R <
√

1 + log(3), which
is the second inequality in (4.11) for n = 0.

Assume that
√

1 + log(cn) < R <
√

1 + log(dn) for some n ≥ 0. Then

1 + log
(4
3

(
1 + log(cn)

))
< 1 + log

(4
3
R

2
)
< 1 + log

(4
3

(
1 + log(dn)

))
.

By definition of R one has 1 + log(43R
2
) = R

2
, hence, by equations (4.12) and (4.13), we get

1 + log(cn+1) < R
2
< 1 + log(dn+1). Thus, formula (4.11) holds for all n ≥ 0.

For all n ≥ 1 one has cn+1 > cn if and only if cn > cn−1 and similarly dn+1 < dn if and only if
dn < dn−1. Since c1 > c0 and d1 < d0, the sequence (cn) is increasing and (dn) is decreasing. �

Lemma 4.3 (Exact rounding for the value of R). There holds 21
16 <

7
5 < R < 23

16 .

Proof. Using interval arithmetic, we compute exact roundings for cn, dn in Lemma 4.2 for n = 50,
and we get 1.4004566266453120082 < R < 1.4004566266453162271. �

Lemma 4.4 (Approximation of d(R)). Let R ≥ R, recalling the defining formula (4.9) for d(R) and
denoting

a := −µ(R)− log
(√3

2

)
, (4.14)

there holds
exp(an) < d(R) ≤ exp(bn), ∀n = 0, 1, 2, . . . (4.15)

where (an) is the increasing sequence defined by

a0 = a, an+1 = a+
1

2
exp(2an), n ≥ 0 (4.16)

and (bn) is defined by

b0 = a+
1

2
, bn+1 = a+

1

2
exp(2bn), n ≥ 0,

which is a decreasing sequence if R > R. It is constant equal to zero if R = R.

Proof. Since d(R) > 0, from formulas (4.9) and (4.14) one has log(d(R)) = a + 1
2d(R)

2 > a,
hence d(R) > exp(a0). By induction, assume that d(R) > exp(an) for some n ≥ 0. Then
log(d(R)) = a+ 1

2d(R)
2 > a+ 1

2 exp(2an) = an+1, hence d(R) > exp(an+1). This proves the first

inequality (4.15) for all n ≥ 0. Since d(R) ≤ 1, one has log(d(R)) = a+ 1
2d(R)

2 ≤ a+ 1
2 , hence

d(R) ≤ exp(b0). Assume that d(R) ≤ exp(bn) for some n ≥ 0. Then log(d(R)) = a+ 1
2d(R)

2 ≤
a+ 1

2 exp(2bn) = bn+1, hence d(R) ≤ exp(bn+1). The proof of inequalities (4.15) is complete. By
the definition (4.16), it follows that an+1 > an if and only if an > an−1, for all n ≥ 1. Moreover,
a1 > a0, therefore (an) is increasing. Similarly, bn+1 − bn has the same sign of bn − bn−1 for all

n ≥ 1. For R > R one has b0 < 0, hence b1 < b0 and the sequence (bn) is decreasing. Notice
that for R = R one has bn = b0 = 0 for all n and d(R) = 1 = exp(bn). �

To approximate the integral J(R) from above, we will use the convexity of the function
f(·, R).
Lemma 4.5. For all R ≥ R, the function ρ 7→ f(ρ,R) is strictly convex on [d(R), R).

Proof. By definition, f(ρ,R) = 1
ρψ(G), where G := G(ρ,R) = exp(µ(ρ) − µ(R)) and ψ, µ are

defined in formulas (4.1) and (4.10). We have µ′(ρ) = ρ − ρ−1, ψ′(x) = (1 − x2)−3/2, and
∂ρG = (ρ− ρ−1)G. Thus,

∂ρf(ρ,R) = G(1 − G2)−
3

2 [1 + (G2 − 2)ρ−2], ∂2ρρf(ρ,R) =
G

(1− G2)
5

2ρ3
h

13
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where

h := ρ4(1 + 2η) − 3ρ2(1 + η) + (2η2 − 5η + 6), η := G2.

Then,

h =
(
ρ2
√

1 + 2η − 3(1 + η)

2
√
1 + 2η

)2
+

1− η

4(1 + 2η)
(15 + 25η − 16η2),

and 0 < η < 1 for all R ∈ [d(R), R) because µ(ρ) − µ(R) < 0. Hence, 1 − η > 0 and also
15+ 25η− 16η2 > 0, for all η ∈ (0, 1). Therefore, h > 0 and ∂ρρf(ρ,R) > 0, for all ρ ∈ [d(R), R),

R ≥ R. �

Lemma 4.6. For all R > R, all ρ ∈ [d(R), R), there holds ∂Rf(ρ,R) < 0, that is, the function
R 7→ f(ρ,R) is decreasing.

Proof. With the same notation as in the proof of Lemma 4.5, we have

∂Rf(ρ,R) = −ρ−1G(1− G2)−3/2(R−R−1) < 0.

�

4.2. Proof of Proposition 4.1 for “small” R.

Lemma 4.7. There holds J(R) < 3
2 for all R ∈

[
R, 2316

]
.

Proof. Recalling the bound in Lemma 4.3, we split

J(R) =

∫ 1

d(R)
f(ρ,R) dρ+

∫ ρ2

1
f(ρ,R) dρ+

∫ R

ρ2

f(ρ,R) dρ, ρ2 :=
21

16
.

Since f(·, R) is convex (Lemma 4.5), the integral over the region [d(R), 1] is bounded by the
area of the trapezoid

∫ 1

d(R)
f(ρ,R) dρ ≤ 1− d(R)

2

(
f(d(R), R) + f(1, R)

)
.

Now f(d(R), R) =
√
3/d(R), while, recalling that d(R) = 1, we have

f(1, R) =ψ(exp{µ(1) − µ(R)}) ≤ ψ(exp{µ(1) − µ(R)})

=ψ(exp{µ(d(R))− µ(R)}) = ψ
(√3

2

)
=

√
3.

Hence, using that d(R) ≥ d(23/16), we obtain

∫ 1

d(R)
f(ρ,R) dρ ≤ 1− d(R)

2

(√
3 +

√
3

d(R)

)
≤ 1− d(23/16)

2

(√
3 +

√
3

d(23/16)

)
.

The integral over the region [1, ρ2] is also bounded by the area of the corresponding trapezoid,
namely,

∫ ρ2

1
f(ρ,R) dρ <

ρ2 − 1

2

(√
3 + f(ρ2, R)

)
. (4.17)

The integral over the region [ρ2, R) is bounded by using the change of variable

eµ(ρ)−µ(R) = ξ,
(ρ2 − 1)eµ(ρ)−µ(R)

ρ
dρ = dξ, (4.18)

14
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which gives

∫ R

ρ2

f(ρ,R) dρ =

∫ R

ρ2

1

ρ2 − 1

1√
1− e2[µ(ρ)−µ(R)]

(ρ2 − 1)eµ(ρ)−µ(R)

ρ
dρ

≤ 1

ρ22 − 1

∫ R

ρ2

1√
1− e2[µ(ρ)−µ(R)]

(ρ2 − 1)eµ(ρ)−µ(R)

ρ
dρ

=
1

ρ22 − 1

∫ ξ(R)

ξ(ρ2)

1√
1− ξ2

dξ

=
1

ρ22 − 1

(π
2

− arcsin(eµ(ρ2)−µ(R))
)
. (4.19)

Using Lemmas 4.3 and 4.6, we have f(ρ2, R) < f(ρ2, 7/5) and µ(R) ≤ µ(23/16), and we insert
these bounds in (4.17) and (4.19). Since ρ2 = 21/16, we get

J(R) ≤ 1− d(23/16)

2

(√
3 +

√
3

d(23/16)

)
+

5

32

(√
3 + f

(21
16
,
7

5

))

+
256

185

(π
2

− arcsin(eµ(21/16)−µ(23/16))
)
. (4.20)

Using Lemma 4.4 and interval arithmetic for correct roundings, we obtain that the right–hand
side of (4.20) is strictly less than 1.4712. �

4.3. Proof of Proposition 4.1 for “large” R.

Lemma 4.8. There holds J(R) < 3
2 for all R ∈ [4,+∞).

Proof. Let R ≥ 4, we consider some ρ1, ρ2 such that d(R) < ρ1 < 1 < ρ2 < R that we will
choose later and we split the integral J(R) of the four intervals.

(1) The integral over [d(R), ρ1].
We use the change of variable (4.18). Since µ is decreasing on (0, 1), we get

∫ ρ1

d(R)
f(ρ,R) dρ ≤ 1

1− ρ21
arcsin(ξ)

∣∣∣
ξ(d(R))

ξ(ρ1)
=

1

1− ρ21

(π
3

− arcsin(ξ(ρ1))
)
<

1

1− ρ21

π

3
. (4.21)

(2) The integral over [ρ1, 1].
Since µ is decreasing on (0, 1), we have

∫ 1

ρ1

f(ρ,R) dρ =

∫ 1

ρ1

1

ρ
ψ
(
eµ(ρ)−µ(R)

)

≤ ψ
(
eµ(ρ1)−µ(R)

) ∫ 1

ρ1

1

ρ
dρ = log

( 1

ρ1

)
ψ
(
eµ(ρ1)−µ(R)

)
. (4.22)

(3) The integral over [1, ρ2].
Since µ is increasing on (1,+∞), we have

∫ ρ2

1
f(ρ,R) dρ =

∫ ρ2

1

1

ρ
ψ
(
eµ(ρ)−µ(R)

)

≤ ψ
(
eµ(ρ2)−µ(R)

) ∫ ρ2

1

1

ρ
dρ = log(ρ2)ψ

(
eµ(ρ2)−µ(R)

)
. (4.23)

(4) The integral over [ρ2, R).
Using the general inequality

ψ(ex) =
ex√

1− e2x
<

1√
2|x|

∀x < 0

we get

ψ(eµ(ρ)−µ(R)) <
1√

R2 − ρ2 − log(R2ρ−2)
15
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and, since log(1 + x) < x for all x > −1, we deduce that

f(ρ,R) <
1√

(R2 − ρ2)(ρ2 − 1)
.

Hence,
∫ R

ρ2

f(ρ,R) dρ <
1√

(R+ ρ2)(ρ
2
2 − 1)

∫ R

ρ2

1√
R− ρ

dρ =
2
√
R− ρ2√

(R+ ρ2)(ρ
2
2 − 1)

. (4.24)

The sum of the integrals (4.21), (4.22), (4.23) and (4.24), with ρ2 = R− 1 and some ρ1, gives

J(R) ≤ Q1(ρ1) +Q2(ρ1, R) +Q3(R) +Q4(R) =: Q(ρ1, R) (4.25)

where

Q1(ρ1) :=
1

1− ρ21

π

3
, Q2(ρ1, R) := log

( 1

ρ1

)
ψ
(
eµ(ρ1)−µ(R)

)
,

Q3(R) := log(R − 1)ψ
(
eµ(R−1)−µ(R)

)
, Q4(R) :=

2√
(2R − 1)(R2 − 2R)

.

For any ρ1, the value Q1(ρ1) does not depend on R and Q2(ρ1, R), Q4(R) are decreasing func-
tions of R on [4,+∞). Computing the derivative of Q3(R), we see that Q3 is decreasing if

R− e1−2R R3

(R − 1)2
− (R2 −R+ 1) log(R− 1) < 0.

Since

R− (R2 −R) log(R − 1) = R[1− (R− 1) log(R− 1)] < 0

for R ≥ 4, we deduce that also Q3 is decreasing on [4,+∞). Hence, the function R 7→ Q(ρ1, R)
defined in formula (4.25) is decreasing on [4,+∞), therefore,

J(R) ≤ Q(ρ1, R) ≤ Q(ρ1, 4) ∀R ≥ 4.

We fix ρ1 = 1/8 and we note that d(R) ≤ d(4) < 1/500 < ρ1 = 1/8 for all R ≥ 4 (Lemma 4.4
and exact rounding with interval arithmetic give d(4) < 0.00155). We compute Q(1/8, 4) < 1.4,
thus J(R) < 1.4, for R ≥ 4. �

4.4. Proof of Proposition 4.1 for “intermediate” R.

Lemma 4.9. There holds J(R) < 1.52 for all R ∈
[
23
16 , 4

]
.

Proof. We split the interval
[
23
16 , 4

]
into M subintervals of length δR: we fix

δR := 2−10, Rn :=
[23
16

+ (n− 1)δR,
23

16
+ nδR

]
, n = 1, 2, . . . ,M, (4.26)

where M := (4 − 23
16 )δ

−1
R = 2624. Note that all the numbers 23

16 + nδR with n ∈ N ∩ [1,M ] are
represented exactly by any standard computer. Now for each n = 1, . . . ,M we estimate the set
{J(R) : R ∈ Rn}.

LetR be any of the intervals Rn and callRmin, Rmax its extremal points. Letα, β, with α < β,
be two rational numbers that are represented exactly by the computer, such that d(R) ∈ [α, β],
for all R ∈ R. To estimate J(R) for all R ∈ R, we split the integration interval [d(R), R] into
many subintervals.

First, let δ0 = 2−m0 , m0 ∈ N, be such that

β + δ0 ≤ 1, (4.27)

so that d(R) + δ0 ≤ 1 for all R ∈ R. Since f(ρ,R) is convex in ρ (Lemma 4.5), the integral over
[d(R), d(R) + δ0] is bounded by the area of the trapezoid,

∫ d(R)+δ0

d(R)
f(ρ,R) dρ ≤ δ0

2

( √
3

d(R)
+ f(d(R) + δ0, R)

)
=: J0(R).
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Next, since α ≤ d(R), we have

∫ 1

d(R)+δ0

f(ρ,R) dρ ≤
∫ 1

α+δ0

f(ρ,R) dρ

and [α+ δ0, 1] is contained in the domain [d(R), R) of f(·, R) for all R ∈ R if

β ≤ α+ δ0.

We definem0 as the integer part [− log2(β−α)], so that β−α ≤ δ0 < 2(β−α). Inequality (4.27)
holds if α, β satisfy

3β − 2α ≤ 1.

We split the integration interval [α+δ0, 1] intoN1 subintervals of length δ1 = 2−10 and, possibly,

one smaller interval. Let N1 be the integer part of (1− α− δ0)δ
−1
1 and define

xk := (α+ δ0) + (k − 1)δ1, k = 1, . . . , N1 + 1.

Thus, x1 = α+ δ0 and 1− δ1 < xN1+1 ≤ 1. Note that the numbers xk are exactly representable
by the computer. Since f(·, R) is convex, one has

∫ 1

α+δ0

f(ρ,R) dρ ≤ J1(R) +

∫ 1

xN1+1

f(ρ,R) dρ (4.28)

where

J1(R) :=
δ1
2

(
f(x1, R) + f(xN1+1, R)

)
+ δ1

N1∑

k=2

f(xk, R).

Next, let δ4 > 0 be such that Rmin − δ4 ≥ 1. Bound (4.24) gives
∫ R

R−δ4

f(ρ,R) dρ <
2
√
δ4√

(2R − δ4)[(R − δ4)2 − 1]
=: J4(R).

Since R ≤ Rmax, ∫ R−δ4

1
f(ρ,R) dρ ≤

∫ Rmax−δ4

1
f(ρ,R) dρ,

and [1, Rmax − δ4] is contained in the domain [d(R), R) of f(·, R) for all R ∈ R if

δ4 > Rmax −Rmin = δR.

Since δR = 2−10 andRmin ≥ 23
16 , we can fix δ4 = 2−6. We split the integration interval [1, Rmax−

δ4] into N3 subintervals of length δ3 = 2−6 and, possibly, one smaller interval. Let N3 be the

integer part of (Rmax − δ4 − 1)δ−1
3 and define

zk := (Rmax − δ4)− (k − 1)δ3, k = 1, . . . , N3 + 1.

Thus z1 = Rmax−δ4 and 1 ≤ zN3+1 < 1+δ3. Note that the numbers zk are exactly representable
on the computer. Since f(·, R) is convex,

∫ Rmax−δ4

1
f(ρ,R) dρ ≤ J3(R) +

∫ zN3+1

1
f(ρ,R) dρ, (4.29)

where

J3(R) :=
δ3
2

(
f(z1, R) + f(zN3+1, R)

)
+ δ3

N3∑

k=2

f(zk, R).

Regarding the two remaining integrals (4.28) and (4.29), one has
∫ 1

xN1+1

f(ρ,R) dρ+

∫ zN3+1

1
f(ρ,R) dρ =

∫ zN3+1

xN1+1

f(ρ,R) dρ ≤ J2(R)

where

J2(R) :=
zN3+1 − xN1+1

2

(
f(xN1+1, R) + f(zN3+1, R)

)
.
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Thus,

J(R) ≤
4∑

i=0

Ji(R). (4.30)

We use interval arithmetic to find a correct rounding for each term Ji(R), uniformly in R ∈ R
and we repeat the procedure for all intervals in formula (4.26). We get J(R) ≤ 1.51734 <
1.52 for all R ∈

[
23
16 , 4

]
. The maximum value of the upper bound for the right–hand side of

inequality (4.30) is obtained on the interval Rn with n = 490, corresponding to R close to
1.915 (but there is no reason for which the true function J(R) and the upper bound we have
computed should have a maximum at the same point). Along the procedure the exponent m0

of δ0 assumes integer values between 5 and 17.
The computation takes about 18 minutes on our standard computers. The code we have used
is in Appendix A. �

5. SOME CONSEQUENCES AND OPEN QUESTIONS

The arguments of Section 3 can be used to prove the following proposition, also conjectured
in [8, Conjecture 3.22].

Proposition 5.1. Any region of a regular shrinking network bounded by only two curves must contain
the origin in its interior.

Proof. Such a region cannot be strictly convex, otherwise, by the shrinkers equation the conclu-
sion is immediate. If one of the curves is a segment, by reflecting the region with respect to the
straight line containing such segment, which must pass through the origin, one would obtain
a Θ–shrinker which is excluded by Theorem 1.1. Hence, we suppose that the closed region is
bounded by two curves with the “same convexity” with respect to the origin, counterclock-
wise parametrized by arclength (hence going from the triple junction B to the triple junction
A) and we assume that the origin is outside the region.
As before, we separate the analysis in two cases, according to the position of the origin with

respect to the straight line containing the segment AB. The case when the origin is below or
belongs to such line follows as in Case 1 of the proof of Theorem 1.1 in Section 3. The case
when the origin is above the the straight line containing the segment AB, can be treated with
the same (energetic) arguments of Case 2. �

As an immediate consequence, not only a Θ–shrinker cannot exist, but also there are no
shrinking networks with more than one region bounded by only two curves.
This is another step in the classification of the whole family of shrinkers. For instance, it is
easy to show that every bounded region must have less than six bounding curves and its area
is determined by such number.
Several other results in this direction were obtained in [8,22,23]. We want to mention the work
of Hättenschweiler [8] where it is proposed the very interesting Conjecture 3.26 that there is
an upper bound for the possible number of bounded regions of a shrinker. This clearly would
imply that the possible topological structures of compact shrinkers are finite.

APPENDIX A. CODES FOR INTERVAL ARITHMETIC COMPUTATIONS

This is the code we have used to compute a correct rounding (in particular, an exact upper
bound) for the right–hand side of (4.30).
tic ();
output_precision(6)
delta_R = 2ˆ(-10);
delta_1 = 2ˆ(-10);
delta_3 = 2ˆ(-6);
delta_4 = 2ˆ(-6);
NN = 10; %% Number of iterations for the computation of d(R).
if (delta_4 < delta_R)

printf("Attention: it is delta_4 < delta_R, whereas it shou ld be >=. \n")
endif
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M = (4 - 23/16) / delta_R;
J_0 = infsup(zeros(M,1));
J_1 = infsup(zeros(M,1));
J_2 = infsup(zeros(M,1));
J_3 = infsup(zeros(M,1));
J_4 = infsup(zeros(M,1));
J = infsup(zeros(M,1));
vec_R = infsup(zeros(M,1));
vec_dR = infsup(zeros(M,1));
m_0 = infsup(zeros(M,1));

for n=1:M
R_left = 23/16 + (n-1) * delta_R;
R_right = R_left + delta_R;
R = infsup( R_left , R_right ); % R is an interval temporary var iable
vec_R(n) = R; % the value of R is stored in the vector vec_R at ro w n

%% Here we calculate d(R) as a correctly rounding interval:
b = Rˆ2 /2 - log(R) + (1/2) * log(infsup(3)) - log(infsup(2));
a = -b ;
A = infsup(zeros(NN,1)) ;
A(1) = a ;
for k = 2:NN

A(k) = a + (1/2) * exp(2 * A(k-1)) ;
endfor

alpha = inf(exp(A(NN))) ;
B = infsup(zeros(NN,1)) ;
B(1) = a + 1/2 ;
for k = 2:NN

B(k) = a + (1/2) * exp(2 * B(k-1)) ;
endfor

beta = sup(exp(B(NN))) ;
if (beta <= alpha)

printf("Attention: alpha >= beta at row:\n")
n

endif
if (3 * beta - 2 * alpha > 1)

printf("Attention: 3 alpha - 2 beta > 1 at row:\n")
n

endif
% Verify: it should be:
% inf(ver_a) > 0 and sup(ver_b) < 0.
ver_a = 1/2 * infsup(alpha)ˆ2 - log(infsup(alpha)) - 1/2 * Rˆ2 + log(R) - log(sqrt(infsup(3)) / 2);
ver_b = 1/2 * infsup(beta)ˆ2 - log(infsup(beta)) - 1/2 * Rˆ2 + log(R) - log(sqrt(infsup(3)) / 2);
if (inf(ver_a) <= 0)

printf("Attention: not accurate enclosure of d(R) at row:\ n")
n

endif
if (sup(ver_b) >= 0)

printf("Attention: not accurate enclosure of d(R) at row:\ n")
n

endif
dR = infsup( alpha , beta );
vec_dR(n) = dR;
m_0(n) = floor( - log2(beta - alpha) );
delta_0 = 2ˆ(-m_0(n));
if (delta_0 < beta - alpha)

printf("Attention: something wrong, delta_0 too small at r ow:\n")
n

endif
if (alpha == 0)

printf("Attention: alpha = 0 at row:\n")
n

endif
if (beta + delta_0 > 1)

printf("Attention: beta + delta_0 > 1 at row:\n")
n
printf("You should take a larger NN and/or a smaller delta_R ")
endif

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% J_0
p = dR + delta_0;
fp = exp( pˆ2 / 2 - Rˆ2 / 2) * R * (1/p)ˆ2 * rsqrt( 1 - exp( pˆ2 - Rˆ2 ) * Rˆ2 * (1/p)ˆ2 );
J_0(n) = delta_0 / 2 * ( sqrt(infsup(3)) / dR + fp );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% J_1
N_1 = floor( (1 - alpha - delta_0) / delta_1 );
x = zeros(N_1 + 1,1);
x(1) = alpha + delta_0;
for i = 2 : N_1+1

x(i) = x(i-1) + delta_1;
endfor

if (x(N_1 + 1) > 1)
printf("Attention: x(N_1 + 1) > 1 at row:\n")
n
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endif

y = infsup(zeros(N_1+1,1));
y = exp( x.ˆ2 / 2 - Rˆ2 / 2) * R . * ((1./x).ˆ2) . * rsqrt( 1 - exp( x.ˆ2 - Rˆ2 ) * Rˆ2 . * ((1./x).ˆ2) );
J_1(n) = delta_1 * (y(1) + y(N_1+1)) / 2 + delta_1 * sum( y(2 : N_1) );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% J_4
J_4(n) = 2 * sqrt(infsup(delta_4)) * rsqrt(2 * R - delta_4) * rsqrt((R - delta_4)ˆ2 - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% J_3
N_3 = floor( (sup(R) - delta_4 - 1) / delta_3 );
z = zeros(N_3+1,1);
z(1) = sup(R) - delta_4;
for i = 2 : N_3+1

z(i) = z(i-1) - delta_3;
endfor
if ( z(N_3 + 1) < 1 )

printf("Attention: z(N_3 + 1) < 1 at row:\n")
n
endif

w = infsup(zeros(N_3+1,1));
w = exp( z.ˆ2 / 2 - Rˆ2 / 2) * R . * ((1./z).ˆ2) . * rsqrt( 1 - exp( z.ˆ2 - Rˆ2 ) * Rˆ2 . * ((1./z).ˆ2) );
J_3(n) = delta_3 * (w(1) + w(N_3 + 1)) / 2 + delta_3 * sum( w(2 : N_3) );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% J_2
if ( z(N_3 + 1) - x(N_1 + 1) >= delta_1 + delta_3 )

printf("Attention: z(N_3 + 1) - x(N_1 + 1) should not be so lar ge, at row:\n")
n

endif
J_2(n) = ( y(N_1 + 1) + w(N_3 + 1) ) * ( z(N_3 + 1) - x(N_1 + 1) ) / 2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
endfor
J = J_0 + J_1 + J_2 + J_3 + J_4;
[J_max, n_max] = max(sup(J));
elapsed_time = toc ();

M
printf("J_0,J_1,J_2,J_3,J_4 at max:\n")
[J_0(n_max); J_1(n_max); J_2(n_max); J_3(n_max); J_4(n_ max)]

printf("R, d(R) at max:\n")
[vec_R(n_max); vec_dR(n_max)]

printf("Time in seconds:\n")
tt = elapsed_time;
tt % tt/60

printf("Min and max of d(R):\n")
min(inf(vec_dR))
max(sup(vec_dR))

printf("Min and max of m_0:\n")
min(m_0)
max(m_0)

printf("J max:\n")
J(n_max)
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7. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR: a multiple–precision binary floating–

point library with correct rounding, ACM Trans. Math. Software 33 (2007), no. 2, Art. 13, 15.
8. J. Hättenschweiler, Mean curvature flow of networks with triple junctions in the plane, Master’s thesis, ETH Zürich,
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