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Abstract

The existence question for two-dimensional symmetric steady waves travelling
on the surface of a deep ocean beneath a heavy elastic membrane is analyzed as a
problem in bifurcation theory. The behaviour of the two-dimensional cross-section
of the membrane is modelled as a thin (unshearable), heavy, hyperelastic Cosserat
rod, and the fluid beneath is supposed to be in steady two-dimensional irrotational
motion under gravity. When the wavelength has been normalized to be 2π, and
assuming that gravity and the density of the undeformed membrane are prescribed,
there are two free parameters in the problem: the speed of the wave and drift
velocity of the membrane.

It is observed that the problem, when linearized about uniform horizontal flow,
has at most two independent solutions for any values of the parameters. When
the linearized problem has only one normalized solution, it is shown that the full
nonlinear problem has a sheet of solutions comprised of a family of curves bifurcating
from simple eigenvalues. Here one of the problem’s parameters is used to index a
family of bifurcation problems in which the other is the bifurcation parameter.

When the linearized problem has two solutions, with wave numbers k and l such
that max{k, l}/ min{k, l} /∈ Z, it is shown that there are three two-dimensional
sheets of bifurcating solutions. One consists of “special” solutions with minimal
period 2π/k; another consists of “special” solutions with minimal period 2π/l; and
the third, apart from those on the curves where it intersects the “special” sheets,
consists of “general” solutions with minimal period 2π.

The two sheets of “special” solutions are rather similar to those that occur
when the linearized problem has only one solution. However, points where the
first sheet or the second sheet intersects the third sheet are period-multiplying (or
symmetry-breaking) secondary bifurcation points on primary branches of “special”
solutions. This phenomenon is analogous to that of Wilton ripples, which arises in
the classical water-wave problem when the surface tension has special values. In the
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case of Wilton ripples, the coefficient of surface tension and the wave speed are the
problem’s two parameters. In the present context, there are two speed parameters,
meaning that the membrane elasticity does not need to be highly specified for this
symmetry-breaking phenomenon to occur.

Keywords: hydrodynamic waves, hydroelastic waves, nonlinear elasticity, free boundary prob-
lems, travelling waves, bifurcation theory, secondary bifurcations, Wilton ripples, Lyapunov-
Schmidt reduction, symmetry-breaking.
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1 Introduction

The existence question for symmetric, 2π-periodic steady waves travelling with speed
c0 on the surface of a heavy, inviscid fluid which is at rest at infinite depth beneath a
heavy, thin (unshearable) elastic membrane was considered in [7] as a global problem in
the calculus of variations. Here we use local methods to study the bifurcation of such
waves. We will show that there are two free parameters, c0 (the wave speed) and d
(the membrane drift velocity) and that, when the problem is linearized about a uniform
horizontal stream with the membrane unstretched, there are no more than two linearly
independent solutions. (See equation (5.2), in which λ1 = ρ(c0 − d)2, λ2 = c20, ρ is the
density of the membrane and C is the Hilbert transform of a 2π-periodic function.) When
there is no non-zero solution, nonlinear waves do not bifurcate from uniform horizontal
streams; when there is only one solution, a sheet of solutions representing a parameterized
family of bifurcations from simple eigenvalues occurs; when there are two independent
solutions, there bifurcate three sheets of small-amplitude periodic waves. The latter
corresponds to the presence of secondary bifurcations from curves of “special” solutions,
the hydroelastic analogue of what are known as Wilton ripples [9], as described in the
Abstract and in Section 1.2. To quote from [4], “Waves characterized by two dominant
modes are often called Wilton’s ripples in the literature in reference to Wilton’s paper
(1915). It turns out that the phenomenon described as Wilton’s ripples was accounted
for at least twice prior to Wilton’s paper : in an unpublished addendum to an essay that
Bohr (1906) wrote in order to win the Royal Danish Academy prize on the theme ‘The
surface tension of water’ and in a paper by Harrison (1909).” (Bohr’s essay is [3].)

A key feature of the present analysis is the reduction of the physical problem (1.3 a-g) to
an equation (4.7) for one 2π-periodic function of one real variable and two parameters.

Physical Problem

This problem is described in detail in [7]. To summarise, we consider waves on the surface
of an infinitely deep ocean beneath an elastic membrane under the assumption that there
is no friction between the membrane and the fluid. Since the water depth is infinite, there
is no loss (after normalizing length scales appropriately) in restricting attention to waves
that have period 2π in the horizontal direction. The fluid’s Eulerian velocity field is
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supposed to be two-dimensional and stationary at the same time as the material of the
membrane is in motion, driven by gravity, by forces and couples due to its elasticity and
by pressure from the fluid. The resulting mechanical behaviour of the surface membrane
is modelled by regarding its cross-section as a heavy, unshearable, hyperelastic Cosserat
rod, using the treatment in Antman [1, Ch. 4]. We deal with this first.

Membrane Elasticity. Let (x, 0) ∈ R
2 be the rest position of a material point in

the membrane cross-section and let r(x) ∈ R
2 be its position after deformation. In the

notation of Antman, ϑ(x) is the angle between the horizontal positive semi-axis and the
vector r

′(x) (where ′ means d/dx). Let

ν(x) = |r′(x)| and µ(x) = ϑ′(x). (1.1)

Thus ν(x) is the stretch of the membrane at the point r(x) and

σ̂(r(x)) =
µ(x)

ν(x)

is its curvature. We suppose that the elastic properties of the membrane are described
as follows.

H1. (Hyperelasticity) There exists a C∞-function E(ν, µ) ≥ 0, ν > 0, µ ∈ R, such
that, after the deformation (x, 0) 7→ r(x), the elastic energy in the reference segment
{(x, 0) : x ∈ [x1, x2]} is

E(r) =

∫ x2

x1

E(ν(x), µ(x)) dx,

where ν(x), µ(x) are defined in (1.1). E is called the stored energy function.

We also assume that the reference configuration, unstretched and unbent, is a local
minimum of the elastic energy, which is locally convex.

H2. (Rest state and local convexity)

E(1, 0) = E1(1, 0) = E2(1, 0) = E12(1, 0) = 0, E11(1, 0) > 0, E22(1, 0) > 0.

Subscripts 1, 2 denote partial derivatives with respect to ν, µ, respectively.

Remark. Since this is a study of bifurcating waves, regularity questions that are sig-
nificant for large-amplitude waves are unimportant here. It is therefore for convenience
only that we suppose E ∈ C∞. With a little more technical effort the theory can be
developed for E with much less regularity.

Travelling Waves. For a periodic travelling wave, the position at time t of the material
point with Lagrangian coordinates (x, 0) in the undeformed membrane is assumed to be
given by

R(x, t) : =
(
x+ dt+ u(x− ct), v(x− ct)

)
,
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where u and v are 2π-periodic and c, d ∈ R. Let c0 = c+ d. Then the surface profile at
time t is the curve

St = {(x+ dt+ u(x− ct), v(x− ct)) : x ∈ R}

= {(s+ u(s), v(s)) : s ∈ R} + (c0t, 0)

=: S + (c0t, 0).

Thus St is represented by a profile S of fixed shape propagating from left to right, say,
without changing shape at a constant velocity c0 while at the same time the material
point with Lagrangian coordinates (x, 0) has temporal period 2π/c relative to a frame
moving with speed d. We refer to c0 as the wave speed and to d as the drift velocity of
the membrane, both calculated relative to the fluid at rest at infinite depth.

Since the membrane is in motion relative to the moving frame, there are inertial effects
due to its mass, but it is supposed throughout that there is no friction between the fluid
and the membrane. Under this assumption, it was shown in [7] that the inertial effects
lead to an equivalent steady-wave problem in which the wave speed and the drift velocity
coincide, and the stored energy function is perturbed by a quadratic term.

Remark. To motivate this observation and what follows, it is worth observing the corre-
sponding situation that arises when travelling-wave solutions R to an analogous nonlinear
wave equation

(E′(Rx))x = ρRtt, ρ > 0,

are sought. This equation describes longitudinal motion in a one-dimensional elastic rod
for which E is the stored energy function, ρ is the undeformed density and R(x, t) ∈ R is
the position at time t of the point with Lagrangian coordinate x ∈ R. It is significantly
simpler than the hydroelastic wave problem because here there are no body forces and
because the shape of the rod does not change, only the relative positions of its material
points in a straight line change with time.

First note that a stationary (time-independent) solution satisfies (E′(Rx))x = 0 and is
given by a critical point of the potential energy functional

∫ 2π

0

E(Rx) dx.

On the other hand, R is a periodic travelling wave with drift velocity d if

R(x, t) = c0t+ r(x − ct),

for some c and c0, where r(s+2π) = 2π+r(s) and d = c0−c. Here we regard the variable
s (= x − ct) as a steady Lagrangian coordinate for travelling waves. The equation for
r(s) is then

{E′(rs) − c2ρrs}s = 0, (1.2)

which corresponds to critical point of

∫ 2π

0

(
E(rs) −

ρ

2
c2r2s

)
ds.
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Therefore periodic travelling waves correspond to a boundary-value problem for station-
ary solutions of a nonlinear wave equation with a different stored energy function

E(p) := E(p) −
ρ

2
c2p2,

instead of E(p). In [7], E is called the pseudo-potential energy of travelling waves. If c
is large E is not convex, even when E is convex [6].

Note that if r and c correspond to a travelling wave, then a family, parametrized by
c0 ∈ R, of travelling waves with drift velocity d, is given by

R(x, t) = c0t+ r(x − ct), d = c0 − c.

However, in the hydroelastic wave problem, the interaction of the membrane with the
fluid means that the dependence of waves on both parameters is not so trivial. In fact,
we will see that the solutions r(s) = s, c0 and c arbitrary, to this one-dimensional
problem, when combined with a wave profile with zero elevation, is a family of trivial
solutions of the hydroelastic wave problem which we describe next. They correspond to
an undeformed membrane drifting with velocity d = c0 − c on the surface of a uniform
flow with horizontal velocity c0.

To summarise the analogous treatment in [7] of the equivalent hydroelastic travelling-
wave problem, let (s, 0) be the steady Lagrangian coordinate, r(s) its deformed position
and let µ and ν be defined as in (1.1), with s in place of x. Let ρ be the density of the
undeformed membrane section and let η(s) = j · r(s), where j is the unit vector in the
upward vertical direction (η is the wave elevation). In [7, eqn. (1.8)] it is shown that ν,
µ and η satisfy

d

ds

{
ν(s)E1(ν(s), µ(s))−

ρ

2
c2ν(s)2 +µ(s)E2(ν(s), µ(s))−E(ν, µ)−gρη(s)

}
= 0, (1.3a)

which is the analogue of (1.2) in the present situation. The pressure P in the fluid,
internal forces and gravity combine to deform the membrane. Thus, from [7, (1.7e)],

P (r) =
1

ν

(E2(ν, µ)s

ν

)

s
−
µ

ν

(
E1(ν, µ) − c2ρν

)
+
gρ cosϑ

ν
, (1.3b)

where, as in [7], we assume that the material in one period of the membrane surface is a
deformation of an interval of length 2π of the reference membrane3:

S ∩
(
[0, 2π] × R

)
= {r(s) : s ∈ [s0, s0 + 2π]} for some s0 ∈ R. (1.3c)

Fluid Motion. In the moving frame the fluid velocity field is two dimensional, stationary
and irrotational, the membrane cross-section coincides with a streamline and the flow at
infinite depth is horizontal with velocity −c0. The surface S is a zero level line for the

3The periodic wave does not require additional membrane mass as it passes underneath.

5



stream function ψ(X,Y ), which is harmonic and represents horizontal laminar flow at
infinite depth. So

∆ψ = 0 below S, (1.3d)

ψ = 0 on S (the kinematic boundary condition), (1.3e)

∇ψ(X,Y ) → (0, c0) as Y → −∞. (1.3f)

Membrane-fluid interaction. The dynamic boundary condition takes the form

−
1

2
|∇ψ(X,Y )|2 − gY +

c20
2

= P (r(s)) when (X,Y ) = r(s) ∈ S. (1.3g)

Here P is given by (1.3b) and the left side of (1.3g) is the pressure in the fluid.

1.1 The Free-Boundary Problem

A steady hydroelastic wave with speed c0 and drift velocity d is a non-self-intersecting
smooth 2π-periodic curve S in the plane for which there exists a solution of (1.3) with
c = c0 − d. Since we are interested in symmetric waves, we require that S is symmetric
about a vertical line. To examine the solution set of this elaborate system we will use
standard bifurcation-theory methods based on the implicit function theorem. Before
going into the details, we give a schematic outline of what we have achieved (much
remains to be done). Throughout we treat g (gravity) and ρ (density of the undeformed
membrane) as constants and regard

λ1 := c2ρ, λ2 := c20, λ = (λ1, λ2) ∈ R
2,

as the physical parameters. (Because bifurcation theory studies the existence of solutions
with small amplitudes and slopes, the question of self-intersection of wave surfaces does
not arise in the present study. By contrast, in the theory of large-amplitude waves [2],
considerable effort is required to ensure that there is no self-intersection.)

1.2 Bifurcation Picture

In this section we explain schematically the geometric picture of small amplitude hy-
droelastic waves close to a bifurcation point. See Theorems 7.1 and 8.1 for a detailed
statement.

The first observation is that, for all choices of the two independent parameters, the
problem, when linearized at the trivial solution of uniform horizontal flow under an
undeformed membrane, has at most two linearly independent solutions. If there is only
one linearized solution when (λ1, λ2) = (λ∗1, λ

∗
2) say, there is at most only one linearized

solution for all nearby (λ1, λ2). Therefore, with either one of the parameters held fixed,
there are bifurcations from simple eigenvalues with respect to the other parameter. Their
union is a two-dimensional sheet of solutions which bifurcates from (λ∗1, λ

∗
2). The details

are in Section 7.
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On the other hand, suppose that at λ∗ = (λ∗1, λ
∗
2) the linearized problem has two solutions

cos(kτ) and cos(lτ), where k and l are positive integers with max{k, l}/min{k, l} /∈
Z. By restricting attention to solutions in Zk = span {cos(jkτ) : j ∈ N}, or in Zl =
span {cos(jlτ) : j ∈ N}, the problem may be reduced to one of “bifurcation from a simple
eigenvalue” for particular solutions that have minimal period 2π/k or 2π/l, respectively.
This is straightforward and similar to what is done in Section 7. Locally we obtain a
sheet of solutions of minimal period 2π/k and a sheet of solutions of minimal period
2π/l. Each of these sheets is locally the graph of a function which gives λ2 in terms of
the wave amplitude and λ1 (the roles of λ2 and λ1 can be reversed). We will refer to
these solutions with minimal periods less than 2π as “special” solutions.

In Section 8 we show that in addition to these two sheets of “special” solutions there is
a two-dimensional sheet of “general” solutions and that the sheet of “general” solutions
intersects each of the sheets of “special” solutions in a curve. The solutions on the sheet
of “general” solutions, except where it intersects the sheet of “special” solutions, have
minimal period 2π. Therefore the general solutions on this sheet represent a symmetry-
breaking (or period-multiplying) secondary bifurcation on the curves of special solutions.
This is the hydroelastic analogue of Wilton ripples, a type of water wave which arises
in the presence of surface tension [5, 8, 9]. In Wilton-ripple theory there are also two
parameters, the wave speed and the surface tension coefficient (which measures surface
elasticity). Wilton ripples bifurcate from uniform streams at certain values of the wave
speed, when the surface tension has particular values. Here the two parameters are
independent of the elasticity of the membrane. Therefore the wave and drift speeds can
conspire to produce ripples, for any prescribed elastic membrane.

After Lyapunov-Schmidt reduction, when the linearized problem has two independent
solutions, cos(kτ) and cos(lτ), there are two bifurcation equations in four unknowns

Φk(t1, t2, λ1, λ2) = 0, Φl(t1, t2, λ1, λ2) = 0, (1.4)

where t1 and t2 near 0 are the coefficients of cos(kτ) and cos(lτ), respectively. Solu-
tions with t1 = 0 or t2 = 0 correspond to “special” solutions. The hypothesis that
max{k, l}/min{k, l} /∈ Z leads to the key observation that, for all t1, t2 near 0,

Φk(0, t2, λ1, λ2) = 0, Φl(t1, 0, λ1, λ2) = 0.

Then each of the sheets of “special” solutions is found by solving one equations in three
unknowns, as is done in Section 7.

To find the “general” solutions, we seek solutions of (1.4) with neither t1 nor t2 equal to
0. This problem is reduced in Section 8 to a desingularized one of the form

Ψk(t1, t2, λ1, λ2) = 0, Ψl(t1, t2, λ1, λ2) = 0, (1.5)

for which (0, 0, λ∗) is a solution and ∂(Ψk, Ψl)/∂(λ1, λ2) at (0, 0, λ∗) is invertible. Then
the implicit function theorem gives λ in a neighbourhood of λ∗ in R

2 as a function of
(t1, t2) in a neighbourhood of the origin in R

2. This is the sheet of general solutions we
are seeking. It intersects the “special” sheets when t1 = 0 or t2 = 0. The present analysis,
which yields a qualitative local description of the set of all 2π-periodic hydroelastic waves
near a bifurcation point, is sufficient to show that secondary bifurcations occur.
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Figure 1: A possible bifurcation diagram in the space (t1, t2, λ1), when λ2 is fixed. The
dashed curves correspond to the two branches of “special” solutions on the planes t1 = 0
and t2 = 0, and the solid curve gives the secondary branch of “general”, symmetry-
breaking solutions.

Remark. A more detailed geometrical description of the bifurcating sheets depends on
the coefficients in Taylor series arising in the bifurcation equations, and to calculate their
values can be very complicated. For example, suppose that we want to draw a picture of
the solution set when one of the parameters, λ2 say, is fixed, and assume that (1.5) has
the form

f(λ1) + (At21 +Bt1t2 + Ct22) − λ2 = 0,

g(λ1) + (αt21 + βt1t2 + γt22) − λ2 = 0,

where f and g are smooth functions and A, α, B, β, C, γ are constants. Suppose also
that

f ′(λ∗1) 6= g′(λ∗1).

Then it is clear from the implicit function theorem that locally

λ1 = Λ
(
(A− α)t21 + (B − β)t1t2 + (C − γ)t22

)
,

for some function Λ with Λ′(0) 6= 0. Therefore, for fixed λ2 close to λ∗2 the solution set
is given locally by the level set of the function

f
(
Λ

(
(A− α)t21 + (B − β)t1t2 + (C − γ)t22

))
+At21 +Bt1t2 + Ct22.

The complexity of the dependence of this set on A, α, B, β, C, γ, f and g is evident.
These quantities in turn depend, in an explicit but highly non-trivial way, on the elastic
properties of the membrane.
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Remark. In the case when max{k, l}/min{k, l} ∈ Z, analysis is still possible, but the
details are yet more complicated.

Remark. In the present work solutions will be found for values of parameters that are
not covered by the maximization argument in [7]. Indeed, a convexity hypothesis of the
form E11(ν, µ) > c2ρ = λ1 was crucial in the existence proof of [7], whereas both primary
and secondary bifurcations occur here provided only that λ1 6= E11, see Lemmas 5.1 and
5.2.

2 Mathematical formulation

Suppose that in the free-boundary problem (1.3), the shape of S is known. Then ψ is
given by the unique solution to (1.3 d,e,f). Thus the kinetic and potential energies of
the fluid are determined solely by the shape of S. On the other hand, the elastic and
gravitational potential energy of the membrane are determined by the positions of the
material points (x, 0) in the deformed membrane. To deal with this distinction, and
ultimately to prove in Section 4 that only the shape matters, suppose that the shape of
S is given by a parametrization

S = {̺(τ) : τ ∈ R}, where ̺(τ + 2π) = (2π, 0) + ̺(τ).

Then, as in [7], we seek R for travelling waves in the form

R(x, t) : = (c0t, 0) + ̺(χ(x− ct)), (2.1)

where χ : R → R is a diffeomorphism with χ(s + 2π) = 2π + χ(s). As before, s is
the steady travelling-wave Lagrangian coordinate, the unknowns are ̺(τ) and χ(s), and
r(s) = ̺(χ(s)), so that S = {r(s) : s ∈ R}. To develop this approach, we recall the class
of parametrizations in [7], specially tailored for this problem.

Letw be a 2π-periodic real-valued function with second derivative locally square-integrable
on R, and let C denote its Hilbert transform. Then

̺(w)(τ) := (−τ − Cw(τ), w(τ)), τ ∈ R, (2.2)

is a 2π-periodic curve in the plane. Thus w is the unknown that describes the wave
shape. The other unknown is the stretch of the reference membrane. To describe it we
follow [2] by introducing diffeomorphisms κ(τ) (κ = χ−1 in (2.1)) of the interval [0, 2π]
such that χ(0) = 0 and χ(2π) = 2π. Then if the material point s of the membrane in
the reference configuration is

s = κ(τ) ∀ τ ∈ R, (2.3)

its position r(s) after deformation is

r(s) = ̺(w)(τ),

and the stretch of the membrane is given in terms of κ and w by

ν(s) =
|̺(w)′(τ)|

κ′(τ)
=

Ω(w)(τ)

κ′(τ)
,
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where
Ω(w)(τ) =

√
w′(τ)2 + (1 + Cw′(τ))2.

Also, since r(s) = ̺(w)(τ), there is a useful formula for the curvature,

σ̂(r(s)) = σ(w)(τ) = −
1

Ω(w)(τ)
C
(Ω(w)′(τ)

Ω(w)(τ)

)
.

Roughly speaking, given a profile parametrized by (2.2), the diffeomorphisms (2.3) de-
scribe the family of all physical deformations (s, 0) 7→ r(s) of the reference state which
produce the same profile ̺(w). Note that the parametrization of a curve and the stretch
of the material in it are independent. It will be convenient later to replace κ with the
new unknown

ξ(τ) := κ′(τ) − 1.

Then ξ has zero mean,
1

2π

∫ 2π

0

ξ(τ) dτ = 0,

because κ(0) = 0 and κ(2π) = 2π. In [7] it is shown how solutions to this hydroelastic
wave problem with a heavy membrane corresponds to critical points of a Lagrangian
which, in terms of the unknown (w, ξ), is written

J(w, ξ) :=
c20
2

∫ 2π

0

wCw′ dτ −
g

2

∫ 2π

0

w2(1 + Cw′) dτ (2.4)

−

∫ 2π

0

(1 + ξ)E
(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
dτ +

c2ρ

2

∫ 2π

0

Ω(w)2

1 + ξ
dτ

− gρ

∫ 2π

0

w(1 + ξ) dτ.

The first term in the right in (2.4) is the fluid’s kinetic energy in one period, relative to
the moving frame; the second term, with a minus, is the change in gravitational potential
energy of the same body of fluid relative to a uniform flow; the third is minus the elastic
energy of one period of the deformed membrane; the fourth is plus the kinetic energy of
the membrane; the fifth term is minus the gravitational potential energy of one period
of the membrane. (For the derivation, see the discussion leading to [7, (2.18)].)

This will be the starting point for this analysis. Local bifurcation theory will be used
to give a complete descriptions of all small-amplitude 2π-periodic waves represented by
critical points of J close to a bifurcation point.

3 The equations

Define the notation (E −∇E·)(ν, µ) by

(E −∇E·)(ν, µ) := E(ν, µ) − ν E1(ν, µ) − µE2(ν, µ).
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Suppose that w and ξ are small in an appropriate norm and that J is differentiable at
(w, ξ). Then the partial derivative with respect to ξ in a direction η, where [η] = 0, is

dξJ(w, ξ) η = −

∫ 2π

0

η
{

(E −∇E·)
(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
+
c2ρ

2

(Ω(w)

1 + ξ

)2

+ gρw
}
dτ.

Let L[w], depending on w, be the linear operator defined in [2, Section 4.5] by

L[w](u) :=
w′u+ (1 + Cw′) Cu

Ω(w)2
,

with the property that

dwΩ(w)h = Ω(w)L[w](h′), dw

(
Ω(w)σ(w)

)
h = −C

(
L[w](h′)

)′
. (3.1)

Then the partial derivative of J(w, ξ) with respect to w in the direction h is

dwJ(w, ξ)h =

∫ 2π

0

h
{
c20 Cw

′ − gw(1 + Cw′) − g C(ww′) − gρ(1 + ξ)
}
dτ

+

∫ 2π

0

{c2ρΩ(w)

1 + ξ
− E1

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)}
Ω(w)L[w](h′) dτ

+

∫ 2π

0

E2

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

) (
CL[w](h′)

)′
dτ.

Now, suppose that (w, ξ) is a critical point of J . Define the projection

Pu := u−
1

2π

∫ 2π

0

u(τ) dτ,

for all 2π-periodic, locally integrable functions u. Then Pu has zero mean on [0, 2π].
Note that the operator L[w] is independent of the mean of w. A simple calculation
shows that dwJ(w, ξ) = 0 if and only if

1

2π

∫ 2π

0

(w + w Cw′) dτ + ρ = 0 and dwJ(w, ξ)Ph = 0 ∀h.

Hence it suffices to study the equation dJ0(w, ξ) = 0, where J0 is defined by

J0(w, ξ) := J(w, ξ) + gπ
( 1

2π

∫ 2π

0

wCw′ dτ + ρ
)2

,

over a class of functions satisfying

∫ 2π

0

w(τ) dτ =

∫ 2π

0

ξ(τ) dτ = 0,

because then dJ0(w, ξ) = 0 implies that dJ(w∗, ξ) = 0, where

w∗ := w −
1

2π

∫ 2π

0

w Cw′ dτ − ρ.

11



From a calculation similar to that for J , partial derivatives of J0 are given by

dξJ0(w, ξ) η = −

∫ 2π

0

η
{
(E −∇E·)

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
+
c2ρ

2

(Ω(w)

1 + ξ

)2

+ gρw
}
dτ

(3.2)
and

dwJ0(w, ξ)h =

∫ 2π

0

h
{
c20 Cw

′ − gw(1 + Cw′) − g C(ww′) − gρ(1 + ξ)
}
dτ

+

∫ 2π

0

(
c2ρ

Ω(w)

1 + ξ
− E1

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

))
Ω(w)L[w](h′) dτ

+

∫ 2π

0

E2

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
C(L[w](h′))′ dτ

+ 2g
( 1

2π

∫ 2π

0

wCw′ dτ + ρ
) ∫ 2π

0

h Cw′ dτ. (3.3)

In [2, Sections 4.1 & 4.2] the membrane density ρ is zero. However, the calculations
there are easily extended to take account of the extra terms here which involve ρ > 0.
To proceed, we adapt the notation from [2] to the case of positive ρ. For u with zero
mean, let

∇I0 :=
(
c20 +

g

π

∫ 2π

0

wCw′ dτ + 2gρ
)
Cw′ − gw(1 + Cw′) − g C(ww′) − gρ(1 + ξ).

With the L2-adjoint of the inverse operator L[w]−1 given by

(L[w]−1)∗(u) = w′u+ C((1 + Cw′)u),

let

m0 := (L[w]−1)∗
(∫ τ

0

P(∇I0) dt
)
. (3.4)

Then, as in [2], the equations for critical points of J0 can be written as follows:

P
{
(E −∇E·)

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
+
c2ρ

2

(Ω(w)

1 + ξ

)2}
+ gρw = 0, (3.5a)

PE2

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
+ C

{∫ τ

0

P
(
m0 + Ω(w)E1

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)

− c2ρ
Ω(w)2

1 + ξ

)
dt

}
= 0. (3.5b)

Note that (w, ξ) = (0, 0) solves (3.5) for all values of c, c0, g, ρ.

The free-boundary problem in Section 1.1 is for symmetric waves, so we can simplify
matters by studying the bifurcation problem in spaces of even functions. This is what
we do subsequently. Note that, if w and ξ are even functions, then Cw′, Ω(w), σ(w) and
1 + ξ are also even.

12



Lemma 3.1. Suppose that (w, ξ) are even functions such that

dJ0(w, ξ) (h, η) = 0 (3.6)

for all even (h, η) with sufficient regularity. Then (3.6) holds for all (h, η).

Proof. Since every 2π-periodic function is the sum of even and odd functions, by the
hypothesis it suffices to observe that (3.6) holds for (h, η) odd when w, ξ are even. This
follows by (3.2) and (3.3), since L[w](h′) is odd for odd h.

4 A further simplification

In this section we use the implicit function theorem to show that, for solutions of (3.5a),
ξ is a function of (w, λ1) near w = ξ = 0. This means that the stretch variable ξ can be
eliminated and the problem reduced to one for the unknown shape which is given by w.
For k ∈ N, let Hk

0 denote the space of real-valued, 2π-periodic, even, zero-mean functions,
with kth weak derivative locally square-integrable. For r > 0, let Br(X) denote the open
ball of radius r centred at the origin in a Banach space X . Fix r > 0 such that

1

2
≤ Ω(w) ≤ 2, |σ(w)| ≤ 1, |ξ| ≤

1

2

for all (w, ξ) ∈ Br(H
3
0 ) ×Br(H

1
0 ). Then a map M : Br(H

3
0 ) ×Br(H

1
0 ) × (0,+∞) → H1

0

may be defined by

M(w, ξ, λ1) := P
{
(E −∇E·)

(Ω(w)

1 + ξ
,
Ω(w)σ(w)

1 + ξ

)
+
λ1

2

(Ω(w)

1 + ξ

)2}
+ gρw,

because E is smooth, and Ω(w)/(1 + ξ) and Ω(w)σ(w)/(1 + ξ) are bounded functions.
Thus, the Euler equation (3.5a) may be written as

M(w, ξ, λ1) = 0.

Moreover, M(0, 0, λ1) = 0 for all λ1. We note that

M ∈ C∞
(
Br(H

3
0 ) ×Br(H

1
0 ) × (0,+∞), H1

0

)
,

and, when (w, ξ) = (0, 0),

Ω(0) ≡ 1, σ(0) ≡ 0, dΩ(0)h = Ch′, d(Ωσ)(0)h = h′′. (4.1)

Since L[0] = (L[0]−1)∗ = C, it follows from H2 and (3.1) that

dwM(0, 0, λ1)h = −(E11 − λ1) Ch
′ + gρh, (4.2)

dξM(0, 0, λ1) η = (E11 − λ1)η, (4.3)

dλ1
M(0, 0, λ1) = 0, (4.4)

where for convenience we have written E11 instead of E11(1, 0).
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Lemma 4.1. When λ̂1 6= E11, there exist a neighbourhood W of (0, λ̂1) in H3
0 × (0,+∞)

and a map ξ ∈ C∞(W , Br(H
1
0 )) such that

M(w, ξ(w, λ1), λ1) = 0

for all (w, λ1) ∈ W, and, if M(w, ξ, λ1) = 0 with (w, λ1) ∈ W, then ξ = ξ(w, λ1).
Moreover, for all λ1 6= E11,

ξ(0, λ1) = 0, (4.5)

dwξ(0, λ1)h = Ch′ +
gρ

λ1 − E11
h. (4.6)

Proof. To obtain the existence of ξ, apply the implicit function theorem using (4.3). The
required formulae then follow by the chain rule and (4.2) and (4.4).

Because of this, all solutions (w, ξ, λ) of (3.5) with (w, λ1) ∈ W are solutions of (3.5b) of
the form (w, ξ(w, λ1), λ). Let m(w, λ) denote m0 (see (3.4)) when ξ = ξ(w, λ1), and let

ei(w, λ1) := Ei

( Ω(w)

1 + ξ(w, λ1)
,

Ω(w)σ(w)

1 + ξ(w, λ1)

)
, i = 1, 2.

Then on the set D := {(w, λ) : (w, λ1) ∈ W , λ2 > 0}, define the function

F (w, λ) := Pe2(w, λ1) + C
{∫ τ

0

P
(
m(w, λ) + Ω(w)e1(w, λ1) −

λ1 Ω(w)2

1 + ξ(w, λ1)

)
dt

}
,

so that the system (3.5), for (w, λ1) ∈ W and λ1 6= E11, becomes

F (w, λ) = 0, (w, λ) ∈ D. (4.7)

5 The linearized equation

Recall that F (0, λ) = 0 for all λ with λ1 6= E11 and that F ∈ C∞(D, H1
0 ). We now

calculate its partial derivatives. When w = 0, (4.1) holds, ξ = 0 by (4.5) and, as a
consequence, P(∇I0) = 0. Hence, by (4.6),

dwm(0, λ)h = −(λ2 + gρ)h+
( (gρ)2

E11 − λ1
− g

)
C
(∫ τ

0

h(t) dt
)
,

and, by H2,

dwF (0, λ)h = E22h
′′ + λ1 h− λ2 C

(∫ τ

0

h(t) dt
)

(5.1)

+
(
g +

(gρ)2

λ1 − E11

)
P

(∫ τ

0

P
(∫ t

0

h(s) ds
)
dt

)
,
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where, as above, Eii = Eii(1, 0), i = 1, 2.

Now suppose that h ∈ H3
0 \ {0} and that dwF (0, λ)h = 0. Then h ∈ H5

0 , and differenti-
ating the equality dwF (0, λ)h = 0 twice with respect to τ yields

E22h
′′′′ + λ1h

′′ − λ2 Ch
′ +

(
g +

(gρ)2

λ1 − E11

)
h = 0. (5.2)

It is easy to see that (5.2) has a non-constant even solution h if and only if

E22k
4 − λ1k

2 − λ2k + g +
(gρ)2

λ1 − E11
= 0, (5.3)

for some positive integer k. Since E22(1, 0) is assumed to be positive, for every fixed
λ1, λ2 > 0, (5.3) possesses at most two positive integer solutions. (This follows by noting
that the graph of the quartic curve x 7→ E22x

4−λ1x
2 on the half-plane {x ≥ 1} intersects

any straight line with slope λ2 at most twice.)

5.1 Non-trivial kernel

Let g, ρ, E11, E22 > 0 be fixed. Then λ1, λ2 > 0, λ1 − E11 6= 0 and (5.3) holds for some
integer k ≥ 1 if and only if

0 < λ2k = E22k
4 − λ1k

2 + g +
(gρ)2

λ1 − E11
=

pk(λ1)

E11 − λ1
and λ1 > 0, (5.4)

where

pk(X) := k2X2 −
(
E22k

4 + E11k
2 + g

)
X + E11

(
E22k

4 + g
)
− (gρ)2.

The discriminant of pk is

∆(pk) =
(
E11k

2 − E22k
4 − g

)2
+

(
2gρk

)2
> 0,

and, since pk(E11) = −(gρ)2, its roots

X±

k :=
E11k

2 + E22k
4 + g ±

√
∆(pk)

2k2

satisfy
X−

k < E11 < X+
k .

Moreover X−

k > 0 if and only if E11(E22k
4 + g) > g2ρ2. It follows that (5.4) holds if and

only if
λ1 ∈ (0, X−

k ) ∪ (E11, X
+
k ), λ2 = fk(λ1),

where (0, X−

k ) is meant to be empty if X−

k ≤ 0, and

fk(λ1) := E22 k
3 − λ1k +

1

k

(
g +

(gρ)2

λ1 − E11

)
.

X−

k → E11 and X+
k → +∞ as k → +∞. Thus, for every λ1 6= E11, there exists an

integer k̄ = k̄(λ1) such that λ1 ∈ (0, X−

k ) ∪ (E11, X
+
k ) for all k ≥ k̄. Therefore, for every

k ≥ k̄, (5.3) holds with λ2 = fk(λ1), and we have proved the following lemma.
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Lemma 5.1. Let g, ρ, E11 and E22 be fixed, positive constants. For every fixed λ1 6= E11,
the parameters λ2 for which the linearized operator dwF (0, λ1, λ2) has a non-trivial kernel

form a sequence {λ
(k)
2 = fk(λ1) : k ≥ k̄(λ1)}, with

λ
(k)
2 = fk(λ1) → +∞ as k → ∞.

Thus, for every g, ρ, E11, E22 > 0 there exists a set A formed by infinitely many curves
Ak in the parameter quadrant {(λ1, λ2) : λ1 > 0, λ2 > 0},

A =
⋃

k∈N

Ak, Ak =
{
(λ1, λ2) : λ2 = fk(λ1)

}
∩

{
λ1 > 0, λ2 > 0

}

(see figure 2), such that the kernel of the linearized operator dwF (0, λ) is nontrivial if
and only if λ ∈ A. Note that there is no restriction on λ1 except that λ1 6= E11.

5.2 Double eigenvalues

The kernel of dwF (0, λ) is two-dimensional if and only if (5.3) has two positive integer
solutions k 6= l, namely the curves Ak and Al cross at λ. Now, k 6= l solve (5.3) if and
only if

λ2 = hk,l(λ1) := (k + l)
(
E22(k

2 + l2) − λ1

)
and qk,l(λ1) = 0, (5.5)

where

qk,l(X) := klX2 −
(
E11kl+ E22kl(k

2 + kl + l2) − g
)
X

+ E11E22kl(k
2 + kl+ l2) − E11g + (gρ)2.

For all kl sufficiently large, the discriminant of qk,l,

∆(qk,l) =
(
E11kl − E22kl(k

2 + kl+ l2) + g
)2

− 4kl(gρ)2,

is positive, and the roots X−

k,l and X+
k,l of qk,l are both greater than E11.

Since hk,l(X
+
k,l) < 0 for all kl sufficiently large, there are at most finitely many solutions

λ of (5.5) with λ1 = X+
k,l and λ2 > 0. On the other hand, hk,l(X

−

k,l) > 0 for all kl
sufficiently large, and

X−

k,l → E11, hk,l(X
−

k,l) → +∞

as kl → +∞. Thus, we have proved the following lemma.

Lemma 5.2. Let g, ρ, E11 and E22 be fixed, positive constants. The parameters λ for
which the linearized operator dwF (0, λ) has a two-dimensional kernel form a sequence

λ(n) = (λ
(n)
1 , λ

(n)
2 ), with

λ
(n)
1 ց E11, λ

(n)
2 → +∞ as n→ ∞.

Remark. Double eigenvalues with λ1 < E11 are possible, provided we assume some
additional hypotheses on E, namely

E22(kl)
2 < g < E22kl(k

2 + kl+ l2)

and E11 sufficiently large. In any case, they are at most finitely many.
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Figure 2: Plots of the curves Ak, k = 1, . . . , 7, when g = 9.81, gρ = 1, E11 = 4 and
E22 = 1, first in the region 3.96 < λ1 < 4.10 and 0 < λ2 < 330, with two different scales
for the two axes, and then in the region 0 < λ1, λ2 < 30, with the same scale for λ1 and
λ2.
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6 Lyapunov-Schmidt reduction

We turn now to study the bifurcation of solutions of (4.7). Recall that throughout we
are dealing with 2π-periodic functions w of zero mean. Suppose that λ∗ = (λ∗1, λ

∗
2) ∈ A,

λ∗1 6= E11. Then the kernel,

V := KerdwF (0, λ∗) ⊂ H3
0 ,

of the linearized operator, is a subspace of dimension 1 or 2, depending on the number
of integer solutions of (5.3), and the range

R := Range dwF (0, λ∗) ⊂ H1
0

is orthogonal to V with respect to the L2(0, 2π) scalar product, namely

H1
0 = V ⊕R, H3

0 = V ⊕ (R ∩H3
0 ).

In fact, it is evident from (5.1) that dwF (0, λ) is a diagonal operator with respect to the
basis of even 2π-periodic functions {cos(jτ) : j = 1, 2, . . .}, for all λ.

Following the classical Lyapunov-Schmidt decomposition, we write

w = v + y, v ∈ V, y ∈ R ∩H3
0 ,

and denote ΠV ,ΠR the projection onto V and R respectively. The equation F (w, λ) = 0
is then equivalent to the system

{
ΠV F (v + y, λ) = 0 (bifurcation equation),

ΠR F (v + y, λ) = 0 (auxiliary equation).
(6.1)

Lemma 6.1 (Auxiliary equation). There is a neighbourhood U of (0, λ∗) in V × R
2, a

neighbourhood U of 0 in R ∩H3
0 and a function y ∈ C∞(U , U) such that

ΠR F (v + y(v, λ), λ) = 0

for all (v, λ) ∈ U , and, if ΠR F (v+y, λ) = 0 with y ∈ U and (v, λ) ∈ U , then y = y(v, λ).
Moreover, for all (0, λ) ∈ U ,

y(0, λ) = 0, dvy(0, λ) = 0, dλi
y(0, λ) = 0, i = 1, 2, (6.2)

and there exists a constant C > 0 such that

‖y(v, λ)‖H3 ≤ C‖v‖2
H3

for all (v, λ) ∈ U .

Proof. Apply the implicit function theorem, and note that, for all λ, dwF (0, λ) is diagonal
in the basis {cos jτ}, j = 1, 2, . . ., therefore ΠR dwF (0, λ)v = 0 for all v ∈ V , for all λ.

In this way, the bifurcation problem for the equation (4.7) has been reduced to

ΠV F (v + y(v, λ), λ) = 0, (6.3)

with (v, λ) ∈ U ⊂ V × R
2.
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7 Sheets bifurcating from a simple eigenvalue

Here we study the elementary case in which equation (5.3), and hence the linearized
operator (5.1), has a 1-dimensional kernel. From the discussions in Section 5 this is the
case for parameter values (λ∗1, λ

∗
2) on the union of countably many curves with countably

many points removed.

Hence suppose that there exists a unique integer k ≥ 1 that satisfies (5.3) for λ∗ =
(λ∗1, λ

∗
2). Then

V := Ker dwF (0, λ∗) =
{
t cos(kτ) : t ∈ R

}

and, by (6.3), the system (6.1) is equivalent to the problem

Φ(t, λ) := ΠV F
(
t cos(kτ) + y(t cos(kτ), λ), λ

)
= 0. (7.1)

Φ is a smooth real valued map of three real variables (t, λ1, λ2), defined on a neighbour-
hood of (0, λ∗1, λ

∗
2). Since F (0, λ) = 0 for all λ, from Lemma 6.1 it follows that

Φ(0, λ) = 0 for all (0, λ) ∈ U .

Also, using (6.2) and the orthogonality of V and R,

∂tΦ(0, λ∗) = 0. (7.2)

To find solutions of (7.1) with t 6= 0 we invoke the implicit function theorem in the usual
analytic approach to bifurcation problems.

Theorem 7.1. Suppose that there exists a unique integer k ≥ 1 that satisfies (5.3) for
λ∗ = (λ∗1, λ

∗
2), with λ∗1 6= E11. Then there exist neighbourhoods U1 of (0, λ∗1) in R

2 and
U1 of λ∗2 in R, and a map λ2 ∈ C∞(U1, U1), with λ2(0, λ

∗
1) = λ∗2, such that

Φ(t, λ1, λ2(t, λ1)) = 0 for all (t, λ1) ∈ U1,

and, if Φ(t, λ1, λ2) = 0, with (t, λ1) ∈ U1, t 6= 0 and λ2 ∈ U1, then λ2 = λ2(t, λ1). As a
consequence,

F
(
w(t, λ1), λ1, λ2(t, λ1)

)
= 0,

where

w(t, λ1) := t cos(kτ) + y
(
t cos(kτ), λ1, λ2(t, λ1)

)
= t cos(kτ) +O(t2).

Proof. First, we prove that
∂2

t,λ2
Φ(0, λ∗) 6= 0. (7.3)

By (6.2),

∂tΦ(0, λ) = ΠV dwF (0, λ)
(
1 + dvy(0, λ)

)
cos(kτ) = ΠV dwF (0, λ) cos(kτ),

and
∂2

t,λ2
Φ(0, λ∗) = ΠV d

2
w,λ2

F (0, λ∗) cos(kτ).
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By (5.1),

dwF (0, λ) cos(kτ) =
(
− k2E22 + λ1 +

λ2

k
−

(
g +

(gρ)2

λ1 − E11

) 1

k2

)
cos(kτ),

whence

ΠV d
2
w,λ2

F (0, λ∗) cos(kτ) =
1

k∗
> 0,

and (7.3) is proved. Since

Φ(t, λ) =

∫ t

0

(∂tΦ)(x, λ) dx = t

∫ 1

0

(∂tΦ)(zt, λ) dz,

it follows that Φ(t, λ) = 0, with t 6= 0, if and only if ϕ(t, λ) = 0, where

ϕ(t, λ) :=

∫ 1

0

(∂tΦ)(xt, λ) dx.

From the smoothness of Φ it follows that ϕ is also smooth. By (7.2), ϕ(0, λ∗) = 0.
Moreover, ∂λ2

ϕ(0, λ∗) 6= 0 by (7.3). The result now follows from the implicit function
theorem.

Remark. Since

ΠV d
2
w,λ1

F (0, λ∗) cos(kτ) = 1 +
( gρ

k(λ∗1 − E11)

)2

> 0,

the role of λ1 and λ2 can be swapped.

8 Bifurcation from a double eigenvalue

We have observed that for any (λ1, λ2) there are at most two positive integer solutions,
k, l, of (5.3), and this happens only if fk(λ1) = fl(λ1) = λ2. Suppose that there are
indeed two such solutions, k and l, with

max{k, l}

min{k, l}
/∈ Z. (8.1)

Let Zk be the closure of span {cos(jkτ) : j ∈ N} in L2(0, 2π), and similarly for Zl. Now
note that if one seeks waves with minimal period 2π/k or 2π/l, the original bifurcation
problem (4.7) may be specialized to a problem on Zk or Zk and the reduced problem
(6.3) is similarly restricted to Zk or Zl. In each of these restricted settings separately,
only one solution, k or l, of (5.3) is relevant, and there is a simple eigenvalue from which
a curve of solutions in Zk ∩H

3
0 or Zl ∩H

3
0 bifurcates, exactly as in the preceding section.

However, we will now show that other solutions that are neither in Zk nor Zl bifurcate
at λ∗ when k and l are solutions of (5.3) with λ = λ∗ and (8.1) holds.
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In this case the kernel of the linearized problem is two-dimensional,

V := Ker dwF (0, λ∗) =
{
t1 cos(kτ) + t2 cos(lτ) : (t1, t2) ∈ R

2
}
,

and the bifurcation problem (6.3) is

Φ(t1, t2, λ) = 0, λ = (λ1, λ2), (8.2)

where
Φ(t1, t2, λ) := ΠV F (v + y(v, λ), λ), v = t1 cos(kτ) + t2 cos(lτ).

Let Φk cos(kτ) := ΠkΦ and Φl cos(lτ) := ΠlΦ, where Πk and Πl denote the projections
onto span {cos(kτ)} and span {cos(lτ)}, respectively. Thus (8.2) becomes

Φk(t1, t2, λ1, λ2) = 0,

Φl(t1, t2, λ1, λ2) = 0,

a system of two equations in four unknowns which is satisfied by (0, 0, λ1, λ2) for all λ.
The key to our result is the following observation.

Suppose that t1 = 0, and v = t2 cos(lτ), t2 ∈ R. Then an application of Lemma 6.1 in
the subspace Zl of 2π/l-periodic functions yields that y(v, λ) ∈ Zl ∩ R, because of the
local uniqueness in the implicit function theorem. Hence v + y(v, λ) is 2π/l-periodic,
therefore F (v + y(v, λ), λ) is also 2π/l-periodic. As a consequence,

Φk(0, t2, λ) = 0 for all t2, λ. (8.3)

For the same reason,
Φl(t1, 0, λ) = 0 for all t1, λ. (8.4)

We now require the non-degeneracy condition
( gρ

λ∗1 − E11

)2

6= kl. (8.5)

Remark. It is easily checked that condition (8.5) is equivalent to the geometrical as-
sumption that f ′

k(λ∗1) 6= f ′
l (λ

∗
1). In other words, the curves Ak and Al are not tangential

at their intersection point λ∗1.

Theorem 8.1. Suppose that there exist two integers k, l that satisfy (5.3) for λ∗ =
(λ∗1, λ

∗
2) where λ∗1 6= E11, and (8.1) and (8.5) hold. Then there exist neighbourhoods

U2 of the origin and U2 of λ∗ in R
2, and functions λ(t1, t2) = (λ1(t1, t2), λ2(t1, t2)),

λ ∈ C∞(U2, U2), with λ(0, 0) = λ∗, such that

Φ(t1, t2, λ(t1, t2)) = 0 for all (t1, t2) ∈ U2,

and, if Φ(t1, t2, λ) = 0 with (t1, t2) ∈ U2 \ {(0, 0)} and λ ∈ U2, then λ = λ(t1, t2). As a
consequence,

F
(
w(t1, t2), λ(t1, t2)

)
= 0,

where

w(t1, t2) := t1 cos(kτ) + t2 cos(lτ) + y
(
t1 cos(kτ) + t2 cos(lτ), λ(t1, t2)

)

= t1 cos(kτ) + t2 cos(lτ) +O(t21 + t22).

21



Proof. Let Ψ := (Ψk,Ψl),

Ψk(t1, t2, λ) :=

∫ 1

0

(∂t1Φk)(xt1, t2, λ) dx, Ψl(t1, t2, λ) :=

∫ 1

0

(∂t2Φk)(t1, xt2, λ) dx.

Ψk and Ψl are smooth by (8.3) and (8.4). Moreover, since

Ψk(0, 0, λ) = Πk dwF (0, λ) cos(kτ) (8.6)

= −E22k
2 + λ1 +

λ2

k
−

(
g +

(gρ)2

λ1 − E11

) 1

k2
,

and, analogously,

Ψl(0, 0, λ) = −E22l
2 + λ1 +

λ2

l
−

(
g +

(gρ)2

λ1 − E11

) 1

l2
, (8.7)

it follows that
Ψ(0, 0, λ∗) = 0.

To apply the implicit function theorem to Ψ at the point (0, 0, λ∗), it is sufficient to
prove that the 2×2 matrix representing the linear map ∂λΨ(0, 0, λ∗) is invertible. Now,
differentiating (8.6) and (8.7) with respect to λ1 and λ2,

det
(
∂λΨ(0, 0, λ∗)

)
=

{( gρ

λ∗1 − E11

)2

− kl
}(1

k
−

1

l

) 1

kl
,

which is nonzero by (8.5).

Remark. By the definition of Ψ, for (t1, t2) ∈ U2, with t1 6= 0 and t2 6= 0, Theorem 8.1
gives solutions of problem (8.2) which do not belong to Zk nor Zl, as it had been stated
above.
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