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Periodic solutions of fully nonlinear autonomous equations of

Benjamin-Ono type

Pietro Baldi

Abstract. We prove the existence of time-periodic, small amplitude solutions of autonomous
quasilinear or fully nonlinear completely resonant pseudo-PDEs of Benjamin-Ono type in Sobolev
class. The result holds for frequencies in a Cantor set that has asymptotically full measure as the
amplitude goes to zero.
At the first order of amplitude, the solutions are the superposition of an arbitrarily large number
of waves that travel with different velocities (multimodal solutions).
The equation can be considered as a Hamiltonian, reversible system plus a non-Hamiltonian (but
still reversible) perturbation that contains derivatives of the highest order.
The main difficulties of the problem are: an infinite-dimensional bifurcation equation, and small
divisors in the linearized operator, where also the highest order derivatives have nonconstant coef-
ficients.
The main technical step of the proof is the reduction of the linearized operator to constant coeffi-
cients up to a regularizing rest, by means of changes of variables and conjugation with simple linear
pseudo-differential operators, in the spirit of the method of Iooss, Plotnikov and Toland for stand-
ing water waves (ARMA 2005). Other ingredients are a suitable Nash-Moser iteration in Sobolev
spaces, and Lyapunov-Schmidt decomposition.

Keywords: Benjamin-Ono equation, fully nonlinear PDEs, quasi-linear PDEs, pseudo-PDEs, peri-
odic solutions, small divisors, Nash-Moser method, infinite dimensional dynamical systems, reversible
dynamical systems.
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1 The problem and main result

We consider autonomous equations of Benjamin-Ono type

ut +Huxx + ∂x(u
3) +N4(u) = 0 (1.1)

with periodic boundary conditions x ∈ T := R/2πZ, where the unknown u(t, x) is a real-valued function,
t ∈ R, H is the periodic Hilbert transform, namely the Fourier multiplier

Heijx = −i sign(j) eijx, j ∈ Z,

and N4 is of type (I) or (II),

(I) N4(u) = g1(x, u,Hu, ux) + ∂x(g2(x, u,Hux)), (1.2)

(II) N4(u) = g0(x, u,Hu, ux,Huxx). (1.3)

(1.1) is a quasilinear problem in case (I) and a fully nonlinear problem in case (II).
We assume that the function gi(x, y) is defined for y = (y1, . . . , yn) in the ball B1 = {|y| < 1} of Rn,

n = 2, 3, 4, gi is 2π-periodic in the real variable x, and, together with its derivatives in y up to order 4,
it is of class Cr in all its arguments (x, y), with

∑

0≤|α|≤4

‖∂αy gi‖Cr(T×B1) ≤ Kg,r, (1.4)
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for some constant Kg,r > 0. Moreover we assume that at y = 0

∂αy gi(x, 0) = 0 ∀α ∈ N
n, |α| ≤ 3, (1.5)

so that, regarding the amplitude, N4(εu) = O(ε4) as ε→ 0.
We assume that the nonlinearity N (u) := ∂x(u

3) + N4(u) behaves like the linear part ∂t + H∂xx
with respect to the parity of functions u(t, x) in the time-space pair (t, x). This means to assume the
reversibility conditions

g1(−x, y1,−y2,−y3) = −g1(x, y1, y2, y3), g2(−x, y1, y2) = g2(x, y1, y2), (1.6)

g0(−x, y1,−y2,−y3,−y4) = −g0(x, y1, y2, y3, y4), (1.7)

so that in both cases (I) and (II) N (u) is odd for all even u, namely

u(−t,−x) = u(t, x) ⇒ N (u)(−t,−x) = −N (u)(t, x). (1.8)

Assumptions (1.2), (1.3), (1.6), (1.7) are discussed in Section 2.

Remark 1.1. Examples of such nonlinearities are:

(I) N4(u) = (Hux)
3Huxx + a(x)u4x + uu3x + b(x)u5x, (II) N4(u) = a(x)(Huxx)

4 + u5x,

where a(x) is odd and b(x) is even.

We construct small amplitude time-periodic solutions u(t, x) of period T = 2π/ω, ω > 0, where the
period T is also an unknown of the problem. Rescaling the time t → ωt, this is equivalent to find
2π-periodic solutions of the equation

ωut +Huxx + ∂x(u
3) +N4(u) = 0, (1.9)

with u : T2 → R, ω > 0.
Regarding the time-space pair (t, x) as a point of the 2-dimensional torus T2, we consider the L2-based

Sobolev space of real-valued periodic functions

Hs = Hs(T2;R) =
{

u =
∑

k∈Z2

uk ek : u−k = ūk ∈ C, ‖u‖2s :=
∑

k∈Z2

|uk|
2〈k〉2s <∞

}

, (1.10)

where s ≥ 0, 〈k〉 := max{1, |k|}, and ek(t, x) := ei(k1t+k2x).
The main result of the paper is the following theorem.

Theorem 1.2. There exist universal constants r0, s0, c0 ∈ N with the following properties.
Assume hypotheses (1.2), . . . , (1.7) on the nonlinearity N , with r ≥ r0. Let m ≥ 2 and let 0 < k1 <

k2 < . . . < km be m positive integers that satisfy

k1 + . . .+ km−1 > km(m− 3/2), k1 + . . .+ km 6= (m− 1/2)j ∀j ∈ N. (1.11)

Then there exist (i) a trigonometric polynomial

v̄1(t, x) :=

m
∑

j=1

aj cos(kj x− k2j t),

even in the pair (t, x), where aj ∈ R,

a2j =
4

m− 1/2

(

m
∑

i=1

ki

)

− 4kj, j = 1, . . . ,m;

(ii) constants C, ε∗0 > 0 that depend on k1, . . . , km,Kg,r0 ;
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(iii) a measurable Cantor-like set G ⊂ (0, ε∗0) of asymptotically full Lebesgue measure, namely

|G ∩ (0, ε0)|

ε0
≥ 1− ε0C ∀ε0 ≤ ε∗0,

such that for every ε ∈ G problem (1.9) with frequency

ω = 1 + 3ε2

has a solution uε ∈ Hs0(T2,R) that satisfies

‖uε − εv̄1‖s0 ≤ ε2C, uε(−t,−x) = uε(t, x),

∫

T2

uε(t, x) dt dx = 0.

Moreover uε ∈ Hs(T2) for every s in the interval s0 ≤ s < (r + c0)/2.
If gi, i = 0, 1, 2 in (1.2),(1.3) is of class C∞, then also uε ∈ C∞(T2).

Remark 1.3. (i) The smallest example of k1, . . . , km satisfying (1.11) is m = 2, k1 = 2, k2 = 3. For
every m ≥ 2 there exist infinitely many choices of integers k1 < . . . < km that satisfy (1.11). See also
Remark 5.2.

(ii) s0, r0 and c0 can be explicitly calculated: s0 = 22, c0 = 28 (non-sharp calculation); for r0 see
(9.22) and the lines below it.

2 Motivations, questions and comments

The original Benjamin-Ono equation
ut +Huxx + uux = 0 (2.1)

models one-dimensional internal waves in deep water [5], and is a completely integrable [1] Hamiltonian
partial pseudo-differential equation,

∂tu = J∇H(u), J = −∂x, H(u) =

∫

(uHux
2

+
u3

6

)

dx.

The local and global well-posedness in Sobolev class for (2.1) and many generalizations of it (other
powers upux, other linear terms ∂x|Dx|αu, 1 < α < 2, etc) have been studied by several authors in
the last years: see for example Molinet, Saut & Tzvetkov [31], Colliander, Kenig & Staffilani [14], Tao
[37], Kenig & Ionescu [20], Burq & Planchon [13], Molinet [29], [30], and the references therein. On
the contrary, to the best of our knowledge, there are few works about time-periodic or quasi-periodic
solutions of Benjamin-Ono equations. One of them is [2], where 2-mode periodic solutions of (2.1) are
studied by numerical methods; another one is [28], which deals with an old very interesting question.

In [28] Liu and Yuan apply a Birkhoff normal form and KAM method to show the existence of quasi-
periodic solutions of a Benjamin-Ono equation that is a Hamiltonian analytic perturbation of (2.1), with
Hamiltonian of the form

H(u) + εK(u), H = Benjamin-Ono, ∇K(u) = bounded operator.

The resulting equation is of the type

∂tu = −∂x{Hux +
1
2u

2 + ε∇K(u)} = Au + F (u), (2.2)

where the Hamiltonian vector field has a linear part A, which loses dA = 2 derivatives, and a nonlinear
part F , which loses dF = 1 derivative and, for this reason, is an unbounded operator.

In general, as it was proved in the works of Lax, Klainerman and Majda on the formation of singular-
ities (see for example [25]), the presence of unbounded nonlinear operators can compromise the existence
of invariant structure like periodic orbits and KAM tori. In fact, the wide existing literature on KAM
and Nash-Moser theory mainly deals with problems where the perturbation is bounded (see Kuksin [27],
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Craig [15], Berti [6] for a survey. See also Moser [32] where the KAM iteration is applied in problems
where the Hamiltonian structure is replaced by reversibility).

For unbounded perturbations, quasi-periodic solutions have been constructed via KAM theory by
Kuksin [27] and Kappeler & Pöschel [24] for KdV equations where dA = 3 and the gap between the loss
of derivatives of the linear and nonlinear part is γ := (dA − dF ) = 2, in analytic class; more recently, in
[28] for NLS and (2.2) where dA = 2 and γ = 1, in C∞ class; by Zhang, Gao & Yuan [38] for reversible
NLS equations with dA = 2 and γ = 1; and by Berti, Biasco & Procesi [7], where wave equations with
a derivative in the nonlinearity become a Hamiltonian system with dA = 1 and γ = 1, in analytic class.
See also Bambusi & Graffi [4] for a related linear result that corresponds to a gap γ > 1.

Periodic solutions for unbounded perturbations have been obtained for wave equations by Craig [15]
for γ > 1; by Bourgain [12] in the non-Hamiltonian case utt − uxx + u + u2t = 0; by the author in [3]
for the quasi-linear equation utt −∆u(1 +

∫

|∇u|2dx) = εf(t, x), where the integral plays a special role
(
∫

|∇u|2dx depends only on time). Also the pioneering result of Rabinowitz [36] for fully nonlinear wave
equations of the form

utt − uxx + αut + εF (x, t, u, ux, ut, uxx, uxt, utt) = 0

certainly has to be mentioned here; however, the dissipative term α 6= 0 destroys any Hamiltonian or
reversible structure and completely avoids the resonance phenomenon of the small divisors.

The threshold γ = 1 in Hamiltonian problems with small divisors has been crossed in the works of
Iooss, Plotnikov and Toland [34], [23], [21], [22] about the completely resonant fully nonlinear (γ = 0)
problem of periodic standing water waves on a deep 2D ocean with gravity. So far their very powerful
technique, which is a combination of (1) changes of variables and conjugations with pseudo-differential
operators to obtain a normal form, and (2) a differentiable Nash-Moser scheme, is essentially the only
known method to overcome the small divisors problem in quasi-linear and fully nonlinear PDEs.

Note that recently normal form methods for quasi-linear Hamiltonian PDEs have also been successfully
applied to Cauchy problems, see Delort [16].

Thus, some of the general, challenging and open questions that come from the aforementioned works
are these:

• Which gap γ is the limit case for the existence of invariant tori for nonlinear Hamiltonian PDEs?
How many derivatives can stay in the nonlinearity?

• What is the role of the Hamiltonian structure? Can it be replaced by other structures?

The motivations of the present paper are in these questions. Theorem 1.2 joins the above mentioned
results in the aim of approaching an answer, at least in simple cases, and shows that

(i) if the dimension is the lowest for a PDE, (t, x) ∈ T2, and

(ii) the derivatives in the nonlinearity have a suitable structure (see (1.2),(1.3),(1.6),(1.7)),

then problem (1.1), where γ = 0 (the nonlinearity N (u) loses 2 derivatives like the linear part) admits
solutions that bifurcate from the equilibrium u = 0. The Hamiltonian structure here is replaced by
reversibility: (1.1), in general, is a non-Hamiltonian perturbation of the cubic Benjamin-Ono Hamiltonian
equation

∂tu+H∂xxu+ ∂x(u
3) = 0,

but N (u) satisfies the reversibility condition (1.8).
Let us explain the reversible structure in some detail. As a dynamical system, problem (1.1) is

∂tu(t) = V (u(t)), (2.3)

a first order ordinary differential equation in the infinite-dimensional phase space L2(T;R), where the
vector field V : H2(T;R) → L2(T;R), u 7→ V (u) is

V (u)(x) = −H∂xxu(x)− ∂x(u
3(x)) −N4(u)(x).
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The phase space can be split into two subspaces L2
e ⊕L2

o of even and odd functions of x ∈ T respectively,

u = ue + uo, ue(−x) = ue(x), uo(−x) = −uo(x), x ∈ T, u ∈ L2(T;R).

To decompose u = ue + uo means to split the real and imaginary part of each Fourier coefficient of
u ∈ L2(T;R), namely

u(x) =
∑

j∈Z

ûj e
ijx, ue(x) =

∑

j∈Z

(Re ûj) e
ijx, uo(x) =

∑

j∈Z

i(Im ûj) e
ijx.

Consider the reflection
R : u = ue + uo 7→ Ru = ue − uo. (2.4)

R is a R-linear bijection of L2(T;R), and R2 is the identity map. In terms of Fourier coefficients,

R : u(x) =
∑

j∈Z

ûj e
ijx 7→ Ru(x) =

∑

j∈Z

ûj e
ijx, (2.5)

where ûj is the complex conjugate of ûj. Note that Ru is real-valued for every real-valued u. (2.3) is a
reversible system in the sense that

V ◦R = −R ◦ V. (2.6)

It is immediate to check (2.6) for the linear part H∂xx of V using (2.5), and for the cubic part ∂x(u
3)

using (2.4). To prove (2.6) for N4(u), using (1.6), (1.7) and (2.4) one has

α(−x) = −β(x), α(x) := N4(Ru)(x), β(x) := N4(u)(x).

Splitting α = αe + αo, β = βe + βo and projecting the equality α(−x) = −β(x) onto L2
e and L2

o give
αe = −βe and αo = βo, namely Rβ = −α, which is (2.6) for N4.

(2.6) implies that V (u) ∈ L2
o for all u ∈ L2

e ∩H
2. For, L2

e is the set of fixed points u = Ru, therefore
V (u) = −RV (u), whence (V (u))e = 0.

By (2.6), if u(t) solves (2.3), then also Su(t) := R(u(−t)) is a solution of (2.3). Thus we look for
solutions of (2.3) in the subspace X of the fixed points of S. It is easy to see, using (2.4), (2.5), that X
is the space of functions u(t, x) that are even in the time-space pair (t, x), namely u(−t,−x) = u(t, x).

To prove Theorem 1.2 we apply (and slightly modify, under certain technical aspects; see below) the
method of Iooss, Plotnikov and Toland. Like in [23], the main difficulties here are: (i) in the bifurcation
equation, which is infinite-dimensional (for this reason (1.1) is said to be a completely resonant problem);
and, especially, (ii) in the inversion of the linearized operator, which has non-constant coefficients also
in the highest order derivatives and, therefore, contains small divisors that are not explicitly evident.

The main tool in the inversion proof is the reduction of the linearized operator L to constant coefficients
up to a regularizing rest, by means of changes of variables first (to obtain proportional coefficients in
the highest order terms), then by the conjugation with simple linear pseudo-differential operators that
imitate the structure of L (they are the composition of multiplication operators with the Hilbert transform
H), to obtain constant coefficients also in terms of lower order, and to lower the degree of the highest
non-constant term.

Since we look for periodic solutions, after a finite number of steps this reducibility scheme implies the
invertibility of L, by standard Neumann series.

Other, and minor, technical points are the following. Like in [23], the Lyapunov-Schmidt decom-
position is not used directly on the nonlinear equation, as it would be made in classical applications
(see [6] for the Lyapunov-Schmidt decomposition in completely resonant problems). Instead, it is used
a first time at the beginning of the proof, in a formal power series expansion of the nonlinear problem,
to look for a suitable starting point of the Nash-Moser iteration. In other words, this means to find a
non-degenerate solution of the “unperturbed bifurcation equation”. In Theorem 1.2 the existence and
the non-degeneracy conditions are the first and the second inequality in (1.11) respectively. Then the
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Lyapunov-Schmidt decomposition is used a second time in the inversion proof for the linearized operator,
in each step of the Nash-Moser scheme.

This method seems to be more complicated than the usual Lyapunov-Schmidt decomposition on the
nonlinear problem, at least at a first glance. However, it simplifies the analysis when working with changes
of variables (namely compositions with diffeomorphisms of the torus T2). In fact, changes of variables do
not behave very well with respect to the orthogonal projections onto subspaces of L2, because they are
not “close to the identity” in the same way as multiplications operators are (in the language of harmonic
analysis, changes of variables are Fourier integral operators, and not pseudo-differential operators. See
also Remark 7.3). For this reason, it is simpler to work in the whole function space Hs(T2) instead of
distinguishing bifurcation and orthogonal subspaces, at least for the first step of reducibility.

Nonetheless, in our setting (4.4) we keep track of the natural “different amount of smallness” between
the bifurcation and the orthogonal components of the problem. Thanks to this small change with respect
to [23], we avoid factors ε−1 in the Nash-Moser scheme and simplify the measure estimate for the small
divisors.

Regarding the Nash-Moser scheme, the recent and powerful abstract Nash-Moser theorem for PDEs
that is contained in [10] does not apply directly here, as it designed to be used with Galerkin approxima-
tions, while in our Nash-Moser scheme, after the reduction to constant coefficients, it is natural to insert
the smoothing operators in a different position: see (9.5). Even if our iteration scheme is very close to
the usual one, this small difference brings our problem out of the field of applicability of the theorem in
[10].

Going back to the “unperturbed bifurcation equation”, we point out that the restriction of the func-
tional setting to the subspace X of even functions (a restriction that can be made because of the reversible
structure) eliminates a degeneration and makes it possible to prove the non-degeneracy of the solution.
Moreover, the solutions we find in Theorem 1.2 are genuinely multimodal : form = 1 the second inequality
in (1.11) is never satisfied, whereas for every m ≥ 2 there exist suitable integers k1, . . . , km that satisfy
(1.11) and produce a non-degenerate solution. This is a nonlinear effect: the solutions of Theorem 1.2
exist as a consequence of the nonlinear interaction of different modes.

Regarding the special structure (1.2),(1.3), the restriction of assuming (I) or (II), instead of considering
the more general case

N4(u) = g(x, u,Hu, ux,Hux, uxx,Huxx), (2.7)

is due to a technical reason: when N4(u) is of the type (I) or (II), in the process of reducing the
linearized operator L to constant coefficients we use simple transformations, namely changes of variables,
multiplications, the Hilbert transform H and negative powers of ∂x (which are Fourier multipliers). On
the contrary, in the general case (2.7) these special transformations are not sufficient to conjugate L to
a normal form, and one needs more general transformations: changes of variables should be replaced by
general Fourier integral operators. In the intermediate case in which N4 in (2.7) does not depend on
uxx (but it does on Hux), an additional term of the type b(t)∂xH appears in the transformed linearized
operators after the changes of variables. This term could be removed by a simple Fourier integral operator:
see Remark 7.1.

Regarding the choice of the leading term ∂x(u
3) in (1.1) (which is the first natural case to study after

the integrable one ∂x(u
2)), we remark that the cubic power has no special reversibility property: ∂x(u

p)
satisfy the reversibility condition (2.6) for every (both even and odd) power p ∈ N. The proof of this fact
is the same as above: if f(u) = ∂x(u

p), using (2.4) one proves that {f(Ru)}(−x) = −{f(u)}(x), then
f ◦R = −R ◦ f .

Finally, the coefficient 3 in the frequency-amplitude relation ω = 1+3ε2 could be replaced by any other
positive number: 3 is simply the most convenient choice to do when working with the cubic nonlinearity
∂x(u

3). On the contrary, what is determined by the nonlinearity in an essential way is the sign of that
coefficient: for the equation

ut +Huxx − ∂x(u
3) +N4(u) = 0,

in which the cubic nonlinearity has opposite sign, Theorem 1.2 holds with ω = 1− 3ε2 (the only changes
to do are in the bifurcation analysis of Section 5).
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The paper is organized as follows. In Section 3 the setting for the problem is introduced. In Section
4 the formal Lyapunov-Schmidt reduction is performed up to order O(ε4). In Section 5 non-degenerate
solutions v̄1 of the “unperturbed bifurcation equation” are constructed. Here the non-homogeneous
dispersion relation of the unperturbed Benjamin-Ono linear part

l + j|j| = 0,

where l is the Fourier index for the time and j the one for the space, is used in a crucial way. The basic
properties of this relation are proved in Appendix 10. In Sections 6 and 7 the linearized operator is reduced
to constant coefficients. Most of the proofs of the related estimates are in Appendix 12 and use classical
results of Sobolev spaces (tame estimates for changes of variables, compositions and commutators with
the Hilbert transform) that are listed in Appendix 11. In Section 8 the transformed linearized operator
is inverted. In Section 9 the Nash-Moser induction is performed, and the measure of the Cantor set of
parameters is estimated.

Acknowledgements. I express my gratitude to Massimiliano Berti for many fruitful discussions and
suggestions, Pavel Plotnikov, Gérard Iooss and Thomas Alazard for useful conversations, and John Toland
for introducing me to the problem.

This work is partially supported by the Italian PRIN2009 grant Critical Point Theory and Perturbative
Methods for Nonlinear Differential Equations, and by the European Research Council, FP7, project New
connections between Dynamical Systems and Hamiltonian PDEs with Small Divisors Phenomena.

3 Functional setting

Let
F(u, ω) := ωut +Huxx +N (u), N (u) := ∂x(u

3) +N4(u).

Let Z := L2(T2,R). Decompose

Z
2 = Z

2
C + Z

2
T + Z

2
E , Z

2
C = {(0, 0)}, Z

2
T = {(l, 0) : l 6= 0}, Z

2
E = {(l, j) : j 6= 0, l ∈ Z},

let

ZC = R, ZT =
{

u ∈ L2(T) :

∫ 2π

0

u(t) dt = 0
}

, ZE =
{

u ∈ Z :

∫ 2π

0

u(t, x) dx = 0
}

,

so that Z = ZC ⊕ ZT ⊕ ZE, namely every u(t, x) ∈ Z splits into three components

u(t, x) =
(

∑

Z
2
C

+
∑

Z
2
T

+
∑

Z
2
E

)

ûl,j e
i(lt+jx) = û0,0 +

∑

l 6=0

ûl,0 e
ilt +

∑

j 6=0

uj(t) e
ijx,

and denote ΠC ,ΠT ,ΠE the projections onto ZC , ZT , ZE . Let Z0 be the space of zero-mean functions,
and P the projection onto Z0,

Z0 := ZT ⊕ ZE , P := I −ΠC = ΠT +ΠE . (3.1)

We define ∂−1
x as the Fourier multiplier

∂−1
x eijx =

1

ij
eijx ∀j 6= 0, ∂−1

x 1 = 0,

and similarly ∂−1
t . Note that ∂−1

x ∂x = ΠE , HH = −ΠE .
To eliminate a degeneration that appears in the bifurcation equation, as it was mentioned above where

the reversible structure was discussed, we consider the subspaces of even/odd functions with respect to
the time-space vector (t, x):

X :=
{

u ∈ Z : u(−t,−x) = u(t, x)
}

, Y :=
{

u ∈ Z : u(−t,−x) = −u(t, x)
}

.
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In terms of Fourier coefficients, every u ∈ Z is u =
∑

k∈Z2 ukek with u−k = ūk (because u is real-valued),
namely uk = ak + ibk, with ak, bk ∈ R and a−k = ak, b−k = −bk, therefore

X =
{

u =
∑

k∈Z2

akek : ak ∈ R, a−k = ak

}

, Y =
{

u =
∑

k∈Z2

ibkek : bk ∈ R, b−k = −bk
}

,

and L2(T2,R) = Z = X ⊕ Y . The usual rules for even/odd functions hold: uv ∈ X if both u, v ∈ X or
both u, v ∈ Y , and uv ∈ Y if u ∈ X , v ∈ Y . Moreover H, ∂x, ∂t are all operators that change the parity,
namely they map Y into X and viceversa, because they are diagonal operators with respect to the basis
{ek} with purely imaginary eigenvalues. Assumption (1.6) implies that the nonlinearity N maps X ∩H2

into Y , like the linear part ω∂t + ∂xxH does, therefore F(u, ω) ∈ Y for all u ∈ X ∩H2.
Also, we denote

X0 := X ∩ Z0,

while Y ∩ Z0 = Y . We set problem (1.9) in the space X0 of even functions with zero mean, namely we
look for solutions of the equation

F(u, ω) = 0, u ∈ X0. (3.2)

Notation. To distinguish L2- and L∞-based Sobolev spaces, in the whole paper the following notation
is used: two bars for L2-based Sobolev norms ‖u‖s (1.10), and one bar for L∞-based Sobolev norms

|u|s = ‖u‖W s,∞ =
∑

0≤|α|≤s

sup
(t,x)

|∂α(t,x)u(t, x)|, s ∈ N.

4 Linearization at zero and formal Lyapunov-Schmidt reduction

Let
L := ∂t + ∂xxH, L[ei(lt+jx)] = i(l + j|j|) ei(lt+jx).

Split Z2 = V ∪W ,

V := {(l, j) ∈ Z
2 : l+ j|j| = 0} = {(−j|j|, j) : j ∈ Z}, W := Z

2 \ V

and Z = V ⊕W ,

V :=
{

u =
∑

k∈V

ukek ∈ Z
}

, W :=
{

u =
∑

k∈W

ukek ∈ Z
}

.

V is the kernel of L and W is its range. Also, let V0 := V ∩ Z0, so that Z0 = V0 ⊕W .
We write a finite number of terms of a formal power series expansion to obtain a good starting point

for our Nash-Moser scheme. Let

ω = 1 +
∑

k≥1

ωkε
k, u =

∑

k≥1

uk ε
k ∈ Z0, uk = vk + wk, vk ∈ V0, wk ∈W.

Then

F(u, ω) = Lu+ (ω − 1)∂tu+ ∂x(u
3) +N4(u)

= ε Lu1 + ε2
{

Lu2 + ω1∂tu1
}

+ ε3
{

Lu3 + ω1∂tu2 + ω2∂tu1 + ∂x(u
3
1)
}

+ ε4
{

Lu4 + ω1∂tu3 + ω2∂tu2 + ω3∂tu1 + ∂x(3u
2
1u2) + ε−4N4(εu1)

}

+O(ε5)

=
∑

k≥1

εkFk.

In general, N4(εu1) also contains terms of higher order than ε4; in any case, N4(u)−N4(εu1) = O(ε5).
At order ε, F1 = Lu1 = 0 if w1 = 0 and u1 = v1 ∈ V0. Then F2 becomes

F2 = Lu2 + ω1∂tu1 = Lw2 + ω1∂tv1.
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Lw2 ∈ W and ω1∂tv1 ∈ V0. Since we look for v1 6= 0, we have F2 = 0 if w2 = 0, ω1 = 0, u2 = v2 ∈ V0.
At order ε3 the nonlinearity begins to give a contribution: F3 = Lw3 + ω2∂tv1 + ∂x(v

3
1). The

“unperturbed bifurcation equation” is the equation ΠV F3 = 0 in the unknown v1, namely

ω2∂tv1 +ΠV ∂x(v
3
1) = 0. (4.1)

In the next section (see Proposition 5.3) we construct nontrivial, nondegenerate solutions v̄1 of (4.1) with
ω2 = 3. A solution v1 of (4.1) for any other value ω2 > 0 can be obtained by homogeneity by taking
v1 = λv̄1, λ = (ω2/3)

1/2. Hence there is no loss of generality in fixing ω2 = 3. At order ε4,

F4 = Lu4 + 3∂tv2 + ω3∂tv1 + ∂x(3v
2
1v2) + ε−4N4(εv1).

We fix ω3 = 0. The “linearized unperturbed bifurcation equation” is the equation ΠV F4 = 0 in the
unknown v2, namely

3∂tv2 +ΠV ∂x(3v
2
1v2) = −ε−4ΠV N4(εv1), (4.2)

which has a unique solution v̄2(ε) because v̄1 is a nondegenerate solutions of (4.1). Thus, at u =
εv̄1 + ε2v̄2(ε) and ω = 1 + 3ε2,

F(εv̄1 + ε2v̄2, 1 + 3ε2) = ε3ΠW ∂x(v̄
3
1) + ε4ΠW∂x(3v̄

2
1 v̄2) +N4(εv̄1 + ε2v̄2)−N4(εv̄1)

+ ΠWN4(εv̄1) + ε5∂x(3v̄1v̄
2
2) + ε6∂x(v̄

3
2). (4.3)

With these power of ε, the sufficient accuracy is achieved to start the quadratic Nash-Moser scheme (see
section 9). Hence, for ε > 0, let

F (u, ε) := (ε−4ΠV + ε−2ΠW )F(εv̄1 + ε2u, ω) (4.4)

= ε−2P−1
ε F(εv̄1 + ε2u, 1 + 3ε2)

= ΠV {3∂tu+ ∂x(3v̄
2
1u+ ε3v̄1u

2 + ε2u3) + ε−4N4(εv̄1 + ε2u)} (4.5)

+ ΠW {Lu+ ε23∂tu+ ε∂x[(v1 + εu)3] + ε−2N4(εv̄1 + ε2u)},

ω := 1 + 3ε2, Pε := ε2 ΠV +ΠW , P−1
ε = ε−2ΠV +ΠW .

By (4.3), F (v̄2, ε) = O(ε) (see Lemma 8.5 for precise estimates). For ε > 0, problem (3.2) becomes

F (u, ε) = 0, u ∈ X0. (4.6)

Like F does, F also maps X0 into Y .

5 Bifurcation

In this section we construct a solution v ∈ V0 of (4.1) and prove its non-degeneracy. Recall that in V it
is l + j|j| = 0. Let

qj(t, x) := ei(−j|j|t+jx), j ∈ Z . (5.1)

Note that qj1qj2 = 1 = q0 if j1 + j2 = 0.

Lemma 5.1. 1) (Product of two terms). Let j1, j2 ∈ Z be both nonzero integers. Then ΠV (qj1qj2) = 0
except the case when j1 + j2 = 0.

2) (Product of three terms). Let j1, j2, j3 ∈ Z be all nonzero integers. Then ΠV (qj1qj2qj3) = 0 except
the case when j1 + j2 = 0 or j1 + j3 = 0 or j2 + j3 = 0.

Proof. See Appendix 10.
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Consider m positive distinct integers 0 < k1 < k2 < . . . < km, m ≥ 1, and let

K := {k1, k2, . . . , km,−k1,−k2, . . . ,−km} .

Consider three elements v, v′, v′′ ∈ V0 ∩X with only Fourier modes in K,

v =
∑

j∈K

ajqj , v′ =
∑

j∈K

bjqj , v′′ =
∑

j∈K

cjqj ,

with a−j = aj ∈ R, and similar for bj , cj. Then

vv′v′′ =
∑

j1,j2,j3∈K

aj1bj2cj3 qj1qj2qj3 , ΠV (vv
′v′′) =

∑

j1,j2,j3∈K

aj1bj2cj3 ΠV (qj1qj2qj3 ) .

Develop the sum with respect to j1. Let k ∈ K. For j1 = k, ΠV (qj1qj2qj3) is nonzero only if:





j1 = k
j2 = k
j3 = −k



 or





j1 = k
j2 = −k
j3 ∈ K



 or





j1 = k
j2 6= ±k
j3 = −k



 or





j1 = k
j2 6= ±k
j3 = −j2



 . (5.2)

Hence in the sum only these four cases give a nonzero contribution:

ΠV (vv
′v′′) =

∑

k∈K

akbkck qk +
∑

k,j∈K

akbkcj qj +
∑

k∈K,j 6=±k

akbjck qj +
∑

k∈K,j 6=±k

akbjcj qk . (5.3)

Since
∑

k∈K,j 6=±k =
∑

k,j∈K −
∑

k∈K,j=k −
∑

k∈K,j=−k, the third sum in (5.3) is

∑

k∈K,j 6=±k

akbjck qj =
∑

k,j∈K

akbjck qj −
∑

k∈K

akbkck qk −
∑

k∈K

akbkck q−k

=
∑

k,j∈K

akbjck qj −
∑

k∈K

akbkck qk −
∑

k∈K

akbkck qk

(in the last equality we have made the change of summation variable k = −k′). Analogously, the fourth
sum in (5.3) is

∑

k∈K,j 6=±k

akbjcj qk =
∑

k,j∈K

akbjcj qk −
∑

k∈K

akbkck qk −
∑

k∈K

akbkck qk .

Thus
ΠV (vv

′v′′) =
∑

k∈K

{

− 3akbkck + ak

(

∑

j∈K

bjcj

)

+ bk

(

∑

j∈K

ajcj

)

+ ck

(

∑

j∈K

ajbj

)}

qk . (5.4)

The formula for ΠV [∂x(vv
′v′′)] = ∂xΠV (vv

′v′′) simply has ik qk instead of qk. For v = v′ = v′′, (5.4)
gives

ΠV (v
3) = 3

∑

k∈K

(

− a2k +
∑

j∈K

a2j

)

ak qk .

Then

3∂tv +ΠV [∂x(v
3)] = 3

∑

k∈K

(

− |k| − a2k +
∑

j∈K

a2j

)

ak ik qk .

This is zero if
(

∑

j∈K

a2j

)

− a2k = |k| ∀k ∈ K . (5.5)
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Since
∑

j∈K a
2
j = 2(a2k1

+ . . .+ a2km
), (5.5) is equivalent to



















a2k1
+ 2a2k2

+ 2a2k3
+ . . .+ 2a2km

= k1

2a2k1
+ a2k2

+ 2a2k3
+ . . .+ 2a2km

= k2

. . . . . . . . . . . .

2a2k1
+ 2a2k2

+ 2a2k3
+ . . .+ a2km

= km,

(5.6)

which is a system of m equations in the m unknowns a2k1
, . . . , a2km

. Let M the m ×m matrix that has
1 on the principal diagonal and 2 everywhere else. M is invertible, and its inverse M−1 is the m ×m
matrix that has α on the principal diagonal and β everywhere else, with

α = −
m− 3/2

m− 1/2
, β =

1

m− 1/2
.

Hence (5.6) is equivalent to

a2k1
= ρ1, a2k2

= ρ2, . . . a2km
= ρm, (5.7)

where (ρ1, . . . , ρm) :=M−1(k1, . . . , km), namely

ρi := αki + β
∑

j 6=i

kj =
1

m− 1/2

(

m
∑

j=1

kj

)

− ki, i = 1, . . . ,m . (5.8)

(5.7) has solutions with all aj 6= 0 if all ρj are positive. Note that ρj > ρj+1, because β − α = 1 and

ρj − ρj+1 = αkj + βkj+1 − βkj − αkj+1 = kj+1 − kj > 0 .

Hence all ρj > 0 if ρm > 0, namely if

k1 + . . .+ km−1 > km(m− 3/2) . (5.9)

When aj satisfy (5.7),
∑

j∈K

a2j = 2(a2k1
+ . . .+ a2km

) =
1

m− 1/2

m
∑

i=1

ki . (5.10)

Remark 5.2. k1, . . . , km satisfy (5.9) if they are sufficiently close, as if they form a “packet” of integers.
Note also that if the smallest and the biggest integers satisfy the stronger condition

km
k1

<
m− 1

m− 3/2
, (5.11)

then k1, k2, . . . , km satisfy (5.9) for every choice of the intermediate integers k2, . . . , km−1, because

k1 + k2 + . . .+ km−1 > (m− 1)k1 > (m− 3/2)km.

(5.11) is meaningful because (m− 1)/(m− 3/2) > 1.

Now we prove that for every f ∈ V0 ∩ Y there is a unique h ∈ V0 ∩X such that

3∂th+ΠV ∂x(3v
2h) = f. (5.12)

Let f ∈ V ∩ Y and h ∈ V ∩X ,

f =
∑

j 6=0

iyjqj ∈ V ∩ Y, y−j = −yj ∈ R, h =
∑

j 6=0

hjqj ∈ V ∩X, h−j = hj ∈ R.
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Split

f = ΠKf +Π⊥
Kf, ΠKf :=

∑

j∈K

iyjqj , Π⊥
Kf :=

∑

j /∈K

iyjqj ,

and similarly h = ΠKh+ Π⊥
Kh. The formula for ΠV ∂x(v

2ΠKh) is obtained from (5.4) with bj = aj and
cj = hj, namely

ΠV ∂x(v
2(ΠKh)) =

∑

k∈K

{

− 3a2khk + 2ak

(

∑

j∈K

ajhj

)

+ hk

(

∑

j∈K

a2j

)}

ik qk.

Hence

3∂t(ΠKh) + ΠV ∂x(3v
2ΠKh) = 3

∑

k∈K

{

− |k|hk − 3a2khk + 2ak

(

∑

j∈K

ajhj

)

+ hk

(

∑

j∈K

a2j

)}

ik qk

which is, replacing |k| by (5.5),

= 3
∑

k∈K

{

− 2a2khk + 2ak

(

∑

j∈K

ajhj

)}

ik qk = 6
∑

k∈K

{

− akhk +
∑

j∈K

ajhj

}

ak ik qk.

Note that this sum has only Fourier modes in K; in other words, the space of functions in V that are
Fourier-supported on K is an invariant subspace for the operator 3∂t +ΠV ∂x(3v

2· ) (with, of course, the
change of parity X → Y ).

Thus, the equation 3∂t(ΠKh) + ΠV ∂x(3v
2(ΠKh)) = ΠKf is equivalent to

−akhk +
∑

j∈K

ajhj =
yk

6kak
=: y′k ∀k ∈ K,

namely to the system

M







ak1hk1

...
akm

hkm






=







y′k1

...
y′km






(5.13)

because y′−k = y′k for all k ∈ K, where M is the m×m matrix defined above (1 on the principal diagonal
and 2 everywhere else). Therefore there exists a unique solution of (5.13),

hki
=

1

aki

(

αy′ki
+ β

∑

j 6=i

y′kj

)

.

Since aj solve (5.7),
∑

j∈K

h2j ≤ C
∑

j∈K

y2j ,

where C > 0 depends only on k1, . . . , km and m.
Now consider Π⊥

Kh,Π
⊥
Kf . In the product

v2(Π⊥
Kh) =

∑

j1,j2∈K,j3 /∈K

aj1aj2hj3 qj1qj2qj3

only the second case of (5.2) occurs, namely j1 = k = −j2 ∈ K, j3 /∈ K. Hence

ΠV ∂x(v
2(Π⊥

Kh)) =
∑

k∈K,j /∈K

a2khj ij qj =
(

∑

k∈K

a2k

)

∑

j /∈K

ij hj qj =
k1 + . . .+ km
m− 1/2

∂x(Π
⊥
Kh)

by (5.10). Therefore

3∂t(Π
⊥
Kh) + ΠV ∂x(3v

2(Π⊥
Kh)) = 3

∑

j /∈K

(

− |j|+
k1 + . . .+ km
m− 1/2

)

ijhj qj .
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Analogously as above, note that this sum has only Fourier modes out of K; in other words, the space
of functions in V that are Fourier-supported on the complementary of K is invariant for the operator
3∂t +ΠV ∂x(3v

2· ) (with the change of parity X → Y ). The condition for the invertibility is

k1 + . . .+ km
m− 1/2

6= |j| ∀j /∈ K. (5.14)

When (5.9) holds, k1 + . . .+ km > km(m− 1/2), therefore (k1 + . . .+ km)/(m− 1/2) is automatically out
of K. Hence (5.14) can be more easily written in this equivalent form:

k1 + . . .+ km
m− 1/2

/∈ N. (5.15)

(5.15) implies that
∣

∣

∣− |j|+
k1 + . . .+ km
m− 1/2

∣

∣

∣ ≥ δ|j| ∀j 6= 0, (5.16)

where δ > 0 depends only on k1, . . . , km and m. Therefore the equation 3∂t(Π
⊥
Kh) + ΠV ∂x(3v

2(Π⊥
Kh)) =

Π⊥
Kg has a unique solution Π⊥

Kh, with

|hj | ≤
C

|j|2
|yj | ∀j 6= 0, j /∈ K.

Also, by (5.10) and Lemma 5.1, (k1 + . . .+ km)/(m− 1/2) = ΠC(v
2), therefore (5.16) can be written as

|ΠC(v
2)− |j|| ≥ δ|j| for all j 6= 0.

We have proved the following result:

Proposition 5.3 (Bifurcation for cubic nonlinearities). Let m ≥ 2. Let 0 < k1 < k2 < . . . < km be m
positive integers that satisfy (5.9) and (5.15). Then there exist m positive numbers ρ1, . . . , ρm > 0, given
by (5.8), and constants C, δ > 0 that depend only on k1, . . . , km and have the following property.

Let K := {k1, . . . , km,−k1, . . . ,−km}. Every function v =
∑

j∈K ajqj ∈ V0 ∩ X which is Fourier-
supported on K with

a2k1
= ρ1, . . . a2km

= ρm

is a solution of the unperturbed bifurcation equation 3∂tv +ΠV ∂x(v
3) = 0.

For every f ∈ V0 ∩ Y there exists a unique h ∈ V0 ∩X such that 3∂th+ΠV ∂x(3v
2h) = f .

If f ∈ Hs, s ≥ 0, then h ∈ Hs+1, with ‖h‖s+1 ≤ C‖f‖s. Moreover

|ΠC(v
2)− |j|| ≥ δ|j| ∀j ∈ Z, j 6= 0.

6 The linearized equation

Remember that

F (u, ε) = ε−2P−1
ε F(εv̄ + ε2u, ω), ω = 1 + 3ε2, P−1

ε = ε−2 ΠV +ΠW ,

where v̄ := v̄1 is a solution of the unperturbed bifurcation equation (4.1) as in Proposition 5.3. The
linearized operator F ′(u, ε) applied to h, namely the Fréchet derivative ∂uF (u, ε)[h] of F with respect to
u in the direction h, is then

F ′(u, ε)h = ε−2P−1
ε F ′(εv̄ + ε2u, ω)[ε2h] = P−1

ε L(u, ε)h,

L(u, ε)h := F ′(εv̄ + ε2u, ω)[h] = ω∂th+ (1 + a1)H∂xxh+ a2H∂xh+ a3∂xh+ a4Hh+ a5h

where the coefficients ai = ai(t, x) = ai(u, ε)(t, x) are periodic functions of (t, x), depending on u, ε, and
are obtained from ∂x(U

3) and the partial derivatives of g1, g2 or g0 evaluated at (x, U(t, x),HU(t, x), . . .),
U := εv̄ + ε2u. For example, in case (I)

a1(t, x) = (∂y2g2)(x, U(t, x),HUx(t, x)), a2(t, x) = ∂xa1(t, x), (6.1)
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and in case (II)

a1(t, x) = (∂y4g0)(x, U(t, x),HU(t, x), Ux(t, x),HUxx(t, x)), a2(t, x) = 0. (6.2)

N (U) = ∂x(U
3) + O(U4), and U = εv̄ + ε2u = O(ε), therefore a1, a2, a4 = O(ε3), a3, a5 = O(ε2).

More precisely: let δ0 ∈ (0, 1) be a universal constant such that

‖(U,HU,Ux,HUx,HUxx)‖L∞ < 1 ∀U ∈ H4(T2), ‖U‖4 < δ0. (6.3)

Proposition 6.1. Let K > 0. There exists ε0 ∈ (0, 1), depending on K, with the following property: if
ε ∈ (0, ε0), ‖u‖4 ≤ K, and

‖εv̄1 + ε2u‖4 ≤ ε0‖v̄1‖4 + ε20‖u‖4 < δ0, (6.4)

then the coefficients ai(u, ε)(t, x), i = 1, . . . , 5 satisfy

|a1|s + |a2|s + |a3 − ε23v̄2|s + |a4|s + |a5 − ε2(3v̄2)x|s ≤ ε3C(s,K)(1 + ‖u‖s+4), 0 ≤ s ≤ r. (6.5)

ai is of class C1 as a function of (u, ε), with

∑

i=1,2,4

|∂uai(u, ε)[h]|s + |∂ua3(u, ε)[h]− ε36v̄h|s + |∂ua5(u, ε)[h]− ε3(6v̄h)x|s

≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+4‖h‖4), (6.6)

∑

i=1,2,4

|∂εai(u, ε)|s + |∂εa3(u, ε)− ε6v̄2|s + |∂εa5(u, ε)− ε(6v̄2)x|s ≤ ε2C(s,K)(1 + ‖u‖s+4), (6.7)

for 0 ≤ s ≤ r. The constant C(s,K) > 0 depend on s, K, and Kg,r of (1.4). In these estimates the
norm ‖v̄1‖s+4 appears like a constant C(s) depending on s.

Proof. In Section 12.

Remark 6.2. In general, the inequality ‖Hu‖L∞ ≤ C‖u‖L∞ is false (see, for example, [26]), while it is
trivially true that ‖Hu‖s ≤ ‖u‖s for all s. Therefore to obtain the estimate ‖Huxx‖L∞ ≤ C‖u‖4 (which
is used to prove (6.3)) the right chain of inequalities is ‖Huxx‖L∞ ≤ C‖Huxx‖2 ≤ C‖uxx‖2 ≤ C‖u‖4.

Since v̄, u ∈ X ,
a1, a3, a4 ∈ X, a2, a5 ∈ Y,

and L(u, ε) maps X ∩H2 → Y .
As a pseudo-differential operator, we write

L := L(u, ε) = ω∂t + (1 + a1(t, x))H∂xx + a2(t, x)H∂x + a3(t, x)∂x + a4(t, x)H + a5(t, x).

In this operator notation a function p(t, x) is identified with the multiplication operator h 7→ p(t, x)h, and
the composition is understood: for example, ∂xp is the operator p∂x + px, because ∂x(ph) = p∂xh+ pxh.

To emphasize that we are in the space of zero mean functions, write

L̃ := PLP,

where P = I −ΠC is defined in (3.1). Since F maps X0 → Y , also F ′(u, ε) maps X0 → Y , therefore

L̃h = Lh ∀h ∈ X0

because Ph = h and Pf = f for all h ∈ X0, f ∈ Y .

7 Reduction to constant coefficients

In this section the linearized operator is conjugated to a linear operator with constant coefficients plus a
regularizing rest. The transformation is performed in several steps.
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7.1 Change of variables

As a first step in the reduction proof, we construct a change of variables that transforms L into a new
operator with constant coefficients in the highest order derivatives ∂t and H∂xx. Since L maps X0 into
Y , we want that our transformation maps X0 → X0 and Y → Y .

We consider diffeomorphisms of the torus (t, x) ∈ T2 which are the composition of (i) a time-dependent
change of the space variable x → x + β(t, x), and (ii) a change of the time variable t → t + α(t) that
does not depend on space. Diffeomorphisms of this type preserve the special role of the time variable as
“a parameter” with respect to pseudo-differential operators of the space variable like H.

Let
ψ : T2 → T

2, ψ(t, x) := (t+ α(t), x+ β(t, x)) = (τ, y)

and let Ψ be the transformation Ψ : u 7→ Ψu,

(Ψu)(t, x) := u(ψ(t, x)) = u(t+ α(t), x+ β(t, x)) = u(τ, y).

α(t) and β(t, x) are periodic functions in Y to be determined.
The conjugate Ψ−1pΨ of any multiplication operator p : h(t, x) 7→ p(t, x)h(t, x) is the multiplication

operator (Ψ−1p) that maps v(τ, y) 7→ (Ψ−1p)(τ, y) v(τ, y). By conjugation, the differential operators
become

Ψ−1∂tΨ = [1 + (Ψ−1α′)(τ)] ∂τ + (Ψ−1βt)(τ, y) ∂y, Ψ−1∂xΨ = [1 + (Ψ−1βx)(τ, y)] ∂y,

Ψ−1∂xxΨ = [1 + (Ψ−1βx)(τ, y)]
2 ∂yy + (Ψ−1βxx)(τ, y) ∂y, Ψ−1HΨ = H +RH,

where RH is defined by the last equality, and it is regularizing in space, bounded in time, see Lemma
11.5(iii).

Since α, β ∈ Y , Ψ maps X → X and Y → Y . However, in general, Ψ does not map X0 into X0.
1 To

obtain a transformation of X0 onto itself, consider the projection onto Z0,

Ψ̃ := PΨP.

Since Ψ−1ΠC = ΠC , one has PΨ−1ΠC = PΠC = 0, and

PΨ−1
P = PΨ−1(I −ΠC) = PΨ−1. (7.1)

As a consequence,
(PΨ−1

P)(PΨP) = PΨ−1
PΨP = PΨ−1ΨP = P,

therefore Ψ̃ : Z0 → Z0 is invertible, with inverse

(Ψ̃)−1 = (PΨP)−1 = PΨ−1
P.

Thus Ψ̃ is a linear bijective operator of X0 → X0 and Y → Y . Also,

[Ψ,P]h = [ΠC ,Ψ]h = ΠC(α̃
′ + β̃y + α̃′β̃y)h =

1

(2π)2

∫

T2

h
(

α̃′ + β̃y + α̃′β̃y
)

dτ dy, (7.2)

where (τ, y) 7→ (τ + α̃(τ), y + β̃(τ, y)) = ψ−1(τ, y) is the inverse of ψ, and similarly

[Ψ−1,P] = [ΠC ,Ψ
−1] = ΠC(α

′ + βx + α′βx).

These commutators are regularizing operators, both in space and time (by integrations by parts, any
derivative applied to the argument h moves to α, β or α̃, β̃).

By (7.1),
L̃1 := Ψ̃−1L̃Ψ̃ = PΨ−1

PLPΨP = PΨ−1LPΨP = PL1P,

1For example: let u(t, x) = cos t ∈ X0, β = 0 and α such that the inverse of t 7→ t+α(t) is τ 7→ τ +(1/2) sin τ . Changing
variable in the integral,

∫
T2 (Ψu) dt dx = (1/2)

∫
T2 cos2 τ dτ dy > 0, therefore Ψu /∈ X0.
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where

L1 = ω[1 + (Ψ−1α′)(τ)] ∂τ + [1 + (Ψ−1a1)(τ, y)] [1 + (Ψ−1βx)(τ, y)]
2 ∂yyH

+ {[1 + (Ψ−1a1)(τ, y)] (Ψ
−1βxx)(τ, y) + (Ψ−1a2)(τ, y)[1 + (Ψ−1βx)(τ, y)]} ∂yH

+ {ω(Ψ−1βt)(τ, y) + (Ψ−1a3)(τ, y)[1 + (Ψ−1βx)(τ, y)]} ∂y

+ (Ψ−1a4)(τ, y)H + (Ψ−1a5)(τ, y) +R1,

R1 = [1 + (Ψ−1a1)(τ, y)] [1 + (Ψ−1βx)(τ, y)]
2 ∂yyRH (7.3)

+ {[1 + (Ψ−1a1)(τ, y)] (Ψ
−1βxx)(τ, y) + (Ψ−1a2)(τ, y)[1 + (Ψ−1βx)(τ, y)]} ∂yRH

+ (Ψ−1a4)(τ, y)RH − P(Ψ−1a5)(τ, y)[ΠC ,Ψ]

because LΠC = a5ΠC . We look for α, β such that the coefficients of ∂τ and ∂yyH are proportional,
namely

[1 + (Ψ−1a1)(τ, y)] [1 + (Ψ−1βx)(τ, y)]
2 = µ2 [1 + (Ψ−1α′)(τ)] (7.4)

for some µ2 ∈ R. (7.4) is equivalent to

(

1 + a1(t, x)
) (

1 + βx(t, x)
)2

= µ2 (1 + α′(t)). (7.5)

Take the square root of (7.5),

1 + βx(t, x) = µ
1/2
2 (1 + α′(t))1/2

(

1 + a1(t, x)
)−1/2

, (7.6)

and integrate in dx,

1 = µ
1/2
2 (1 + α′(t))1/2

1

2π

∫ 2π

0

(1 + a1)
−1/2dx.

Take the square,

µ2 (1 + α′(t)) =
( 1

2π

∫ 2π

0

(1 + a1)
−1/2dx

)−2

=: ρ(t). (7.7)

Integrating in dt determines µ2 ∈ R,

µ2 = ΠC(ρ) =
1

2π

∫ 2π

0

( 1

2π

∫ 2π

0

(1 + a1)
−1/2dx

)−2

dt,

then α(t) ∈ Y is also determined,

α(t) =
1

µ2
∂−1
t (ΠT ρ)(t).

Since a1 ∈ X , also ρ ∈ X , therefore α ∈ Y , as it was required. (7.6) gives

βx = ρ1/2 (1 + a1)
−1/2 − 1 =

p

ΠT+C(p)
− 1 =

ΠE(p)

ΠT+C(p)
, p := (1 + a1)

−1/2, (7.8)

therefore the ZE-component of β is determined,

(ΠEβ)(t, x) =
1

(ΠT p)(t) + ΠC(p)
(∂−1

x ΠEp)(t, x).

Since a1 ∈ X , also p ∈ X , and ΠEβ ∈ Y , as it was required. The ZT -component of β will be determined
later. With this choice of α, β, (7.4) is satisfied. By (7.4),

L1 = ML2,

where M is the multiplication operator of factor [1 + (Ψ−1α′)(τ)],

L2 = ω∂τ + µ2∂yyH+ a6(τ, y) ∂yH+ a7(τ, y) ∂y + a8(τ, y)H+ a9(τ, y) +R2, (7.9)
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a6(τ, y) := Ψ−1
((1 + a1)βxx + a2(1 + βx)

1 + α′

)

(τ, y), a8(τ, y) := Ψ−1
( a4
1 + α′

)

(τ, y),

a7(τ, y) := Ψ−1
(ωβt + a3(1 + βx)

1 + α′

)

(τ, y), a9(τ, y) := Ψ−1
( a5
1 + α′

)

(τ, y),

R2 :=
1

1 + (Ψ−1α′)(τ)
R1.

We show that
a6(τ, y) ∈ ZE . (7.10)

For each fixed τ = t+ α(t), changing variable y = x+ β(t, x), dy = (1 + βx(t, x)) dx in the integral,

∫ 2π

0

a6(τ, y) dy =

∫ 2π

0

(1 + a1(t, x))βxx(t, x) + a2(t, x)(1 + βx(t, x))

1 + α′(t)
(1 + βx(t, x)) dx.

By (7.5),
(1 + a1)βxx + a2(1 + βx)

1 + α′
(1 + βx) = µ2

(1 + a1)βxx + a2(1 + βx)

(1 + a1)(1 + βx)
.

In case (I) a2 = (a1)x (see (6.1)), therefore

(1 + a1)βxx + a2(1 + βx)

(1 + a1)(1 + βx)
=

[(1 + a1)(1 + βx)]x
(1 + a1)(1 + βx)

= ∂x{log[(1 + a1)(1 + βx)]} ;

in case (II) a2 = 0 (see (6.2)), therefore

(1 + a1)βxx + a2(1 + βx)

(1 + a1)(1 + βx)
=

βxx
1 + βx

= ∂x{log(1 + βx)}.

Hence in both cases (I) and (II), by periodicity,
∫ 2π

0
a6 dy = 0, which is (7.10).

Remark 7.1. The assumptions (I),(II) on the nonlinearity N4(u) have been used to prove (7.10). In
more general situations, when (I)(II) are not satisfied, a term b(τ)H∂y also appears, where b(τ) ∈ ZT

is the ZT -component of the coefficient a6 (which here is zero by (7.10)). This term can be removed by
using the Fourier integral operator

u(τ, y) =
∑

j∈Z

uj(τ) e
ijy 7→ Au(τ, y) =

∑

j∈Z

uj(τ) e
ijy+|j|p(τ),

where p(τ) = ∂−1
τ b(τ).

Now we choose the ZT -component of β so that ΠTa7 = 0. Denote γ(t) := (ΠTβ)(t). As above,

1

2π

∫

T

a7(τ, y) dy =
1

2π

∫ 2π

0

ωβt(t, x) + a3(t, x)(1 + βx(t, x))

1 + α′(t)
(1 + βx(t, x)) dx.

This integral is equal to some constant µ1 ∈ R if and only if

ωγ′(t) + σ(t) = µ1(1 +α′(t)), σ(t) :=
1

2π

∫ 2π

0

(

ωβE
t (1 + βE

x ) + a3(1 + βE
x )2

)

dx, βE := ΠEβ. (7.11)

Hence an integration in dt on T determines µ1 ∈ R and γ ∈ ZT ,

µ1 = ΠC(σ), γ(t) =
µ1α(t)− (∂−1

t ΠTσ)(t)

ω
∈ ZT . (7.12)

Thus
ΠC(a7) = µ1, a7 − µ1 ∈ ZE . (7.13)
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σ ∈ X because a3 ∈ X , therefore γ ∈ Y as it was required. Hence β = γ+(ΠEβ) ∈ Y . As a consequence,

a6, a9 ∈ Y, a7, a8 ∈ X. (7.14)

Since I = P+ΠC ,

L̃1 = PL1P = PML2P = (PMP)(PL2P)− PMΠCL2P = M̃L̃3,

where
M̃ := PMP, L̃3 := PL3P, L3 = L2 − M̃−1MΠCL2.

Thus
L3 = ω∂τ + µ2∂yyH+ a6(τ, y) ∂yH+ a7(τ, y) ∂y + a8(τ, y)H+ a9(τ, y) +R3,

R3 := R2 − M̃−1MΠCL2.

M̃ is invertible, its inverse M̃−1 maps X0 → X0 and Y → Y , and

M̃−1h = mh−
m

ΠC(m)
ΠC(mh), m(τ) :=

1

1 + (Ψ−1α′)(τ)
, (7.15)

whence

M̃−1MΠC = −
( (Pm)

ΠC(m)

)

ΠC .

Formula (7.15) can be proved by a direct calculation: M̃M̃−1h = M̃−1M̃h = h for all h ∈ Z0.
From Proposition 6.1 and the explicit formulae above, µ2, µ1, ρ, α, β, γ all depend on (u, ε) in a C1

way, and the following estimates hold.

Proposition 7.2. Let K > 0. There exists ε0 ∈ (0, 1), depending on K, such that, if ε ∈ (0, ε0),
‖u‖8 ≤ K, and ‖u‖4, ε0 satisfy (6.4), then all the following inequalities hold.

µ2(u, ε) and µ1(u, ε) satisfy

|µ2 − 1| ≤ ε3C(K), |∂uµ2[h]| ≤ ε4C(K)‖h‖4, |∂εµ2| ≤ ε2C(K), (7.16)

|µ1 − ε2ΠC(3v̄
2)| ≤ ε3C(K), |∂uµ1[h]| ≤ ε4C(K)‖h‖5, |∂εµ1 − εΠC(6v̄

2)| ≤ ε2C(K). (7.17)

ψ(t, x) = (t+ α(t), x+ β(t, x)) and its inverse ψ−1(τ, y) = (τ + α̃(τ), y + β̃(τ, y)) are diffeomorphisms of
T2, with

|α|1 + |β|1 + |α̃|1 + |β̃|1 < ε3C(K) < 1/2, |α|s + |β|s + |α̃|s + |β̃|s ≤ ε3C(s,K)(1 + ‖u‖s+4), (7.18)

for all 1 ≤ s ≤ r. α, β, α̃, β̃ are C1 functions of (u, ε). For 1 ≤ s ≤ r − 1, their derivatives satisfy

|∂uα[h]|s + |∂uβ[h]|s + |∂uα̃[h]|s + |∂uβ̃[h]|s ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+5‖h‖5), (7.19)

|∂εα|s + |∂εβ|s + |∂εα̃|s + |∂εβ̃|s ≤ ε2C(s,K)(1 + ‖u‖s+5). (7.20)

The operators Ψ,Ψ−1 satisfy

‖Ψf‖s + ‖Ψ−1f‖s ≤ C(s,K)(‖f‖s + ‖u‖s+4‖f‖1), ‖Ψf‖0 + ‖Ψ−1f‖0 ≤ 2‖f‖0, (7.21)

‖(Ψ− I)f‖s + ‖(Ψ−1 − I)f‖s ≤ ε3C(s,K)(‖f‖s+1 + ‖u‖s+5‖f‖1), (7.22)

for all 1 ≤ s ≤ r. (7.21),(7.22) also hold for Ψ̃, Ψ̃−1. Moreover, for 1 ≤ s ≤ r,

|Ψf |s + |Ψ−1f |s ≤ C(s,K)(|f |s + ‖u‖s+4|f |1), |Ψf |0 = |Ψ−1f |0 = |f |0, (7.23)

|(Ψ− I)f |s + |(Ψ−1 − I)f |s ≤ ε3C(s,K)(|f |s+1 + ‖u‖s+5|f |1). (7.24)
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The operators Ψ,Ψ−1 depend on (u, ε) via α, β. The derivatives of Ψf , Ψ−1f with respect to u in the
direction h and with respect to ε satisfy

‖∂u(Ψf)[h]‖s + ‖∂u(Ψ
−1f)[h]‖s ≤ ε4C(s,K)(‖f‖s+1‖h‖5 + ‖f‖1‖h‖s+4 + ‖u‖s+5‖f‖1‖h‖5), (7.25)

‖∂εΨf‖s + ‖∂εΨ
−1f‖s ≤ ε2C(s,K)(‖f‖s+1 + ‖u‖s+5‖f‖1), (7.26)

for all 1 ≤ s ≤ r− 1. (7.25) and (7.26) also hold with | |s instead of ‖ ‖s on the left-hand side and on f .
(7.25) and (7.26) also hold for Ψ̃, Ψ̃−1.

For 2 ≤ s ≤ r,

‖(M̃ − I)f‖s + ‖(M̃−1 − I)f‖s ≤ ε3C(s,K)(‖f‖s + ‖u‖s+4‖f‖2). (7.27)

The derivatives of M̃f , M̃−1f with respect to u in the direction h and with respect to ε satisfy

‖∂u(M̃f)[h]‖s + ‖∂u(M̃
−1f)[h]‖s ≤ ε4C(s,K)(‖f‖s‖h‖6 + ‖f‖2‖h‖s+5 + ‖u‖s+6‖f‖2‖h‖5), (7.28)

‖∂εM̃f‖s + ‖∂εM̃
−1f‖s ≤ ε2C(s,K)(‖f‖s + ‖u‖s+6‖f‖2), (7.29)

for 2 ≤ s ≤ r − 2.
The coefficients of L3 satisfy

|a6|s + |a7 − ε23v̄2|s + |a8|s + |a9 − ε2(3v̄2)x|s ≤ ε3C(s,K)(1 + ‖u‖s+6), (7.30)

|∂ua6[h]|s + |∂ua7[h]|s + |∂ua8[h]|s + |∂ua9[h]|s ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+6‖h‖5), (7.31)

|∂εa6|s + |∂εa7 − ε6v̄2|s + |∂εa8|s + |∂εa9 − ε(6v̄2)x|s ≤ ε2C(s,K)(1 + ‖u‖s+6). (7.32)

For s,m1,m2 ≥ 0, m = m1 +m2, m+ s+ 1 ≤ r,

‖∂m1
x RH∂

m2
x f‖s ≤ ε3C(s,m,K)

(

‖f‖s(1 + ‖u‖m+5) + ‖u‖s+m+5‖f‖0). (7.33)

For m, s ≥ 0, m+ s+ 3 ≤ r,

‖Ri∂
m
y f‖s ≤ ε3C(s,m,K)

(

‖f‖s(1 + ‖u‖m+7) + ‖f‖0‖u‖s+m+7

)

, i = 1, 2, 3. (7.34)

Proof. In Section 12.

Remark 7.3. The loss of one derivative for the difference Ψ− I in (7.22),(7.24) is typical of any change
of variables: in general, if we want to estimate a difference h(x+ p(x))− h(x) with a factor of size p, we
can do nothing but making a derivative, h(x+ p(x)) − h(x) ≃ h′(x)p(x).

7.2 Descent method: conjugation with pseudo-differential operators

We construct an invertible linear operator Φ̃ = PΦP that maps X0 → X0 and Y → Y and conjugates L̃3

to a new operator
L̃4 := Φ̃−1L̃3Φ̃ = PL4P, L4 = D +R, (7.35)

where D has constant coefficients and the remainder R is regularizing in space, bounded in time. We
look for D of the form

D = ω∂τ + µ2∂yyH+ µ1∂y + ν′0 + ν0H+ (ν′−1 + ν−1H)∂−1
y + (ν′−2 + ν−2H)∂−2

y ,

where µ2, µ1 are the constants calculated in the previous section, νk, ν
′
k, k = 0,−1,−2 are constants to

be determined. We look for Φ such that (PL3P)(PΦP)− (PΦP)(PDP) is an operator of order ≤ −3 in y.
Write Φ as

Φ = Φ0 +Φ1 +Φ2 +Φ3, Φk = (α(k) +Hβ(k))∂−k
y , k = 0, 1, 2, 3,

namely Φkh = α(k)∂−k
y h+H(β(k)∂−k

y h), where α(k)(τ, y), β(k)(τ, y) are functions to be determined. Φ is

close to the identity if α(0) is close to 1 and all the other α(k), β(k) are small.
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Calculate and write the terms of order 1, 0,−1,−2 in y, and move all the ‘H’ on the left-hand side,
introducing the corresponding commutators (for example, write αH as Hα+ [α,H]). Note that

H2 = HH = −ΠE = −I +Π⊥
E , Π⊥

E := I −ΠE = ΠT +ΠC .

Π⊥
E is regularizing in y because it is the operator that takes the mean of a function with respect to y.

Therefore, up to a regularizing rest, sums and products of terms of the type (α +Hβ) follow the same
algebraic rules as those of complex numbers, where the role of i is played by H. As a consequence, to
perform the calculations up to terms containing Π⊥

E or commutators with H it is comfortable to introduce
the complex notation:











f (k) := α(k) + iβ(k), L3 = ω∂τ + µ2i∂yy + a76∂y + a98 +R3, a76 := a7 + ia6, a98 := a9 + ia8,

D = ω∂τ + µ2i∂yy + µ1∂y + c0 + c−1∂
−1
y + c−2∂

−2
y , c−k := ν′−k + iν−k,

where i means H.

We stress that this is only a notation, as H maps real-valued functions into real-valued functions, and
therefore α+Hβ is real when α, β are real. Straightforward calculations (use P = I −ΠC for a9) give

L̃3Φ̃− Φ̃D̃ = P(T1∂y + T0 + T−1∂
−1
y ++T−2∂

−2
y +R4)P, (7.36)

where the coefficients Tk are

T1 = Qf (0), T−1 = Qf (2) + Sf (1) − c−1 f
(0),

T0 = Qf (1) + Sf (0), T−2 = Qf (3) + Sf (2) − c−1 f
(1) − c−2 f

(0), (7.37)

Q,S mean

Qf := 2iµ2fy + (a76 − ν) f, Sf := (L3 −R3 − c0)f = ωfτ + iµ2fyy + a76fy + (a98 − c0)f,

and the rest R4 is the sum R3PΦ− a9ΠCΦ + terms of order ∂−3
y + other regularizing terms that

(a) contain a commutator [g,H], where g ∈ {aj , α(k), β(k) : j = 6, 7, 8, 9, k = 0, 1, 2, 3}; or

(b) contain Π⊥
E .

The complete formula for R4 is in Appendix 12. For example, typical terms are

Π⊥
Eβ

(0)∂2y , a6Π
⊥
Eβ

(1)
y ∂−1

y , [a6,H]α(0)
y , [β(1),H]∂y.

Now we choose νi, α
(k), β(k) such that all Tn, n = 1, 0,−1,−2, vanish. Every Tn is an operator of the

form Tnh = pnh+H(qnh) for some functions pn(τ, y), qn(τ, y). Thus Tn = 0 if

pn = 0, qn = 0. (7.38)

To solve (7.38), which is a system of two equations in the real-valued unknowns α(k), β(k), we use complex
notation again. Consider the complex-valued unknown f (k) = α(k) + iβ(k), where now i is the standard
imaginary unit of C. Then the real system (7.38) is equivalent to the complex ODE Qf (0) = 0 for n = 1,
and similar complex equations for n = 0,−1,−2, according to (7.37). Hence we look for complex-valued
solutions f (k) of the four complex equations Tn = 0, n = 1, 0,−1,−2.

Reduction of T1. — Let

aE76(τ, y) := a76(τ, y)− µ1 = a7(τ, y)− µ1 + ia6(τ, y).

Remember that a7 − ν, a6 ∈ ZE (see (7.10),(7.13)). T1 = 0 if

Qf (0) = 2iµ2f
(0)
y + aE76(τ, y) f

(0) = 0. (7.39)
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The solutions of (7.39) are the exponentials f (0) = exp(ϕ), where ϕ(τ, y) satisfies

2iµ2ϕy + aE76(τ, y) = 0. (7.40)

(7.40) determines the ZE-component of ϕ,

(ΠEϕ)(τ, y) =
i

2µ2
(∂−1

y aE76)(τ, y) = −
1

2µ2
(∂−1

y a6)(τ, y) + i
1

2µ2
(∂−1

y ΠEa7)(τ, y).

Reduction of T0. — Since f (0) = exp(ϕ),

Sf (0) = f (0)g(0), g(0) := ωϕτ + iµ2(ϕ
2
y + ϕyy) + a76ϕy + (a98 − c0). (7.41)

Moreover

iµ2ϕ
2
y + a76ϕy =

i

4µ2
(aE76)

2 +
i

2µ2
ν aE76

by (7.40) and because a76 = aE76 + ν. Since Qf (0) = 0, we solve the equation T0 = 0 by variation of
constants: f (1) = η(1)f (0) is a solution of T0 = Qf (1) + Sf (0) = 0 if η(1) solves

2iµ2 η
(1)
y + g(0) = 0. (7.42)

(7.42) has a periodic solution η(1) if g(0) ∈ ZE . The condition

ΠC(g
(0)) =

i

4µ2
ΠC((a

E
76)

2) + ΠC(a98)− c0 = 0

determines the constant c0,

c0 =
i

4µ2
ΠC((a

E
76)

2) + ΠC(a98) ∈ C.

The condition

ΠT (g
(0)) = ω(ΠTϕ)τ +

i

4µ2
ΠT ((a

E
76)

2) + ΠT (a98) = 0

determines the ZT -component of ϕ,

(ΠTϕ)(τ) = −
i

4µ2ω
(∂−1

τ ΠT (a
E
76)

2)(τ) −
1

ω
(∂−1

τ ΠT a98)(τ) ∈ ZT .

So g(0) ∈ ZE , (7.42) can be solved, and the ZE-component of η(1) is determined,

(ΠEη
(1))(τ, y) =

i

2µ2
(∂−1

y g(0))(τ, y) ∈ ZE . (7.43)

Reduction of T−1. — Since f (1) = η(1)f (0), Sf (0) = f (0)g(0), by (7.40) and the definition of S,

Sf (1) − c−1 f
(0) = η(1)Sf (0) + η(1)y

[

2iµ2f
(0)
y + a76f

(0)
]

+ f (0)
[

ωη(1)τ + iµ2η
(1)
yy − c−1

]

= f (0)g(1),

where
g(1) := η(1)g(0) + ωη(1)τ + iµ2η

(1)
yy + µ1η

(1)
y − c−1. (7.44)

By variation of constants, f (2) = η(2)f (0) is a solution of T−1 = Qf (2)+Sf (1)− c−1 f
(0) = 0 if η(2) solves

2iµ2 η
(2)
y + g(1) = 0. (7.45)

(7.45) has a periodic solution η(2) if g(1) ∈ ZE . By (7.42), g(0) = −2iµ2 η
(1)
y , therefore

η(1)g(0) = −2iµ2 η
(1) η(1)y = −iµ2∂y{(η

(1))2} ∈ ZE .
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As a consequence, the condition g(1) ∈ ZE determines

ΠT (η
(1)) = 0, c−1 = 0. (7.46)

Thus (7.45) can be solved, and the ZE-component of η(2) is determined,

(ΠEη
(2))(τ, y) =

i

2µ2
(∂−1

y g(1))(τ, y). (7.47)

Reduction of T−2. — Since c−1 = 0, T−2 = Qf (3) + Sf (2) − c−2 f
(0). By the same calculations as

above,

Sf (2) − c−2 f
(0) = η(2)Sf (0) + η(2)y

[

2iµ2f
(0)
y + a76f

(0)
]

+ f (0)
[

ωη(2)τ + iµ2η
(2)
yy − c−2

]

= f (0)g(2),

where
g(2) := η(2)g(0) + ωη(2)τ + iµ2η

(2)
yy + µ1η

(2)
y − c−2. (7.48)

By variation of constants, f (3) = η(3)f (0) is a solution of T−2 = Qf (3)+Sf (2)− c−2 f
(0) = 0 if η(3) solves

2iµ2 η
(3)
y + g(2) = 0. (7.49)

(7.49) has a periodic solution η(3) if g(2) ∈ ZE . Both (ΠT η
(2))g(0) and (ΠCη

(2))g(0) belongs to ZE because
g(0) ∈ ZE . Hence

ΠT (η
(2)g(0)) = ΠT [(ΠCη

(2))g(0) + (ΠT η
(2))g(0) + (ΠEη

(2))g(0)] = ΠT [(ΠEη
(2))g(0)],

and the same for ΠC(η
(2)g(0)). ΠEη

(2) is given by (7.47). The condition ΠT g
(2) = 0 determines

ΠT η
(2) = −

1

ω
∂−1
τ ΠT [(ΠEη

(2))g(0)], (7.50)

the condition ΠCg
(2) = 0 determines

c−2 = ΠC [(ΠEη
(2))g(0)].

Thus g(2) ∈ ZE, (7.49) can be solved, and the ZE-component of η(3) is determined,

(ΠEη
(3))(τ, y) =

i

2µ2
(∂−1

y g(2))(τ, y). (7.51)

The only terms that have not been determined by the four equations T1 = 0, . . . , T−2 = 0 are ΠC(ϕ),
ΠC(η

(1)), ΠC(η
(2)), ΠC(η

(3)), and ΠT (η
(3)). Fix all of them to be 0. Split real and imaginary part,

Re (ϕ) =
1

2µ2ω
∂−1
τ ΠT [(ΠEa7)a6]−

1

ω
∂−1
τ ΠT (a9)−

1

2µ2
(∂−1

y a6), (7.52)

Im (ϕ) = −
1

4µ2ω
∂−1
τ ΠT [(ΠEa7)

2 − (a6)
2]−

1

ω
∂−1
τ ΠT (a8) +

1

2µ2
(∂−1

y ΠEa7), (7.53)

α(0) = eRe (ϕ) cos(Im (ϕ)), β(0) = eRe (ϕ) sin(Im (ϕ)). (7.54)

By (7.14),
Re (ϕ) ∈ X, Im (ϕ) ∈ Y, α(0) ∈ X, β(0) ∈ Y.

As a consequence, g(0), η(1), g(2), η(3) ∈ Y + iX , g(1), η(2) ∈ X + iY , and

α(1) ∈ Y, β(1) ∈ X, α(2) ∈ X, β(2) ∈ Y, α(3) ∈ Y, β(3) ∈ X.

Hence Φ preserves the parity, namely Φ maps X → X and Y → Y .
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By (7.14), (ΠEa7)a6 ∈ Y , a9 ∈ Y , therefore

ν′0 = Re (c0) = 0, ν0 = Im (c0) =
1

4µ2
ΠC [(ΠEa7)

2 − a26] + ΠC(a8). (7.55)

ν−1 = ν′−1 = 0, and

ν′−2 = Re (c−2) = 0, ν−2 = Im (c−2) = Im {ΠC [(ΠEη
(2))g(0)]}. (7.56)

Put
µ0 := ν0, µ−2 := ν−2.

Since T1, T0, T−1, T−2 vanish, (7.36) becomes L̃3Φ̃− Φ̃D̃ = PR4P, and (7.35) holds with

L4 = D +R, D = ω∂τ + µ2H∂yy + µ1∂y + µ0H+ µ−2H∂
−2
y , R := Φ̃−1

PR4. (7.57)

If Φ̃ is invertible, we have transformed L̃ into L̃4, namely

L̃ = Ψ̃M̃Φ̃L̃4Φ̃
−1Ψ̃−1, L̃4 = Φ̃−1M̃−1Ψ̃−1L̃Ψ̃Φ̃. (7.58)

From the formulae above, µ0, µ−2, α
(k), β(k) are C1 functions of (u, ε), and the following estimates hold.

Proposition 7.4. Let K > 0. There exists ε0 ∈ (0, 1), depending on K, such that, if ε ∈ (0, ε0),
‖u‖19 ≤ K, and ‖u‖4, ε0 satisfy (6.4), then all the following inequalities hold.

|µ0| ≤ ε3C(K), |∂uµ0[h]| ≤ ε4C(K)‖h‖5, |∂εµ0| ≤ ε2C(K), (7.59)

|µ−2| ≤ ε4C(K), |∂uµ−2[h]| ≤ ε6C(K)‖h‖12, |∂εµ−2| ≤ ε3C(K). (7.60)

The operator Φ̃ : Z0 → Z0 is invertible, and maps X0 → X0 and Y → Y . Φ̃, Φ̃−1 satisfy

‖(Φ̃− I)f‖s + ‖(Φ̃−1 − I)f‖s ≤ ε2C(s,K)(‖f‖s + ‖u‖s+12‖f‖2) ∀f ∈ Z0, (7.61)

for all 2 ≤ s ≤ r − 7. The derivatives of Φ̃f, Φ̃−1f with respect to u in the direction h and with respect
to ε satisfy

‖∂u(Φ̃f)[h]‖s + ‖∂u(Φ̃
−1f)[h]‖s ≤ ε4C(s,K)(‖f‖s‖h‖14 + ‖f‖2‖h‖s+12 + ‖u‖s+12‖f‖2‖h‖14), (7.62)

‖∂εΦ̃f‖s + ‖∂εΦ̃
−1f‖s ≤ εC(s,K)(‖f‖s + ‖u‖s+12‖f‖2). (7.63)

Moreover

‖∂τ (Φ̃− I)f‖s ≤ ε2C(s,K)
(

‖∂τf‖s + ‖f‖s + ‖u‖s+13(‖∂τf‖2 + ‖f‖2)
)

, (7.64)

‖∂ky (Φ̃− I)f‖s ≤ ε2C(s,K)
(

‖∂kyf‖s + ‖f‖s + ‖u‖s+14(‖∂
k
yf‖2 + ‖f‖2)

)

, k = 1, 2, (7.65)

for 2 ≤ s ≤ r − 9, for all f ∈ Z0.
The operators Ψ̃Φ̃, Ψ̃M̃Φ̃, Φ̃−1Ψ̃−1, Φ̃−1M̃−1Ψ̃−1 are all of the type I + S, where S satisfies

‖Sf‖s ≤ ε2C(s,K)(‖f‖s+1 + ‖u‖s+12‖f‖2), 2 ≤ s ≤ r − 7. (7.66)

The rest R satisfies

‖R∂my f‖s ≤ ε2C(s,K)(‖f‖s + ‖u‖s+17‖f‖2), 0 ≤ m ≤ 3, 2 ≤ s ≤ r − 12. (7.67)

Proof. The proof is in Section 12.
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8 Inversion of the transformed linearized operator

In view of the Nash-Moser iteration, we invert L̃4 = D̃+ R̃ on a subspace of Fourier-truncated functions.
Let

ZN :=
{

u =
∑

|k|≤N

uk ek

}

⊂ Z, k = (l, j) ∈ Z
2, |k| = |l|+ |j|, Z0N := Z0 ∩ ZN ,

with N > 0 sufficiently large to have v̄ ∈ ZN , namely K ⊆ [−N,N ], where K is defined in Section 5 (see
Proposition 5.3). Let ΠN ,Π

⊥
N denote the orthogonal projections onto ZN and Z⊥

N respectively. Let

X0N := X0 ∩ ZN , YN := Y ∩ ZN , V0N := V0 ∩ ZN , WN :=W ∩ ZN .

ΠN L̃4ΠN maps X0N → YN because L̃4 : X0 → Y . Since Z0N = V0N ⊕WN , to prove that ΠN L̃4ΠN :
X0N → YN is invertible, we project on the subspaces V0N and WN (Lyapunov-Schmidt decomposition,
like in Section 4): given f ∈ YN ,

ΠN L̃4ΠNh = f ⇐⇒

{

ΠV0N L̃4ΠV0Nh+ΠV0N L̃4ΠWN
h = ΠV0N f

ΠWN
L̃4ΠV0Nh+ΠWN

L̃4ΠWN
h = ΠWN

f.
(8.1)

Since D is diagonal, D maps V → V and W →W , therefore

ΠV L̃4ΠW = ΠV R̃ΠW , ΠW L̃4ΠV = ΠW R̃ΠV . (8.2)

Lemma 8.1 (Inversion on V0N ). Let K > 0. There exists ε0 ∈ (0, 1), depending on K, such that, if
ε ∈ (0, ε0), ‖u‖19 ≤ K, and ‖u‖4, ε0 satisfy (6.4), then

ΠV0N L̃4ΠV0N : V0N ∩X0 → V0N ∩ Y

is invertible, with

‖(ΠV0N L̃4ΠV0N )−1h‖s ≤
C(s,K)

ε2
(‖h‖s−1 + ‖u‖s+13 ‖h‖2), 3 ≤ s ≤ r − 8. (8.3)

Proof. L̃4 = Φ̃−1L̃3Φ̃ (see (7.35)). Split L3 = L+ ε2A+ ε3B, where

L = ∂τ + ∂yyH, Ah = 3∂τh+ ∂y(3v̄
2h),

B = ε−3{(µ2 − 1)∂yyH + a6 ∂yH+ (a7 − ε23v̄2) ∂y + a8 H + (a9 − ε2(3v̄2)y) +R3}.

By (7.16),(7.30),(7.34),

‖Bh‖s ≤ C(s,K)
(

‖hyy‖s + ‖hy‖s + ‖h‖s + ‖u‖s+7(‖hy‖0 + ‖h‖0)
)

, 2 ≤ s ≤ r − 3. (8.4)

Let Si : Z0 → Z0, S1 := ε−2(Φ̃−I), S2 := ε−2(Φ̃−1−I) (recall that P = I on Z0). Since ΠV L = LΠV = 0,

ΠV0N L̃4ΠV0N = ΠV0N Φ̃−1L̃3Φ̃ΠV0N = ΠV0N (I + ε2S2)P(L+ ε2A+ ε3B)P(I + ε2S1)ΠV0N

= ε2ΠV0N (A+ εB1)ΠV0N , (8.5)

where
B1 = εS2PLPS1 + εS2PA+ εAPS1 + ε3S2PAPS1 + Φ̃−1

PBPΦ̃.

By Proposition 5.3, ΠV0NAΠV0N : V0N ∩X0 → V0N ∩ Y is invertible, with

‖(ΠV0NAΠV0N )−1h‖s ≤ C‖h‖s−1 ∀h ∈ V0N ∩ Y, ∀s ≥ 0, (8.6)

where C > 0 depends only on the set K. By (7.61),(7.64),(7.65), for 2 ≤ s ≤ r − 9,

‖S1h‖s + ‖S2h‖s ≤ C(s,K)(‖h‖s + ‖u‖s+12‖h‖2),

‖∂·S1h‖s ≤ C(s,K)
(

‖∂·h‖s + ‖h‖s + ‖u‖s+14(‖∂·h‖2 + ‖h‖2)
)

, ∂· = ∂τ , ∂y, ∂yy,
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for all h ∈ Z0. Then, since L = ∂τ +H∂2y , Ah = 3∂τh+ 3v̄2∂yh+ (3v̄2)yh, and by (8.4),

‖ΠV0NB1ΠV0Nh‖s ≤ C(s,K)(‖h‖s+1 + ‖u‖s+14 ‖h‖3), 2 ≤ s ≤ r − 9, (8.7)

because ‖∂2yh‖s = ‖H∂2yh‖s = ‖∂τh‖s ≤ ‖h‖s+1 for all h ∈ V . Thus, by (8.6), (8.7),

‖(ΠV0NB1ΠV0N )(ΠV0NAΠV0N )−1h‖s ≤ C(s,K)(‖h‖s + ‖u‖s+14 ‖h‖2), 2 ≤ s ≤ r − 9,

for all h ∈ V0N ∩ Y . Since B1 maps X into Y , B2 := (ΠV0NB1ΠV0N )(ΠV0NAΠV0N )−1 maps Y into Y . By
standard Neumann series with tame estimates (see Lemma 11.2), I + εB2 is invertible as an operator of
V0N ∩ Y onto itself, with

‖(I + εB2)
−1h‖s ≤ C(s,K)(‖h‖s + ‖u‖s+14 ‖h‖2), 2 ≤ s ≤ r − 9, (8.8)

provided that εC(K) < 1/2, for some C(K) > 0 depending on K,Kg,r, ‖v̄‖19. By (8.6) and (8.8),
ΠV0N (A+ εB1)ΠV0N = (I + εB2)

−1(ΠV0NAΠV0N ) : X0 ∩ V0N → Y ∩ V0N is invertible, with

‖{ΠV0N (A+ εB1)ΠV0N }−1h‖s ≤ C(s,K)(‖h‖s−1 + ‖u‖s+13 ‖h‖2), 3 ≤ s ≤ r − 8.

By (8.5) the thesis is proved.

By Lemma 8.1, the V0N -equation of system (8.1) can be solved for ΠV0Nh,

ΠV0Nh = (ΠV0N L̃4ΠV0N )−1[ΠV0N f −ΠV0N L̃4ΠWN
h]. (8.9)

Substituting ΠV0Nh, and using (8.2), the WN -equation of system (8.1) becomes

A(ΠWN
h) = f1, (8.10)

where

A := ΠWN
L̃4ΠWN

− (ΠWN
R̃ΠV0N )(ΠV0N L̃4ΠV0N )−1(ΠV0N R̃ΠWN

), (8.11)

f1 := ΠWN
f − (ΠWN

R̃ΠV0N )(ΠV0N L̃4ΠV0N )−1ΠV0N f. (8.12)

L̃4 = D+R̃, where D = ω∂τ+µ2H∂yy+µ1∂y+µ0H+µ−2H∂−2
y , which is (7.57). In the basis {ei(lτ+jy)}l,j,

D is diagonal with eigenvalues

λl,j = λl,j(u, ε) = i
(

ωl+ µ2j|j|+ µ1j − µ0 sign(j)− µ−2 sign(j)(ij)
−2

)

, (8.13)

where ω = 1 + 3ε2 and µi(u, ε) are C
1 functions of (u, ε). By (7.16), (7.17), (7.59), (7.60),

|ω − 1|+ |µ2 − 1|+ |µ1|+ |µ0|+ |µ−2| < 1/2 (8.14)

for ε < ε0 sufficiently small. Remember the notation 〈j〉 = max{1, |j|}.

Lemma 8.2 (Inversion onWN ). Let K > 0. There exists ε0 ∈ (0, 1), depending on K, with the following
property. Let ε ∈ (0, ε0), ‖u‖19 ≤ K, and assume that ‖u‖4, ε0 satisfy (6.4). Let

|λl,j(u, ε)| >
1

2〈j〉3
∀(l, j) ∈ WN , (8.15)

where
WN := {(l, j) ∈ W : |j| ≤ N} = {(l, j) ∈ Z

2 : l + j|j| 6= 0, |j| ≤ N}.

Then A : X0 ∩WN → Y ∩WN is invertible, with

‖A−1h‖s ≤ C(s,K)(‖h‖s+3/2 + ‖u‖s+16+3/2‖h‖2), 3/2 ≤ s ≤ r − 12− 3/2. (8.16)
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Proof. Since L̃4 = D̃ + R̃, we have A = DWN
+RWN

, where

DWN
:= ΠWN

DΠWN
, RWN

:= ΠWN
R̃ΠWN

− (ΠWN
R̃ΠV0N )(ΠV0N L̃4ΠV0N )−1(ΠV0N R̃ΠWN

).

Like A, also DWN
and RWN

map X into Y . DWN
: WN → WN is invertible because λl,j 6= 0 for all

(l, j) ∈ WN . Let

U := ∂3y +ΠT +ΠC , Uei(lτ+jy) = Uj e
i(lτ+jy), Uj = (ij)3 ∀j 6= 0, U0 = 1.

|λl,j ||Uj | > 1/2 for every (l, j) ∈ WN because |Uj | = 〈j〉3. As a consequence,

‖U−1D−1
WN

h‖s ≤ 2‖h‖s ∀h ∈WN , ∀s ≥ 0.

By (7.67) and (8.3),

‖RWN
Uh‖s ≤ ‖RWN

∂3yh‖s + ‖RWN
(ΠT +ΠC)h‖s ≤ ε2C(s,K)(‖h‖s + ‖u‖s+16‖h‖2)

for 3 ≤ s ≤ r − 12, whence

‖RWN
D−1

WN
h‖s = ‖(RWN

U)(U−1D−1
WN

)h‖s ≤ ε2C(s,K)(‖h‖s + ‖u‖s+16‖h‖2), 3 ≤ s ≤ r − 12.

For s = 3, ‖RWN
D−1

WN
h‖3 ≤ ε2C(K)‖h‖3. By Lemma 11.2, I +RWN

D−1
WN

is invertible on WN , with

‖(I +RWN
D−1

WN
)−1h‖s ≤ C(s,K)(‖h‖s + ‖u‖s+16‖h‖2), 3 ≤ s ≤ r − 12,

if ε2C(K) < 1/2. Therefore A = (I + RWN
D−1

WN
)DWN

is also invertible. Now ‖D−1
WN

h‖s ≤ C‖h‖s+3/2

because, for indices (l, j) ∈ W such that |λl,j | < 1, one has |j|2 ≤ C|l| by the triangular inequality and
(8.14), so that 1/|λl,j| ≤ 2〈j〉3 ≤ C〈l〉3/2. Hence (8.16) follows.

Remember the definition Pε := ε2ΠV +ΠW .

Lemma 8.3 (Inversion of ΠN L̃4ΠN ). Assume the hypotheses of lemmata 8.1 and 8.2. Then for every
f ∈ YN there exists a unique h ∈ X0N such that ΠN L̃4ΠNh = f . The inverse operator (ΠN L̃4ΠN )−1

maps YN → X0N , with

‖(ΠN L̃4ΠN )−1f‖s ≤ ε−2C(s,K)(‖f‖s+3/2 + ‖u‖s+17+3/2‖f‖2), (8.17)

‖(ΠN L̃4ΠN )−1Pεf‖s + ‖Pε(ΠN L̃4ΠN )−1f‖s ≤ C(s,K)(‖f‖s+3/2 + ‖u‖s+17+3/2‖f‖2), (8.18)

3/2 ≤ s ≤ r − 12− 3/2.

Proof. Use (8.1), (8.9), (8.10), (8.11), (8.12), (8.3) and (8.16).

Lemma 8.4 (Derivatives of (ΠN L̃4ΠN )−1). Let K > 0. There exists ε0 ∈ (0, 1), depending on K, with
the following property.

Let ε ∈ (0, ε0), ‖u‖22 ≤ K, assume that ‖u‖4, ε0 satisfy (6.4), and that (8.15) holds. Then, for
2 ≤ s ≤ r − 18,

‖∂u(ΠN L̃4ΠN )−1[h]f‖s ≤ ε−1C(s,K)
(

‖f‖s+6‖h‖14 + ‖f‖8(‖h‖s+16 + ‖u‖s+23‖h‖14)
)

,

‖∂ε(ΠN L̃4ΠN )−1f‖s ≤ ε−3C(s,K)(‖f‖s+6 + ‖u‖s+23‖f‖8),

‖∂u(ΠN L̃4ΠN )−1[h]Pεf‖s + ‖Pε∂u(ΠN L̃4ΠN )−1[h]f‖s

≤ εC(s,K)
(

‖f‖s+6‖h‖14 + ‖f‖8(‖h‖s+16 + ‖u‖s+23‖h‖14)
)

,

‖{∂ε(ΠN L̃4ΠN )−1}Pεf‖s + ‖Pε{∂ε(ΠN L̃4ΠN )−1}f‖s ≤ ε−1C(s,K)(‖f‖s+6 + ‖u‖s+23‖f‖8).

26



Proof of Lemma 8.4. By Proposition 6.1, for all 0 ≤ s ≤ r,

‖L̃f‖s ≤ C(s,K)(‖f‖s+2 + ‖u‖s+4‖f‖2),

‖∂uL̃[h]f‖s ≤ ε3C(s,K)
(

‖f‖s+2‖h‖4 + ‖f‖2(‖h‖s+4 + ‖u‖s+4‖h‖4)
)

,

‖∂εL̃f‖s ≤ εC(s,K)(‖f‖s+2 + ‖u‖s+4‖f‖2).

Hence, from formula (7.58), using the estimates (7.25), (7.26), (7.28), (7.29), (7.62), (7.63) for Φ̃, Ψ̃,M̃
and their inverse,

‖L̃4f‖s ≤ C(s,K)(‖f‖s+2 + ‖u‖s+14‖f‖2),

‖∂uL̃4[h]f‖s ≤ ε3C(s,K)
(

‖f‖s+3‖h‖14 + ‖f‖5(‖h‖s+14 + ‖u‖s+15‖h‖14)
)

,

‖∂εL̃4f‖s ≤ εC(s,K)(‖f‖s+3 + ‖u‖s+15‖f‖5),

for 2 ≤ s ≤ r − 10. The Lemma follows from formula (11.9) and Lemma 8.3.

8.1 Further estimates

In this section we collect some tame estimates that will be used in the Nash-Moser iteration.

Lemma 8.5 (Tame estimates for F ). (i) There exists ε0 ∈ (0, 1), depending only on ‖v̄1‖5, such that

ε‖v̄1‖4 + ε2‖v̄2‖4 < δ0, ‖v̄2(ε)‖s ≤ C(s), ‖∂εv̄2(ε)‖s ≤ ε−1C(s), (8.19)

‖F (v̄2(ε), ε)‖s ≤ εC(s), ‖∂ε{F (v̄2(ε), ε)}‖s ≤ C(s), (8.20)

for every ε ∈ (0, ε0), 2 ≤ s ≤ r.
(ii) Assume that ε0, u, h satisfy ε0‖v̄1‖4+ε20(‖u‖4+‖h‖4) < δ0 (δ0 is the universal constant of (6.4)),

and ‖u‖4 + ‖h‖4 ≤ K. Let

Q(u, h, ε) := F (u + h, ε)− F (u, ε)− ∂uF (u, ε)[h]. (8.21)

Then, for 2 ≤ s ≤ r, ε ∈ (0, ε0),

‖Q(u, h, ε)‖s ≤ C(s,K)‖h‖4(‖h‖s+2 + ‖u‖s+2‖h‖4). (8.22)

(iii) Assume that ε0‖v̄1‖4 + ε20‖u‖4 < δ0, namely (6.4), and ‖u‖4 ≤ K. Then

‖F (u, ε)‖s ≤ C(s,K)(1 + ‖u‖s+2), (8.23)

‖∂uF (u, ε)[h]‖s ≤ C(s,K)(‖h‖s+2 + ‖u‖s+2‖h‖4), (8.24)

‖∂εF (u, ε)[h]‖s ≤ ε−1C(s,K)(1 + ‖u‖s+2), (8.25)

for all 2 ≤ s ≤ r, ε ∈ (0, ε0).

Proof. In Section 12.

Remark 8.6. Estimate (8.22) actually holds with an additional factor ε on the right-hand side. However,
this makes no essential difference in our iteration proof below.

Lemma 8.7. Assume the hypotheses of Lemma 8.4. Then

‖Ψ̃Φ̃(ΠN L̃4ΠN )−1ΠN Φ̃−1M̃−1Ψ̃−1Pεf‖s ≤ C(s,K)(‖f‖s+5/2 + ‖u‖s+17+5/2‖f‖2) (8.26)

for 2 ≤ s ≤ r − 12− 3/2.

Proof of Lemma 8.7. By (7.21) and (7.61), the term on the left-hand side in (8.26) is

≤ C(s,K)
(

‖(ΠN L̃4ΠN )−1ΠN Φ̃−1M̃−1Ψ̃−1Pεf‖s + ‖u‖s+12‖(ΠN L̃4ΠN )−1ΠN Φ̃−1M̃−1Ψ̃−1Pεf‖2
)

for 2 ≤ s ≤ r − 7. Write Φ̃−1M̃−1Ψ̃−1 as I + S, where S satisfies (7.66). Since ΠNPε = PεΠN ,

(ΠN L̃4ΠN )−1ΠN Φ̃−1M̃−1Ψ̃−1Pεf = (ΠN L̃4ΠN )−1PεΠNf + (ΠN L̃4ΠN )−1ΠNSPεf,

then use (8.18) for (ΠN L̃4ΠN )−1PεΠNf , and use (8.17), (7.66) for (ΠN L̃4ΠN )−1ΠNSPεf .
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9 Nash-Moser iteration and Cantor set of parameters

Let
χ := 3/2, ā > 0, Nn := exp(āχn), n ∈ N, (9.1)

with N0 = exp(ā) sufficiently large to have K ⊆ [−N0, N0] (K is defined in Section 5). Consider the
corresponding increasing sequence of finite-dimensional subspaces Zn := ZNn

, with respective projections
Πn := ΠNn

. For all s, α ≥ 0, Πn enjoys the smoothing properties

‖Πnu‖s+α ≤ Nα
n ‖u‖s ∀u ∈ Hs, (9.2)

‖Π⊥
n u‖s ≤ N−α

n ‖u‖s+α ∀u ∈ Hs+α, (9.3)

where Π⊥
n = I −Πn. Note that (9.2), (9.3) hold even if Nn > 0 is not an integer number.

In the previous sections we have proved the transformation

F ′(u, ε) = P−1
ε L(u, ε) = P−1

ε L̃(u, ε) = P−1
ε Ψ̃M̃Φ̃L̃4Φ̃

−1Ψ̃−1 (9.4)

where Ψ̃,M̃, Φ̃, L̃4 all depend on (u, ε). Following a suitable Nash-Moser scheme, we construct a sequence
(un) ⊂ C∞(T2) of ε-dependent trigonometric polynomials by setting u0 := v̄2 as defined in Section 5,
h0 := 0, and

un+1 := un + hn+1, hn+1 := −Πn+1Ψ̃nΦ̃n(Πn+1L̃4,nΠn+1)
−1Πn+1Φ̃

−1
n M̃−1

n Ψ̃−1
n PεF (un), (9.5)

provided that the inverse operator In := (Πn+1L̃4(un)Πn+1)
−1 is well defined on Zn+1. The notation in

(9.5) means
L̃4,n := L̃4(un) = L̃4(un(ε), ε), Ψn := Ψ(un) = Ψ(un(ε), ε),

and similarly for M̃, Φ̃. Also, L4,n = Dn +Rn. We omit to write explicitly the dependence on ε only
to shorten the notation. At a first glance, (9.5) could seem an unusual and excessively complicated
Nash-Moser scheme. However, in some sense it is “the most natural” for the present problem, as the
“normal form” for the linearized operator is given by L4,n = Dn +Rn, therefore it is natural to impose
Diophantine conditions on the eigenvalues of Dn and to insert smoothing operators Πn before and after
it.

With hn+1 defined by (9.5), one has hn+1 = −Πn+1Ψ̃nΦ̃nInΠn+1cn,

F (un) + F ′(un)hn+1 = rn := P−1
ε Ψ̃nM̃nΦ̃n

{

Π⊥
n+1cn −Π⊥

n+1 R̃nΠn+1InΠn+1cn + L̃4,nbn
}

(9.6)

where
cn := Φ̃−1

n M̃−1
n Ψ̃−1

n PεF (un), bn := Φ̃−1
n Ψ̃−1

n Π⊥
n+1 Ψ̃nΦ̃nInΠn+1cn.

(9.6) follows directly from (9.5), and is proved in Section 12. Hence

F (un+1) = rn +Q(un, hn+1), (9.7)

where Q is defined in (8.21).
By Lemma 8.3, Πn+1L̃4(un)Πn+1 is invertible if the eigenvalues λl,j(un, ε) of Dn satisfy the Diophan-

tine condition (8.15) for u = un and N = Nn+1. Let Wn := WNn
. Define recursively the set of the

“good” parameters ε, those for which (8.15) holds: let G0 := (0, ε0), and define

Gn+1 :=
{

ε ∈ Gn : |λl,j(un, ε)| >
1

2〈j〉3
∀(l, j) ∈ Wn+1

}

, n ≥ 0. (9.8)

Gn is the set of the parameters ε for which (uk, hk, Ak,Gk) can be defined recursively for k = 0, . . . , n.
On the contrary, after constructing (uk, hk, Ak,Gk) for k ≤ n,

Bn+1 := Gn \ Gn+1

is the set of the “bad” parameters ε for which the Diophantine condition (8.15) on the eigenvalues
λl,j(un, ε) is violated on |l| + |j| ≤ Nn+1, the inverse of (Πn+1L4(un)Πn+1) is not well-defined, hn+1

cannot be defined by (9.5), and the recursive construction stops. Therefore at the n-th step we eliminate
the bad set Bn+1, and restrict the parameter set to the subset Gn+1 ⊆ Gn. For convenience, put B0 := ∅.
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Proposition 9.1 (Nash-Moser induction and measure estimate for the parameter set). There exist
universal constants r0, s0 > 0 and constants C,C′, c0, ā, b̄, ε

∗
0 > 0 depending only on v̄1,Kg,r0 such that if

G0 = (0, ε0), ε0 ≤ ε∗0, r ≥ r0, and ā defines Nn in (9.1), then the following induction hold.
Let (Pn) = {(Pn)(i), (Pn)(ii)}, n ≥ 1, be the following set of statements.

• (Pn)(i). Gn is an open set. The Lebesgue measure of Bn satisfies |Bn| ≤ ε20Cbn, where the sequence
(bn) satisfies

∑∞
n=0 bn = C′ <∞.

• (Pn)(ii). For every ε ∈ Gn, hn(ε) ∈ Zn is well-defined. hn : Gn → Zn, ε 7→ hn(ε) is of class C1 as
a function of ε, with

‖hn(ε)‖s0 < exp(−b̄χn), ‖∂εhn(ε)‖s0 ≤ ε−1 exp(−b̄χn). (9.9)

(P1) holds. If (Pn) holds, then, using (9.5),(9.8) to define hn+1 and Gn+1, (Pn+1) also holds.
As a consequence, the Cantor set G∞ :=

⋂

n≥0 Gn ⊂ (0, ε0) has Lebesgue measure

|G∞| ≥ ε0(1− ε0C).

For every ε ∈ G∞, the sequence (un(ε)) converges in Hs0(T2) to a limit u∞(ε), which solves

F (u∞(ε), ε) = 0.

Moreover, u∞(ε) ∈ Hs(T2) for every s in the interval s0 ≤ s < (r + c0)/2.
If gi, i = 0, 1, 2 in (1.2),(1.3) is of class C∞, then also u∞(ε) ∈ C∞(T2).
s0, r0 and c0 can be explicitly calculated: s0 = 22, c0 = 28; for r0 see (9.22) and below.

We split the proof of Proposition 9.1 into two parts: the Nash-Moser sequence (Pn)(ii) with its
regularity in subsection 9.1, then the measure estimate (Pn)(i) for the parameter set in subsection 9.2

9.1 Proof of the Nash-Moser iteration

First step. Let us prove (P1)(ii). For ε ∈ G1, (9.5) defines h1 = h1(ε). By (8.19), the condition (6.4)
holds. By (8.19), if 22 ≤ r, then ‖v̄2(ε)‖22 ≤ C for all ε ∈ (0, ε0), for some constant C. Take this constant
C as the “K” in all the lemmata of the previous sections, so that the assumption K ≥ ‖u‖22 is satisfied
for u = u0 = v̄2(ε), for all ε ∈ (0, ε0). In this way, to indicate the dependence on K in all the constants
C(s,K) is redundant, and we simply write C(s,K) = C(s). By (9.5), (8.26), (8.19) and (8.20),

‖h1‖s = ‖Ψ̃0Φ̃0I0Π1c0‖s ≤ C(s)
(

‖F (u0)‖s+5/2 + ‖u0‖s+17+5/2‖F (u0)‖2
)

≤ εC(s)

if s+ 17 + 5/2 ≤ r. Hence the first inequality in (P1)(iii) holds if

ε0C(s) ≤ exp(−b̄χ). (9.10)

∂εh1 is obtained by differentiating every term in formula (9.5) with respect to ε and applying the estimates
for ∂εΨ̃, ∂εΦ̃, ∂ε{(Π1L̃4(u0(ε), ε)Π1)

−1}, etc; using (8.19) for ∂εv̄2, and (8.20) for ∂ε{F (v̄2(ε), ε)}, we get

‖∂εh1(ε)‖s ≤ C(s)

for ε ∈ (0, ε0), s+ 17 + 5/2 ≤ r. Therefore the second inequality in (P1)(iii) holds if (9.10) holds (with
a possibly different constant C(s), as usual).

Inductive step. Now assume that (Pn) holds, n ≥ 1, and prove (Pn+1)(ii). By (9.9),

‖un‖s ≤ ‖u0‖s +
n
∑

k=1

‖hk‖s ≤ ‖v̄2‖s + C(b̄), C(b̄) :=

∞
∑

k=1

exp(−b̄χk). (9.11)

Note that C(b̄) is independent on n, it is decreasing as a function of b̄, and C(b̄) → 0 as b̄→ +∞. Hence,
for s ≥ 22, ‖un‖22 ≤ ‖v̄2‖22 + C(b̄) ≤ 2‖v̄2‖22 = C for all ε ∈ (0, ε0) if

b̄ ≥ C, (9.12)
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for some C > 0. As in the previous step, take this constant C as the “K”, and replace C(s,K) with C(s)
in all the lemmata of the previous sections. Moreover, (6.4) is satisfied for u = un if ε0 is sufficiently
small, independently on the parameters. Also, ‖un‖s ≤ C(s).

By (9.5), (9.2) and (8.26), for α ≥ 0, 2 ≤ s− α ≤ r − 12− 3/2,

‖hn+1‖s ≤ Nα
n+1‖Ψ̃nΦ̃nInΠn+1cn‖s−α

≤ Nα
n+1C(s− α)(‖F (un)‖s−α+5/2 + ‖un‖s−α+17+5/2‖F (un)‖2). (9.13)

Take α := 17 + 5/2, and denote s′ := s− 17. Since s′ ≥ 2,

‖hn+1‖s ≤ (9.13) ≤ Nα
n+1C(s)(‖F (un)‖s′ + ‖un‖s‖F (un)‖2) ≤ Nα

n+1C(s)‖F (un)‖s′

because ‖un‖s ≤ C(s) by (9.11). By (9.7), F (un) = rn−1 +Q(un−1, hn). Therefore

‖hn+1‖s ≤ Ar +AQ, Ar := Nα
n+1C(s)‖rn−1‖s′ , AQ := Nα

n+1C(s)‖Q(un−1, hn)‖s′ . (9.14)

By (9.6), rn−1 is the sum of 3 terms, say (I)+(II)+(III). The first one is

(I) = P−1
ε Ψ̃n−1M̃n−1Φ̃n−1Π

⊥
n Φ̃

−1
n−1M̃

−1
n−1Ψ̃

−1
n−1PεF (un−1).

Using (7.66), like in the proof of Lemma 8.7, no negative power of ε appears in the estimate of (I). Using
(9.3) to deal with Π⊥

n , for β ≥ 0, 2 ≤ s′ + β ≤ r − 8, one has

‖(I)‖s′ ≤ C(s+ β)N−β
n (‖F (un−1)‖s′+β+2 + ‖un−1‖s′+β+13‖F (un−1)‖2).

The same argument applies to (II) and (III), whence

‖rn−1‖s′ ≤ C(s′ + β)N−β
n (‖F (un−1)‖s′+β+8 + ‖un−1‖s′+β+19‖F (un−1)‖2),

2 ≤ s′ + β ≤ r − 16. Applying (8.23),

‖rn−1‖s′ ≤ C(s′ + β)N−β
n (1 + ‖un−1‖s′+β+19) = C(s+ β)N−β

n (1 + ‖un−1‖s+β+2). (9.15)

Now estimate the “high norm” Bk := ‖hk‖s+β+2. To each k = 0, . . . , n, apply (9.13) with s + β + 2
instead of s, and use (8.23): for 2 ≤ (s+ β + 2)− α ≤ r − 12− 3/2,

‖hk+1‖s+β+2 ≤ Nα
k+1C(s+ β + 2− α)(‖F (uk)‖s+β+2−α+5/2 + ‖uk‖s+β+2−α+17+5/2‖F (uk)‖2)

≤ Nα
k+1C(s+ β)(1 + ‖uk‖s+β+2) (9.16)

where, as above, α := 17 + 5/2. For (8.19), ‖u0‖s+β+2 ≤ C(s + β) if s + β + 2 ≤ r. Then, by (9.16),
B1 = ‖h1‖s+β+2 ≤ Nα

1 C(s+ β), and

Bk+1 ≤ Nα
k+1C(s+ β)

(

1 + ‖u0‖s+β+2 +

k
∑

j=1

‖hj‖s+β+2

)

≤ Nα
k+1C(s+ β)

(

1 +

k
∑

j=1

Bj

)

(9.17)

for 1 ≤ k ≤ n. By (9.1), this implies that

‖hk‖s+β+2 = Bk ≤ exp(b̄χk), (9.18)

k = 1, . . . , n + 1. For, by induction: (9.18) holds for k = 1 if C(s + β) exp[(āα − b̄)χ] ≤ 1, namely if
(b̄ − āα) is larger than some constant depending on (s+ β). Suppose that (9.18) holds for all j ∈ [1, k],
k ≥ 1. For b̄ ≥ 1,

1 +
k

∑

j=1

exp(b̄χj) ≤ C exp(b̄χk), ∀k ∈ N,
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for some universal constant C. Then, by (9.17), (9.18) also holds for k+1 if C(s+β) exp[χk(āαχ− b̄χ+ b̄)]
≤ 1, namely if

b̄− 3āα ≥ C(s+ β) (9.19)

for some C(s+ β) > 0, and (9.18) is proved. Thus ‖un−1‖s+β+2 ≤ C(s+ β) exp(b̄χn−1), and, by (9.15),

‖rn−1‖s′ ≤ C(s+ β) exp[χn−1(b̄ − βāχ)], Ar ≤ C(s+ β) exp[χn−1(b̄ + αāχ2 − βāχ)].

As a consequence, Ar ≤ 1
2 exp(−b̄χ

n+1) if

ā(βχ− αχ2)− b̄(1 + χ2) ≥ C(s+ β) (9.20)

for some C(s+ β) > 0.
Estimate AQ. Since ‖un−1‖s′+2 = ‖un−1‖s−15 ≤ C(s), by (8.22) we have AQ ≤ Nα

n+1C(s)‖hn‖
2
s.

This is ≤ 1
2 exp(−b̄χ

n+1) if
b̄− 3αā ≥ C(s) (9.21)

for some C(s) > 0. Now fix

b̄ := (3α+ 1)ā, β := [αχ2 + (1 + χ2)(3α+ 1)]χ−1. (9.22)

Since χ = 3/2 and α = 17 + 5/2, β is a universal constant, and the constants C(s + β) can be written
as C(s). Fix ā ≥ C(s) sufficiently large to satisfy (9.19), (9.20), (9.21) and (9.12). Then fix ε0 ≤ C(s)
sufficiently small to satisfy (9.10). All the above conditions on s hold if

22 ≤ s ≤ r − 2− β.

Hence the minimal value for r is r0 := 24 + β. Put s0 := 22. For s = s0 = 22 and r = r0, all the above
constants that depend on s and Kg,r become constants depending only on Kg,r0 . With this choice of
parameters, the first estimate of (Pn+1)(iii) is proved.

The second estimate of (Pn+1)(iii) can be proved by the same arguments. Observe that in every
estimate for ∂ε there is an additional factor 1/ε: indeed, terms like εp or Pε, after being differentiated,
have one degree less as powers of ε. Terms like F (un, ε), Ψ̃(un, ε), . . . , after being differentiated with
respect to ε, contain also terms like ∂uF (un, ε)[∂εun], ∂uΨ̃(un, ε)[∂εun], . . . , and the loss of one degree
as a power of ε comes from (9.9). The estimates for ∂u and ∂ε of all the terms are given in the previous
sections (and remind formula (4.5) for F (u, ε)).

For each ε for which the sequence (un(ε)) can be constructed, by (9.9) un = u0+
∑n

k=1 hk is a Cauchy
sequence in Hs0(T2), therefore un(ε) converges in H

s0 to some limit u∞(ε) ∈ Hs0 as n → ∞. Since the
map Hs0 → Hs0−2, u 7→ F (u, ε) is continuous, ‖F (un, ε) − F (u∞, ε)‖s0−2 → 0. On the other hand, we
have proved that

‖F (un, ε)‖s′ ≤ ‖rn−1‖s′ + ‖Q(un−1, hn)‖s′ = C(s0)N
−α
n+1(Ar +AQ) ≤ C(s0)N

−α
n+1 exp(−b̄χ

n+1) → 0

as n→ ∞, where s′ = s0 − 17 = 5. Thus F (u∞, ε) = 0.

Now let 22 = s0 < s1 < s2, with s1 = λs0 + (1− λ)s2, and λ ∈ (1/2, 1). Apply (9.16) with s2 instead
of s+ β + 2: for s2 − α ≤ r − 12− 3/2 we get

‖hk+1‖s2 ≤ Nα
k+1C(s2)(1 + ‖uk‖s2) ∀k ≥ 0,

for some constant C(s2) depending on s2. For (8.19), ‖u0‖s2 ≤ C(s2) if s2 ≤ r. Then the “very high
norms” B′

k := ‖hk‖s2 satisfy B′
1 = ‖h1‖s2 ≤ Nα

1 C(s2), and

B′
k+1 ≤ Nα

k+1C(s2)
(

1 +
k

∑

j=1

B′
j

)

, k ≥ 1.
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Therefore there is a constant K(s2) such that

‖hk‖s2 = B′
k ≤ K(s2) exp(b̄χ

k), k ≥ 1. (9.23)

Let us prove (9.23). Since b̄− 3αā > 0, where ā, b̄ have been fixed above, the inductive step (k ⇒ k + 1)
holds for all k ≥ k0(s2), for some k0(s2) depending on s2 which is sufficiently large. Note that the constant
K(s2) have no role in the inductive step. Then chooseK(s2) := max{‖hk‖s2 exp(−b̄χ

k) : 1 ≤ k ≤ k0(s2)},
so that (9.23) holds for all k ≥ 1. Now, by (11.1), (9.23) and (9.9),

‖hk‖s1 ≤ 2‖hk‖
λ
s0‖hk‖

1−λ
s2 ≤ 2K(s2)

1−λ exp(−λb̄χk) exp((1− λ)b̄χk) = C(s2, λ) exp((1 − 2λ)b̄χk),

and the series
∑

k≥1 exp((1 − 2λ)b̄χk) converges because (1 − 2λ) < 0. This implies that ‖u∞‖s1 ≤
‖u0‖s1 +

∑

k≥1 ‖hk‖s1 < ∞. Since s1 < (s0 + s2)/2 and s2 < r − 12 − 3/2 + α, α = 17 + 5/2, this
argument holds if

s1 <
r + 28

2
.

If gi, i = 0, 1, 2 that defines the nonlinearity N is of class C∞, then there is no upper bound for s1, and
the argument applies for every s1 ≥ s0, whence u∞ ∈ C∞.

9.2 Proof of the measure estimate

G0 = (0, ε0), B0 = ∅. Let us estimate Gn+1,Bn+1, n ≥ 0.
The set Gn+1 is defined by (9.8). un(ε) is a C1 function of ε, and µk(u, ε), k = 2, 1, 0,−2 is a C1

function of (u, ε). Therefore each eigenvalue λl,j(un(ε), ε) is C
1 in ε. Bn+1 is the union

Bn+1 =
⋃

(l,j)∈Wn+1

Ωn
l,j , Ωn

l,j :=
{

ε ∈ Gn : |λl,j(un, ε)| ≤
1

2〈j〉3

}

. (9.24)

Write the eigenvalues λl,j(un(ε), ε) as

λl,j(un(ε), ε) = iω
(

l + pnj (ε)
)

,

pnj (ε) :=
µ2(un(ε), ε)

1 + 3ε2
j|j|+

µ1(un(ε), ε)

1 + 3ε2
j +

−µ0(un(ε), ε)

1 + 3ε2
sign(j) +

µ−2(un(ε), ε)

1 + 3ε2
sign(j)

j2

(where we mean sign(j)j−2 = 0 for j = 0). Since ω = 1 + 3ε2 > 1, |λl,j(un(ε), ε)| ≥ |l + pnj (ε)|, and

Ωn
l,j ⊆ Ω̃n

l,j :=
{

ε ∈ Gn : |l + pnj (ε)| ≤
1

2〈j〉3

}

∀(l, j) ∈ Wn+1. (9.25)

For j = 0, pnj (ε) = pn0 (ε) = 0, therefore Ω̃n
l,0 = ∅ for all l 6= 0. The pair (l, j) = (0, 0) does not belong to

Wn+1, hence the case j = 0 gives no contribution to the union (9.24). So let j 6= 0.

µ2(un(ε), ε)

1 + 3ε2
= 1− 3ε2 + O(ε3),

µ1(un(ε), ε)

1 + 3ε2
= 3bε2 +O(ε3),

µk(un(ε), ε)

1 + 3ε2
= O(ε3), k = 0,−2,

where b := ΠC(v̄
2
1), and the precise meaning of O(ε3) is given by (7.16), (7.17), (7.59), (7.60). Therefore

pnj (ε) = j|j|(1 + ε2rnj (ε)), rnj (ε) :=
1

ε2

(pnj (ε)

j|j|
− 1

)

= −3 +
3b

|j|
+O(ε).

|rnj (ε)| ≤ C for some C > 0 independent of j, n, ε. Also, by Proposition 5.3,

|b− |j|| ≥ δ|j|,
∣

∣

∣− 3 +
3b

|j|

∣

∣

∣ ≥ 3δ ∀j ∈ N, j 6= 0.

As a consequence,
2δ ≤ |rnj (ε)| ≤ C
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for ε < ε0 sufficiently small to have |rnj (ε) + 3 − 3b/|j|| ≤ δ. Suppose that ε ∈ Ω̃n
l,j 6= ∅. Then, by the

triangular inequality,

|l+ j|j|| ≤ |l + pnj (ε)|+ | − pnj (ε) + j|j| | ≤
1

2〈j〉3
+ ε2|j|2|rnj (ε)| ≤

1

2
+ Cε2|j|2. (9.26)

|l + j|j|| ≥ 1 because l + j|j| is a nonzero integer. Thus we have a “cut-off”: if Ω̃n
l,j 6= ∅, then 1 ≤

1/2 + Cε2|j|2, and
C ≤ ε|j| ≤ ε0|j|, (9.27)

for some C > 0. Moreover, by (9.26), l belongs to the interval

− j|j| − 1/2− Cε20|j|
2 ≤ l ≤ −j|j|+ 1/2 + Cε20|j|

2. (9.28)

As a consequence, for any fixed j with |j| ≥ C/ε0, the number of integers l such that Ω̃n
l,j 6= ∅ does not

exceed the number of integers l in the interval (9.28), namely

♯{l : Ω̃n
l,j 6= ∅} ≤ 2(1/2 + Cε20|j|

2) + 1 ≤ C′ε20|j|
2 (9.29)

because 2 ≤ Cε20|j|
2 by (9.27) (and the number of integers in an interval [a, b] is at most (b− a+1)). By

(9.25), (9.29) implies that Bn+1 is the union of a finite number of closed sets, hence Gn+1 is open.
From the chain rule, (7.16), (7.17), (7.59), (7.60), and ‖∂εun(ε)‖12 ≤ ε−1C (which follows from (9.9)),

∂εp
n
j (ε) = j|j|ε

(

− 6 +
6b

|j|
+O(ε)

)

.

Hence, for any fixed j, the sign of ∂εp
n
j (ε) is the sign of j(−1 + b/|j|), which is constant with respect to

ε. By (9.27),

|∂εp
n
j (ε)| = |j|2ε

∣

∣

∣− 6 +
6b

|j|
+O(ε)

∣

∣

∣ ≥ |j|2εδ ≥ C|j|

if ε0 is sufficiently small. So pnj is strictly monotone as a function of ε, and, as a consequence, Ω̃n
l,j is an

interval, say [ε1, ε2]. If p
n
j is increasing, then

1

|j|3
≥ pnj (ε2)− pnj (ε1) =

∫ ε2

ε1

∂εp
n
j (ε) dε ≥ C|j|(ε2 − ε1) = C|j||Ω̃n

l,j |,

and analogous calculation if pnj is decreasing. Thus

|Ω̃n
l,j | ≤

C

|j|4
. (9.30)

Also, |Ωn
l,j | ≤ |Ω̃n

l,j | because Ωn
l,j ⊆ Ω̃n

l,j .
Now split the union (9.24) into two parts, the union over the “old” indices (l, j) ∈ Wn+1 ∩Wn = Wn

and the one over the “new” indices (l, j) ∈ Wn+1 \ Wn. By (9.29) and (9.30), the Lebesgue measure of
the union over the new indices is

∣

∣

∣

⋃

new

Ωn
l,j

∣

∣

∣ ≤
∑

new

|Ωn
l,j | ≤

∑

Nn<|j|≤Nn+1

C

|j|4
ε20|j|

2 = Cε20
∑

Nn<|j|≤Nn+1

1

|j|2
= Cε20 cn+1,

where

c0 :=
∑

1≤|j|≤N0

1

|j|2
, cn+1 :=

∑

Nn<|j|≤Nn+1

1

|j|2
, and

∞
∑

n=0

cn =

∞
∑

|j|=1

1

|j|2
= C <∞.

For old indices, let ε ∈ Ω̃n
l,j , with (l, j) ∈ Wn. By the triangular inequality, un = un−1+hn, and estimates

(7.16), (7.17), (7.59), (7.60) for ∂uµk(u, ε),

|l + pn−1
j (ε)| ≤ |l + pnj (ε)|+ |pnj (ε)− pn−1

j (ε)| ≤
1

2|j|3
+ Cε4|j|2‖hn(ε)‖12.
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Since Ω̃n
l,j ⊆ Gn, and (l, j) ∈ Wn,

Ω̃n
l,j ⊆

{

ε ∈ Gn :
1

2|j|3
< |l + pn−1

j (ε)| ≤
1

2|j|3
+ Cε4|j|2‖hn(ε)‖12

}

.

As above, pn−1
j is strictly monotone as a function of ε, |∂εp

n−1
j (ε)| ≥ C|j|, and ‖hn(ε)‖12 ≤ exp(−b̄χn)

by (9.9). Hence

|Ω̃n
l,j | ≤ Cε40|j|

2 exp(−b̄χn)
1

|j|
≤ Cε40Nn exp(−b̄χ

n)

because |j| ≤ Nn. By (9.29) and (9.1), the Lebesgue measure of the union over the old indices is then

∣

∣

∣

⋃

old

Ωn
l,j

∣

∣

∣ ≤
∑

old

|Ωn
l,j | ≤ Cε40

∑

|j|≤Nn

N3
n exp(−b̄χn) ≤ Cε40N

4
n exp(−b̄χn) = Cε40 exp[χ

n(−b̄+ 4ā)].

Since b̄− 4ā > ā ≥ 1 by (9.22),
∑∞

n=0 exp[χ
n(−b̄+ 4ā)] = C <∞. We have proved that

|Bn+1| ≤ Cε20bn+1,
∞
∑

n=0

bn = C <∞.

Therefore | ∪n≥1 Bn| ≤ ε20C, whence |G∞| ≥ ε0(1 − ε0C).

10 Appendix A. Kernel properties

Proof of Lemma 5.1. 1) Let j1, j2 be nonzero. qj1qj2 = qj3 ∈ V for some j3 ∈ Z if and only if

j1 + j2 = j3, −j1|j1| − j2|j2| = −j3|j3|.

Let nk := |jk| and jk = σknk, σk ∈ {1,−1}, k = 1, 2. If σ1 = σ2, then

j3 = j1 + j2 = σ1(n1 + n2), j3|j3| = j1|j1|+ j2|j2| = σ1(n
2
1 + n2

2),

therefore |j3|2 = (n1 + n2)
2 = (n2

1 + n2
2), and this is impossible because n1n2 > 0. If σ1 = −σ2, then

j3 = j1 + j2 = σ1(n1 − n2), j3|j3| = j1|j1|+ j2|j2| = σ1(n
2
1 − n2

2),

whence |n2 − n1|
(

n1 + n2 − |n2 − n1|
)

= 0. This holds only for n2 = n1.
2) Let j1, j2, j3 all nonzero. qj1qj2qj3 = qj4 ∈ V for some j4 ∈ Z if and only if

j1 + j2 + j3 = j4, −j1|j1| − j2|j2| − j3|j3| = −j4|j4|.

Let nk := |jk|, jk = σknk, k = 1, 2, 3, 4, with σ1, σ2, σ3 ∈ {1,−1} and σ4 ∈ {1, 0,−1}. If σ1 = σ2 = σ3,
then

−n2
1 − n2

2 − n2
3 + (n1 + n2 + n3)

2 = 0,

which is impossible because n1, n2, n3 > 0. If σ1, σ2, σ3 are not all equal, say σ1 = σ2 = −σ3, then

σ4n4 = j4 = j1 + j2 + j3 = σ1(n1 + n2 − n3),

σ4n
2
4 = j4|j4| = j1|j1|+ j2|j2|+ j3|j3| = σ1(n

2
1 + n2

2 − n2
3).

If j4 = 0, then
n1 + n2 = n3, n2

1 + n2
2 = n2

3,

which is impossible because n1n2 > 0. Thus j4 6= 0, σ4 6= 0. As a consequence,

n1 + n2 − n3 = σn4, n2
1 + n2

2 − n2
3 = σn2

4, σ := σ1σ4 ∈ {1,−1}.
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If σ = −1, then
n1 + n2 + n4 = n3, n2

1 + n2
2 + n2

4 = n2
3,

which is impossible, as already observed. Thus σ = 1 and

n1 − n3 = n4 − n2, (n1 − n3)(n1 + n3) = (n4 − n2)(n4 + n2).

If n1 6= n3, then the second equality implies n1 + n3 = n4 + n2. Therefore the sum of the two equalities
gives

n1 = n4, n3 = n2,

hence j2 + j3 = 0 because σ2 = −σ3. If, instead, n1 = n3, then also n2 = n4, and j1 + j3 = 0 because
σ1 = −σ3.

11 Appendix B. Tame estimates

In this Appendix we remind classical tame estimates for changes of variables, composition of functions
and the Hilbert transform, in Sobolev class on the torus, which are used in the paper. For these classical
estimates see also, for example: [23], Appendix G; [18], Appendix; [9], section 2; [19]. Before that, remind
standard Sobolev norms properties (Lemma 11.1) and tame estimates for operators (Lemma 11.2).

Lemma 11.1. Let d ∈ N, d ≥ 1, and s0 > d/2. There exists an increasing function C(s) > 0, s ≥ s0,
with the following properties.
(i) Embedding. ‖u‖L∞ ≤ C(s0)‖u‖s0 for all u ∈ Hs0(Td,C).
(ii) Algebra. ‖uv‖s0 ≤ C(s0)‖u‖s0‖v‖s0 for all u, v ∈ Hs0(Td,C).
(iii) Interpolation. For 0 ≤ s1 ≤ s ≤ s2, s = λs1 + (1 − λ)s2,

‖u‖s ≤ 2‖u‖λs1‖u‖
1−λ
s2 ∀u ∈ Hs2(Td,C). (11.1)

For 0 ≤ s1 ≤ σ1 ≤ σ2 ≤ s2,

‖u‖σ1‖u‖σ2 ≤ 4‖u‖s1‖u‖s2 ∀u ∈ Hs2(Td,C). (11.2)

(11.1),(11.2) also hold with all ‖u‖s replaced by |u|s, u ∈W s,∞(Td), s ∈ N.

(iv) Asymmetric tame product. For s ≥ s0,

‖uv‖s ≤ C(s)‖u‖s‖v‖s0 + C(s0)‖u‖s0‖v‖s ∀u, v ∈ Hs(Td). (11.3)

(v) Mixed norms tame product. For s ≥ 0, s ∈ N,

‖uv‖s ≤ C(s)(‖u‖s|v|0 + ‖u‖0|v|s) ∀u ∈ Hs(Td), v ∈ W s,∞(Td). (11.4)

Proof. (iii): see [33], page 269. (iv): see the Appendix of [10]. (v): writeDα(uv) =
∑

β+γ=α(D
βu)(Dγv),

use the elementary inequality ‖(Dβu)(Dγv)‖0 ≤ ‖Dβu‖0|Dγv|0, then the interpolation (iii).

Lemma 11.2. Let 0 ≤ s0 ≤ s, and c0, cs > 0. Let S be a closed linear subspace of Z (for example,
S = Z0 or S = Z0N ∩ Y ). Let T : S ∩Hs0 → S ∩Hs0 be a linear operator.

(i) Tame Neumann series. Let c0 ≤ 1/2. Assume that

‖(T − I)f‖s ≤ c0‖f‖s + cs‖f‖s0, ‖(T − I)f‖s0 ≤ c0‖f‖s0 (11.5)

for all f ∈ S ∩Hs0 . Then T : S ∩Hs0 → S ∩Hs0 is invertible, with

‖(T−1 − I)f‖s ≤ 2c0‖f‖s + 4cs‖f‖s0, ‖(T−1 − I)f‖s0 ≤ 2c0‖f‖s0 . (11.6)

(ii) Tame derivative of the inverse with respect to a parameter. Let

‖T−1f‖s ≤ c0‖f‖s + cs‖f‖s0, ‖T−1f‖s0 ≤ c0‖f‖s0 (11.7)
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for all f ∈ S ∩Hs0 . Assume that T depends in a C1 way on a parameter λ in a Banach space, and the
derivative (∂λT )[λ̂]f of Tf with respect to λ in the direction λ̂ satisfies

‖(∂λT )[λ̂]f‖s ≤ b0‖f‖s + bs‖f‖s0, ‖(∂λT )[λ̂]f‖s0 ≤ b0‖f‖s0 (11.8)

for all f ∈ S ∩Hs0 , for some constants b0, bs > 0. Then T−1 is also a C1 function of λ,

∂λT
−1[λ̂] = −T−1(∂λT [λ̂])T

−1, (11.9)

‖∂λT
−1[λ̂]f‖s ≤ (4c20b0)‖f‖s + (16c0b0cs + 4c20bs)‖f‖s0, ‖∂λT

−1[λ̂]f‖s0 ≤ c20b0‖f‖s0. (11.10)

Proof. (i). Let A := I − T . By induction,

‖Anf‖s ≤ cn0‖f‖s + csnc
n−1
0 ‖f‖s0 , ‖Anf‖s0 ≤ cn0‖f‖s0 , n ≥ 1,

where A2f means A(Af) and so on. Since c0 ≤ 1/2,

∞
∑

n=1

‖Anf‖s ≤ c0

(

∞
∑

n=0

cn0

)

‖f‖s + cs

(

∞
∑

n=1

ncn−1
0

)

‖f‖s0 ≤ 2c0‖f‖s + 4cs‖f‖s0 .

Hence, by Neumann series, T is invertible, and T−1 − I =
∑∞

n=1A
n satisfies (11.6).

(ii) Formula (11.9) follows from differentiating the equality TT−1f = f with respect to the parameter
λ. (11.7),(11.8),(11.9) give (11.10).

Lemma 11.3 (Composition of functions). (i) Let f(x, y) be defined for y = (y1, . . . , ym) in the ball
B1 = {y ∈ Rm : |y|2 =

∑m
i=1 |yi|

2 < 1} and all x = (x1, . . . , xd) ∈ Rd, and let f be 2π periodic in
x1, . . . , xd. Assume that f has continuous derivatives up to order r ≥ 0 which are bounded by ‖f‖Cr <∞.
Let u ∈ Hr(Td,Rm), with u(x) ∈ B1 for all x. Let f̃(u)(x) = f(x, u(x)). Then

‖f̃(u)‖r ≤ C‖f‖Cr(‖u‖r + 1).

The constant C depends on r, d,m.

(ii) Let f, f̃ be like in (i), and assume that ‖∂αy f‖Cr ≤ Kr for all |α| ≤ N +1. Let f̃ (n)(u)[h]n denote

the n-th Fréchet derivative of f̃ at u in the direction [h]n = [h, . . . , h]. (f̃ (n)(u)(x) is simply the n-th
Fréchet derivative of f(x, y) with respect to the variable y, evaluated at the point (x, y) = (x, u(x)) ). If
u, h ∈ Hr(Td,Rm), with u(x), u(x) + h(x) ∈ B1 for all x, then

∥

∥

∥f̃(u+ h)−
N
∑

n=0

1

n!
f̃ (n)(u)[h]n

∥

∥

∥

r
≤ CKr ‖h‖

N
L∞(‖h‖r + ‖h‖L∞‖u‖r).

C depends on r, d,m,N .

(iii) Let u ∈ Hr+p(Td,R). Let Dku(x) be the list of all partial derivatives ∂αx u(x) of order |α| = k.
Let f̃(u)(x) = f(x, u(x), Du(x), . . . , Dpu(x)), where f is like in (i) for a suitable m. Then

‖f̃(u)‖r ≤ C‖f‖Cr(‖u‖r+p + 1)

provided (u(x), Du(x), . . . , Dpu(x)) ∈ B1 for all x. C depends on r, d, p.
If, in addition, ‖∂αy f‖Cr ≤ Kr for all |α| ≤ N + 1, then

∥

∥

∥f̃(u+ h)−
N
∑

n=0

1

n!
f̃ (n)(u)[h]n

∥

∥

∥

r
≤ CKr ‖h‖

N
Wp,∞(‖h‖r+p + ‖h‖Wp,∞‖u‖r+p). (11.11)

C depends on r, d, p,N .

(iv) The previous statements also hold when all the L2-based Sobolev norms ‖u‖r are replaced by the
L∞-based Sobolev norms |u|r = ‖u‖W r,∞ =

∑

k≤r ‖D
ku‖L∞.
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Proof. (i). See [33], section 2, pages 272–275. (ii). Use Taylor’s formula with integral rest and the

inequality ‖
∫ 1

0 u(λ, ·) dλ‖
2
r ≤

∫ 1

0 ‖u(λ, ·)‖2r dλ, which holds for u(λ, x) ∈ Hr(Td
x), depending on the pa-

rameter λ, by Hölder’s inequality. As an alternative, see [35], Lemma 7 in the Appendix, pages 202–203.
(iii). Consider ũ = (u,Du, . . . , Dpu) and apply (i), (ii). See also [33], page 275. (iv). See [17], Lemma
2.3.4, page 147 for (i) in the W r,∞ case. (ii), (iii) can be adapted with no difficulty (the W r,∞ norms
satisfy the algebra and interpolation properties, which are the core of the proofs).

(iii) of Lemma 11.3 is used for the nonlinearity N (u). (ii) is also used for N = 0, u = 0, mainly for
f(y) = ey, f(y) = cos(y), f(y) = (1 + y)p, p ∈ R:

|f(h)− f(0)|s ≤ C|h|s ∀h ∈W s,∞(T2,R), |h|0 < 1, (11.12)

where C depends on f and s.

The next lemma is also classical, see for example [18], Appendix, and [23], Appendix G. However, in
those papers it is stated slightly differently than in Lemma 11.4, especially part (i), therefore we prove
it, adapting Lemma 2.3.6 on page 149 of [17].

Lemma 11.4 (Change of variable). Let p : Rd → Rd be a 2π-periodic function in Wm,∞, m ≥ 1, with
|Dp|0 ≤ 1/2. Let f(x) = x+ p(x). Then:

(i) f is invertible, its inverse is f−1(y) = g(y) = y + q(y), where q is periodic, q ∈ Wm,∞(Td,Rd),
and |q|m ≤ C|p|m. More precisely,

|q|0 = |p|0, |Dq|0 ≤ 2|Dp|0 ≤ 1, |Dq|m−1 ≤ C|Dp|m−1.

The constant C depends on d,m.
(ii) If u ∈ Hm(Td,C), then u ◦ f(x) = u(x+ p(x)) is also in Hm, and, with the same C as in (i),

‖u ◦ f‖m ≤ C(‖u‖m + |Dp|m−1‖u‖1).

(iii) Part (ii) also holds with ‖ ‖k replaced by | |k, namely |u ◦ f |m ≤ C(|u|m + |Dp|m−1|u|1).

Proof. (i). For every y ∈ R
d, the map Gy : Rd → R

d, Gy(x) = y − p(x) is a contraction because |Dp|0 ≤
1/2, therefore Gy has a unique fixed point x = Gy(x) in Rd, and the inverse function g = f−1 : Rd → Rd

is globally defined. Let q(y) := g(y)− y.
Since p is periodic, f(x + 2πm) = f(x) + 2πm for all m ∈ Zd. Applying g to this equality gives

x+ 2πm = g(f(x) + 2πm), namely g(y) + 2πm = g(y + 2πm) where y = f(x), and this means that q is
periodic. Hence g, like f , is also a bijection of Td onto itself.

The identity f(g(y)) = y gives

q(y) + p(y + q(y)) = 0, q(x+ p(x)) + p(x) = 0 ∀x, y ∈ R
d. (11.13)

(11.13) implies that |q|0 = |p|0. By Neumann series, the matrix Df(x) = I +Dp(x) is invertible for a.e.
x, (Df(x))−1 =

∑∞
n=0(−Dp(x))

n, and |(Df)−1|0 ≤ 2. Differentiang (11.13),

Dq(y) = −
[

Df(y + q(y))
]−1

Dp(y + q(y)) =
∞
∑

n=1

[−Dp(g(y))]n, (11.14)

whence |Dq|0 ≤ 2|Dp|0 ≤ 1. Differentiating (11.14),

(D2q)(y) = −
[

(Df)(g(y))
]−1

(D2p)(g(y))Dg(y)Dg(y),

and |D2q|0 ≤ 8|D2p|0. (i) is proved for m = 1 and m = 2.
In general, by the “chain rule”, the m-th Fréchet derivative of the composition of functions u ◦ v is

Dm(u ◦ v)(x) =
m
∑

k=1

∑

j1+...+jk=m

Ckj(D
ku)(v(x)) [Dj1v(x), . . . , Djkv(x)], (11.15)
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where j1, . . . , jk ≥ 1, and Ckj are constants depending on k, j1, . . . , jk ([17], page 147). Apply (11.15) to
f ◦ g: since f(g(y)) = y, Dm(f ◦ g) = 0 for all m ≥ 2. Separate k = 1 from k ≥ 2 in the sum (11.15) and
solve for Dmg,

Dmg(y) = −Dg(y)
m
∑

k=2

∑

j1+...+jk=m

Ckj(D
kf)(g(x)) [Dj1g(y), . . . , Djkg(y)].

Dmg = Dmq and Dkf = Dkp because k,m ≥ 2. Since k ≥ 2, it is 1 ≤ ji ≤ m − 1 for all i = 1, . . . , k,
because there are at least two j1, j2, each of them ≥ 1, and

∑

ji = m. For k = m one has ji = 1 for all
i = 1, . . . ,m, and the corresponding term in the sum is estimated

|(Dmp) ◦ g [Dg, . . . , Dg]|0 ≤ |Dmp|0|Dg|
m
0 ≤ C|Dp|m−1,

because |Dg|0 = |I + Dq|0 ≤ 2. For 2 ≤ k ≤ m − 1, at least one among j1, . . . , jk is ≥ 2 (otherwise
k = m). Let ℓ be the number of indices ji that are ≥ 2, so that 1 ≤ ℓ ≤ k. It remains to estimate

m−1
∑

k=2

k
∑

ℓ=1

∑

σ1+...+σℓ=m−k+ℓ

Ckℓσ(D
kp)(g(y)) [Dg(y)]k−ℓ[Dσ1q(y), . . . , Dσℓq(y)], (11.16)

where indices ji ≥ 2 have been renamed σ1, . . . σℓ, the number of indices ji = 1 is k− ℓ, and Dσig = Dσiq
because σi ≥ 2. Every factor Dg in (11.16) is estimated by |Dg|0 ≤ 2. For the remaining factors use the
interpolation between 0 and m − 2, which is possible because 1 ≤ σi − 1 ≤ m − 2, and use the formula
σ1 + . . .+ σℓ = m− k + ℓ,

|(Dkp) ◦ g (Dσ1q) . . . (Dσℓq)|0 ≤ |Dk−2D2p|0|D
σ1−1Dq|0 . . . |D

σℓ−1Dq|0

≤ C|D2p|
m−2−(k−2)

m−2

0 |D2p|
k−2
m−2

m−2

ℓ
∏

i=1

|Dq|
m−2−(σi−1)

m−2

0 |Dq|
σi−1

m−2

m−2

= C|Dq|ℓ−1
0 (|D2p|0|Dq|m−2)

1− k−2
m−2 (|D2p|m−2|Dq|0)

k−2
m−2

≤ C|Dq|ℓ−1
0 (|D2p|0|Dq|m−2 + |D2p|m−2|Dq|0)

≤ C(|Dq|m−2 + |Dp|m−1).

Collecting all the terms in the sum, we have proved that

|Dmq|0 ≤ C(|Dp|m−1 + |Dq|m−2). (11.17)

Now use the induction on m. We have already proved (Pm) |Dq|m−1 ≤ C|Dp|m−1 for m = 2. Assume
that (Pm−1) holds. Then (Pm) follows from (11.17).

(iii) follows a similar argument, using formula (11.15) and interpolation for W k,∞ norms; see [17],
Lemma 2.3.4, page 147.

(ii) ‖u ◦ f‖0 ≤ C‖u‖0, because, changing variable x = g(y) in the integral,

‖u ◦ f‖20 =

∫

Td

|u(f(x))|2 dx =

∫

Td

|u(y)|2 | detDg(y)| dy ≤ ‖ detDg‖L∞

∫

Td

|u(y)|2dy ≤ C‖u‖20. (11.18)

The m-th derivative of u ◦ f , m ≥ 1, is given by formula (11.15). The L2 norm of a typical term of the
sum is estimated by

‖Dku(f(x)) [Dj1f(x), . . . , Djkf(x)]‖0 ≤ ‖(Dku) ◦ f‖0‖D
j1f‖L∞ . . . ‖Djkf‖L∞ .

‖(Dku)◦f‖0 ≤ C‖Dku‖0 ≤ C‖Du‖k−1 by (11.18). Use interpolation (11.1) for ‖Du‖k−1 and interpolation
with W k,∞ norms for all Dji−1Df between 0 and m− 1, which is possible because k− 1, ji − 1 are all in
the interval [0,m− 1]. (Remember that Df is periodic, while f is not). We get

‖Dku‖0‖D
j1f‖L∞ . . . ‖Djkf‖L∞ ≤ C‖Df‖k−1

L∞ (‖Du‖m−1‖Df‖L∞ + ‖Du‖0‖Df‖Wm−1,∞).

Now ‖Df‖L∞ ≤ 2, and ‖Df‖Wm−1,∞ ≤ C(1 + ‖Dp‖Wm−1,∞). The sum gives the thesis.

38



The next lemma estimates the commutator ofH with multiplication operators and changes of variables
that are used in the paper. See also [23], Appendices H and I.

Lemma 11.5 (Commutators of H). 1) Let s,m1,m2 ∈ N, with s ≥ 2, m1,m2 ≥ 0, m = m1 +m2. Let
f(t, x) ∈ Hs+m(T2,C). Then [f,H]u = fHu−H(fu) satisfies

‖∂m1
x [f,H]∂m2

x u‖s ≤ C(s)(‖u‖s‖f‖m+2 + ‖u‖2‖f‖m+s).

2) Let a : T → T a function, and Au(t, x) = u(a(t), x). Then [A,H] = 0.

3) There exists a universal constant δ ∈ (0, 1) with the following property. Let s,m1,m2 ∈ N, m =
m1 + m2, β(t, x) ∈ W s+m+1,∞(T2,R), with |β|1 ≤ δ. Let Bh(t, x) = h(t, x + β(t, x)), h ∈ Hs(T2,C).
Then

‖∂m1
x (B−1HB −H)∂m2

x h‖s ≤ C(s,m)(|β|m+1‖h‖s + |β|s+m+1‖h‖0).

Proof. 1) Let u(t, x) =
∑

k∈Z
uk(t) e

ikx, f(t, x) =
∑

k∈Z
fk(t) e

ikx, and

S = {(k, j) ∈ Z
2 : sign(k)− sign(j) 6= 0}, S(k) = {j ∈ Z : (k, j) ∈ S}.

Since H(eikx) = −i sign(k) eikx,

∂m1
x [f,H]∂m2

x u =
∑

k,j∈Z

fj−k(t)uk(t) δ(k, j) (ij)
m1(ik)m2 eijx =

∑

(k,j)∈S

(the same),

where δ(k, j) := −i (sign(k)− sign(j)). If (k, j) ∈ S, then

|k − j| = |k|+ |j|, |j| ≤ |j − k|, |k| ≤ |j − k|.

Therefore |jm1km2 | ≤ |k − j|m. If j, k are Fourier indices for the space and n, l for the time,

‖∂m1
x [f,H]∂m2

x u‖2s ≤
∑

n,j

(

∑

l,k

|f(n−l,j−k)||j − k|m|u(l,k)|
)2

〈(n, j)〉2s ≤
∑

a∈Z2

(

∑

b∈Z2

|(∂mx f)a−b||ub|
)2

〈a〉2s

and this gives the usual tame estimate for the product (∂mx f)u. The estimate holds with ‖ ‖s0 with
s0 > d/2 = 2/2 = 1, so we fix s0 = 2.

2) Trivially AHu(t, x) =
∑

k uk(a(t)) (−i signk) e
ikx = HAu(t, x).

3) Following [23], Appendix I, it is convenient to use the representation of H as a principal value
integral,

Hu(t, x) =
−1

2π
p.v.

∫

T

u(t, x′)

tan 1
2 (x− x′)

dx′ =
−1

2π
lim

ε→0+

{

∫ x−ε

x−π

+

∫ x+π

x+ε

} u(t, x′)

tan 1
2 (x− x′)

dx′. (11.19)

Let I + β̃ be the inverse of I + β, namely x+ β(t, x) = y if and only if x = y+ β̃(t, y). Changing variable
x′ + β(t, x′) = y′, dx′ = (1 + β̃y′(t, y′)) dy′ in the integral,

B−1HBu(t, y) =
1

π
p.v.

∫ π

−π

u(t, y′) ∂y′

{

log sin
(1

2

[

y + β̃(t, y)− y′ − β̃(t, y′)
])}

dy′,

therefore

(B−1HB −H)u(t, y) =

∫

T

u(t, y′)K(t, y, y′) dy′, (11.20)

where the kernel K is

K(t, y, y′) =
1

π
∂y′ log

( sin 1
2 [y + β̃(t, y)− y′ − β̃(t, y′)]

sin 1
2 (y − y′)

)

.
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If β is sufficiently regular, then K is bounded, and the integral in (11.20) is no longer a singular one.
Denote R = B−1HB −H. Then

∂m1
y R∂m2

y u(t, y) =

∫

T

(∂m2

y′ u)(t, y
′) ∂m1

y K(t, y, y′) dy′ =

∫

T

u(t, y′) (−1)m2∂m2

y′ ∂
m1
y K(t, y, y′) dy′,

every space derivative goes on K and does not affect u. Hence

‖Ru‖20 =

∫

T2

∣

∣

∣

∫

T

u(t, y′)K(t, y, y′) dy′
∣

∣

∣

2

dy dt ≤ C

∫

T3

|u(t, y′)|2|K(t, y, y′)|2 dy′ dy dt ≤ C|K|20 ‖u‖
2
0,

for ‖∂sy(∂
m1
y R∂m2

y u)‖0 replace K with ∂s+m1
y ∂m2

y′ K and for ‖∂st (∂
m1
y R∂m2

y u)‖0 calculate the usual deriva-
tives of a product. Thus

‖∂m1
y R∂m2

y u‖s ≤ C(‖u‖s|K|m + ‖u‖0|K|s+m).

Now write K = (1/π)∂y′ log(1 + f), where

f(t, y, y′) =
sin 1

2 [y + β̃(t, y)− y′ − β̃(t, y′)]− sin 1
2 (y − y′)

sin 1
2 (y − y′)

,

and decompose f = abc,

a(y, y′) =
1
2 (y − y′)

sin 1
2 (y − y′)

, b(t, y, y′) =
β̃(t, y)− β̃(t, y′)

y − y′
=

∫ 1

0

β̃y(t, λy + (1− λ)y′) dλ,

c(t, y, y′) =

∫ 1

0

cos
(y − y′ + λ[β̃(t, y)− β̃(t, y′)]

2

)

dλ.

a ∈ C∞ for |y′− y| ≤ π (by periodicity, take T = [y−π, y+π] when integrating in dy′). |b|s ≤ C|β̃|s+1 ≤
C|β|s+1 by Lemma 11.4(i). All the derivatives of c of order ≤ s are bounded if β̃ ∈ W s,∞, with tame
estimate

|c|s ≤ C(s, |β̃|0) (1 + |β̃|s) ≤ C(s, |β|0) (1 + |β|s).

As a consequence |f |0 ≤ 1/2 if |β|1 ≤ δ for some universal δ ∈ (0, 1), and |K|s ≤ C(s)|β|s+1.

Remark 11.6. Inequality 1) of Lemma 11.5 can also be proved in a simple way using (11.19), see [23],
Appendix H.

12 Appendix C. Proofs

Proof of Proposition 6.1. Apply Lemma 11.3(iv): let f(x, y) = ∂αy gi(x, y), |α| = 1. By (1.5), ∂βy f(x, 0) =

0 for all |β| ≤ 2, and, by Taylor’s formula (11.11) for N = 2 (with f̃ defined as in Lemma 11.3),

|f̃(U)|s =
∣

∣

∣f̃(U)−
2

∑

n=0

1

n!
f̃ (n)(0)[U ]n

∣

∣

∣

s
≤ C(s)|U |22|U |s+2 ≤ C(s)‖U‖24‖U‖s+4. (12.1)

Suppose that a1 = (∂αy gi)(x, U,HU, . . .) = f̃(U), where U = εv̄ + ε2u. Then (12.1) gives

|a1|s ≤ C(s)‖εv̄+ ε2u‖24‖εv̄+ ε
2u‖s+4 ≤ ε3C(s)(‖v̄‖4+ εK)2(‖v̄‖s+4+ ε‖u‖s+4) ≤ ε3C(s,K)(1+ ‖u‖s+4)

because ‖u‖4 ≤ K and ‖v̄‖s+4 is a certain constant C(s) depending on s. Also a2, a4, a3 − 3U2 and
a5 − 3(U2)x are of the type (∂αy gi)(x, U,HU, . . .), therefore they satisfy the same estimate as a1. The
additional part in a3 and a5 comes from the cubic term ∂x(U

3) of the nonlinearity N (U). One has

|U2 − ε2v̄2|s = ε3|2v̄u+ εu2|s ≤ ε3C(s,K)|u|s ≤ ε3C(s,K)‖u‖s+2

because U = εv̄ + ε2u, and the estimate for a3 − ε23v̄2 follows. Similarly for a5.
The derivatives ∂ua1 and ∂εa1 are obtained differentiating the equality a1 = (∂αy gi)(x, U,HU, . . .),

therefore they involve ∂βy gi with |β| = 2. Then apply Taylor’s formula (11.11) with N = 1 and evaluate
at U , as above.
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Remark 12.1. In the estimate for ∂uai there is a factor ε2 more than in the one for ∂εai because
∂uU [h] = ε2h = O(ε2), while ∂εU = v̄ + 2εu = O(1). The point becomes very evident in the simplest
case g(x, U, . . .) = U4.

Proof of Proposition 7.2. By Proposition 6.1, for s = 0 and ε < ε0, |a1|0 ≤ ε3C(K) ≤ ε30C(K) ≤ 1/2
if ε0 is small enough. |

∫

a dx|s ≤ 2π|a|s for all a(t, x). Applying (11.12) with f(y) = (1+y)p, p = −1/2,−2
gives

|ρ− 1|s ≤ C(s,K)|a1|s ≤ ε3C(s,K)(1 + ‖u‖s+4), 0 ≤ s ≤ r. (12.2)

Differentiating the formula for ρ(u, ε), and using estimates on a1,

|∂uρ(u, ε)[h]|s ≤ C(s,K)(|∂ua1[h]|s + |a1|s|∂ua1[h]|0) ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+4‖h‖4), (12.3)

and similarly |∂ερ(u, ε)|s ≤ ε2C(s,K)(1 + ‖u‖s+4), for all 0 ≤ s ≤ r.
µ2 = ΠC(ρ), therefore, using (12.2) with s = 0, |µ2 − 1| = |ΠC(ρ− 1)| ≤ |ρ− 1|0 ≤ ε3C(0,K)‖u‖4 =

ε3C(K) ≤ 1/2. Also, |∂uµ2(u, ε)[h]| = |ΠC(∂uρ(u, ε)[h])| ≤ |∂uρ(u, ε)[h]|0, then use (12.3) with s = 0.
Similarly for ∂εµ2.

α satisfies (7.7), namely µ2(1 + α′) = ρ. Thus α′ = µ−1
2 [(ρ − 1) + (1 − µ2)], whence |α′|s ≤ 2(|ρ −

1|s+ |µ2− 1|). Moreover |α|s+1 ≤ C|α′|s because α ∈ Y , α(0) = 0, and |α(t)| = |α(t)−α(0)| ≤ π|α′|0 for
all |t| ≤ π (Poincaré inequality for odd functions). The derivatives of α are obtained differentiating the
equality µ2(1 + α′) = ρ. Similar argument for ΠEβ using (11.12), because ΠEβx = ρ1/2(1 + a1)

−1/2 − 1
by (7.8). Thus α(u, ε) and ΠEβ(u, ε) satisfy

|α|s+1 + |ΠEβ|s + |ΠEβx|s ≤ ε3C(s,K)(1 + ‖u‖s+4), (12.4)

|∂uα[h]|s+1 + |∂u(ΠEβ)[h]|s ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+4‖h‖4), 0 ≤ s ≤ r, (12.5)

|∂εα|s+1 + |∂εΠEβ|s ≤ ε2C(s,K)(1 + ‖u‖s+4). (12.6)

σ is defined in (7.11), namely σ = ΠT+C{ω(ΠEβ)t(1+ΠEβx)+ a3(1+ΠEβx)
2}. Since ΠEβ = O(ε3),

the only term of order ε2 in σ comes from a3 and it is ε2ΠT+C(3v̄
2). v̄ is a finite sum of qj (5.1), therefore

ΠT (v̄
2) = 0. As a consequence,

σ − ε2ΠC(3v̄
2) = ΠT+C{ω(ΠEβt)(1 + ΠEβx) + a3(ΠEβx)(2 + ΠEβx) + (a3 − ε23v̄2)}.

Then, using the estimates for ΠEβ, (a3 − ε23v̄2) and their derivatives,

|σ − ε2ΠC(3v̄
2)|s−1 ≤ ε3C(s,K)(1 + ‖u‖s+4), (12.7)

|∂uσ(u, ε)[h]|s−1 ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+4‖h‖4), 1 ≤ s ≤ r, (12.8)

|∂εσ(u, ε)− εΠC(6v̄
2)|s−1 ≤ ε2C(s,K)(1 + ‖u‖s+4) (12.9)

(s− 1 because |ΠEβt|s−1 ≤ |ΠEβ|s).
By (7.12), µ1 = ΠC(σ), and the estimates for µ1 follow from (12.7),(12.8),(12.9) with s = 1.
Since σ − µ1 = σ − ΠC(σ) = ΠT (σ), by (7.11) ωγ′ = µ1(1 + α′) − σ = µ1α

′ − ΠT (σ). By Poincaré
inequality, |γ|s ≤ C|γ′|s−1 because γ ∈ Y . The estimates for γ = ΠTβ follow from those for σ, α, µ1 and
their derivatives, using the fact that ω = 1+3ε2. Hence (12.4), (12.5), (12.6) hold not only for ΠEβ, but
also for γ = ΠTβ, and, as a consequence, for β too, for 1 ≤ s ≤ r.

By Lemma 11.4(i), |α̃|s+ |β̃|s ≤ C(s)(|α|s+ |βs). Choose a smaller ε0, if necessary, to have ε30C(K) <
1/2 in (7.18). (7.21),(7.23) hold by Lemma 11.4. Since

α(t) + α̃(t+ α(t)) = 0, β(t, x) + β̃
(

t+ α(t), x + β(t, x)
)

= 0 ∀(t, x) ∈ T
2, (12.10)

the derivatives of α̃, β̃ with respect to the parameters (u, ε) are obtained by differentiating (12.10) with
respect to u or ε, whence

∂uα̃[h] = −(1 + α̃τ )Ψ
−1{∂uα[h]}, ∂uβ̃[h] = −(1 + β̃y)Ψ

−1{∂uβ[h]} − β̃τ Ψ
−1{∂uα[h]},
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and similarly for ∂εα̃, ∂εβ̃. (Given a diffeomorphism depending on a parameter, this is nothing but
the formula for the derivative of the inverse diffeomorphism with respect to the parameter.) Using
(12.5),(12.6) and (7.23), for s+ 1 ≤ r we get

|∂uβ̃[h]|s ≤ ε4C(s,K)(‖h‖s+4 + ‖u‖s+5‖h‖5), |∂εβ̃|s ≤ ε2C(s,K)(1 + ‖u‖s+5),

and the same for α̃. These inequalities also hold for α, β (actually, α, β satisfy (12.5),(12.6), which are
stronger).

To prove (7.22), consider the one-parameter family of changes of variables

(Ψλf)(t, x) = f(ψλ(t, x)), ψλ(t, x) =
(

t+ λα(t), x + λβ(t, x)
)

, 0 ≤ λ ≤ 1.

One has

(Ψ− I)f(t, x) = f(ψ1(t, x))− f(ψ0(t, x)) =

∫ 1

0

(∇f)(ψλ(t, x)) ·
(

α(t), β(t, x)
)

dλ.

Use Lemma 11.4 to estimate ‖Ψλft‖s and ‖Ψλfx‖s, then use (11.4). The same holds for Ψ−1. The
estimate for Ψ̃, Ψ̃−1 hold because ‖Ph‖s ≤ ‖h‖s for all s. Repeat the same argument with norms | |s to
prove (7.24). By the chain rule, the derivative of Ψf with respect to u in the direction h is

∂u(Ψf)[h] = ∂u{f(t+ α(t), x+ β(t, x))}[h] = (Ψft)∂uα[h] + (Ψfx)∂uβ[h],

therefore (7.25) follows using the interpolation (11.4) for products. Similarly for (7.26).
Since

[1 + (Ψ−1α′)(τ)](1 + α̃′(τ)) = 1,

(M−I) is the multiplication by the factor (Ψ−1α′) = −α̃′/(1+ α̃′) =: p. Hence (M̃−I)f = P(M−I)f =
P(pf) for all f ∈ Z0, because P = I on Z0. By Lemma 11.3, p satisfies the same estimate as α̃′, and
|α̃′|s ≤ C(s)|α′|s ≤ C(s)|α|s+1, then use (12.4) and apply (11.3) to get

‖pf‖s ≤ ε3C(K)‖f‖s + ε3C(s,K)(1 + ‖u‖s+4)‖f‖2, 2 ≤ s ≤ r.

For the derivatives ∂uM[h], ∂εM use (7.19),(7.20). Apply Lemma 11.2 to obtain the estimates for
(M̃−1 − I) and its derivatives.

The estimates for ai, i = 6, . . . , 9 follow from formulae (7.9) and the estimates for Ψ−1. In a7 put the
term ε23v̄2 in evidence, namely write

ωβt + a3(1 + βx)

1 + α′
= b+ q, b := ε23v̄2, q :=

ωβt + (a3 − b)(1 + βx) + b(βx − α′)

1 + α′
,

estimate Ψ−1(q) using (7.23), the inequalities for α, β, (a3− b), and |b|s = C(s). For Ψ−1(b) = b+(Ψ−1−
I)b, use (7.22). Similarly for a9. Similar calculations for the derivatives ∂uai[h], ∂εai.

To prove (7.33), write Ψ as the composition of the two changes of variables A, B,

Ψ = AB, Ah(t, x) = h(t+ α(t), x), Bh(t, x) = h(t, x+ β1(t, x)),

where β1 := A−1(β), namely β1(t + α(t), x) = β(t, x). By Lemma 11.5(ii), Ψ−1HΨ = B−1A−1HAB =
B−1HB. By the inequality (7.23) for the change of variable A, |β1|s ≤ ε3C(s,K)(1 + ‖u‖s+4). Then
apply Lemma 11.5(iii).

In R1 (see (7.3)) the coefficients of ∂kyRH, k = 0, 1, 2, are functions fk that satisfy |fk|s ≤ C(s,K)(1+
‖u‖s+5) for s+ 1 ≤ r (two of them are a6, a8 without the denominator (1 + α′), the other one is (7.4)).
By (11.4),(11.2), and (7.33),

‖fk∂
k
yRH∂

m
y h‖s ≤ ε3C(s,m,K)

(

‖h‖s(1 + ‖u‖m+7) + ‖h‖0‖u‖s+m+7

)

, k = 0, 1, 2,

for m ≥ 0, s+m+3 ≤ r. For the last term in R1 use (7.2), the estimate for Ψ−1a5, integration by parts
|ΠC(f∂

m
y h)| = |ΠC [(∂

m
y f)h]|, the inequality |ΠC(fh)| ≤ C|f |0‖h‖0, Lemma 11.4(i) to pass from α̃, β̃ to

α, β, and (11.2):

‖P(Ψ−1a5)[ΠC ,Ψ]∂my h‖s = ‖Ψ−1a5‖s|[ΠC ,Ψ]∂my h| ≤ ε5C(s,m)(1 + ‖u‖s+m+4)‖h‖0. (12.11)

The estimate for R1 follows. R2 satisfies the same estimate as R1 because R2 = M−1R1. For R3, note
that ΠCL2 = ΠC(a9 +R2). Use (7.27) for M−1, then the same arguments as for (12.11).
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Formula for R4.

R4 = R3PΦ− a9ΠCΦ

+

3
∑

k=0

{

Π⊥
Eµ2

(

β(k)
yy ∂

−k
y + 2β(k)

y ∂−k+1
y + β(k)∂−k+2

y

)

+ a6Π
⊥
E

(

β(k)
y ∂−k

y + β(k)∂−k+1
y

)

+ a8Π
⊥
Eβ

(k)∂−k
y −

(

µ2β
(k)∂−k+2

y + µ0β
(k)∂−k

y + µ−2β
(k)∂−k−2

y

)

Π⊥
E

}

+
(

−H(2µ2α
(1)
y + a6α

(1))− (a7 − µ1)α
(1)

)

Π⊥
E +

(

(2µ2β
(1)
y + a6β

(1))−H(a7 − µ1)β
(1)

)

Π⊥
E

+
3

∑

k=0

{

[a6,H]
(

α(k)
y ∂−k

y + α(k)∂−k+1
y

)

+ [a7,H]
(

β(k)
y ∂−k

y + β(k)∂−k+1
y

)

+ [a8,H]α(k)∂−k
y

+ [a9,H]β(k)∂−k
y

}

+
3

∑

k=0

[β(k) − α(k),H]
(

µ2∂
−k+2
y + µ0∂

−k
y + µ−2∂

−k−2
y

)

+
(

ωα(3)
τ − µ2β

(3)
yy − a6β

(3)
y + a7α

(3)
y − (a8 − µ0)β

(3) + a9α
(3) + µ−2

3
∑

k=1

β(k)∂−k−2
y

)

∂−3
y

+H
(

ωβ(3)
τ + µ2α

(3)
yy + a6α

(3)
y + a7β

(3)
y + (a8 − µ0)α

(3) + a9β
(3) − µ−2

3
∑

k=1

α(k)∂−k−2
y

)

∂−3
y .

Proof of Proposition 7.4. From the estimates for µ2, µ1, a6, a7, a8, a9 of Proposition 7.2 and formulae
(7.52),(7.53) for ϕ it follows that

‖Re (ϕ)‖s + ‖Im (ϕ)‖s ≤ ε2C(s,K)(1 + ‖u‖s+c), (12.12)

‖∂uRe (ϕ)[h]‖s + ‖∂uIm (ϕ)[h]‖s ≤ ε4C(s,K)(‖h‖s+c + ‖u‖s+c‖h‖4), (12.13)

‖∂εRe (ϕ)‖s + ‖∂εIm (ϕ)‖s ≤ εC(s,K)(1 + ‖u‖s+c), (12.14)

for 2 ≤ s ≤ r − 1, where c = 6 (in this proof we use (11.3) to estimate any product). As a consequence,
by Lemma 11.3 and (7.54), α(0) − 1 and β(0) and their derivatives satisfy the same estimates (12.12),
(12.13), (12.14), with c = 6.

g(0) is given by (7.41), therefore its real and imaginary part satisfy (12.12), (12.13), (12.14), with
c = 8, for 2 ≤ s ≤ r − 3. The same for η(1) because of (7.43), (7.46). By formulae (7.44), (7.47), (7.50),
(7.48), (7.51), the same holds for g(1), η(2), with c = 10, 2 ≤ s ≤ r − 5, and for g(2), η(3), with c = 12,
2 ≤ s ≤ r − 7. Since f (k) = η(k)f (0), k = 1, 2, 3, all coefficients α(k), β(k), k = 1, 2, 3 and their derivatives
satisfy (12.12), (12.13), (12.14), with c = 12, for all 2 ≤ s ≤ r − 7. By (11.3),

‖(Φ− I)f‖s ≤ C‖ coeff ‖2‖f‖s + C(s)‖ coeff ‖s‖f‖2,

where ‘coeff’ are (α(0) − 1), β(0), α(k), β(k), k = 1, 2, 3, and C does not depend on s. Therefore

‖(Φ− I)f‖s ≤ ε2C(K)‖f‖s + ε2C(s,K)(1 + ‖u‖s+12)‖f‖2.

The estimates for ∂uΦ[h] and ∂εΦ are obtained in the same way, using the estimates for the derivatives
of the coefficients. Similarly, (7.64),(7.65) follow because ∂τ (Φ − I)f = (Φ − I)∂τf + Φτf , where Φτ is

the operator of the same type as Φ that has coefficients α
(k)
τ , β

(k)
τ instead of α(k), β(k), k = 0, . . . , 3. Since

‖Pf‖s ≤ ‖f‖s, all the estimate for Φ− I also hold for Φ̃− P = P(Φ− I)P. (7.61),(7.62) and (7.63) also
hold for Φ̃−1 by Lemma 11.2.

To prove (7.66) for Φ̃−1M̃−1Ψ̃−1, write

Φ̃−1M̃−1Ψ̃−1 = I + S, S := (Ψ̃−1 − I) + (M̃−1 − I)Ψ̃−1 + (Φ̃−1 − I)M̃−1Ψ̃−1,

then apply (7.22), (7.21), (7.27) and (7.61). Similarly for the other operators.
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The estimates for µ0, µ−2 and their derivatives follow from formulae (7.55), (7.56) and the estimates
for µ2, a6, a7, a8, a9, η

(2), g(0).
Now study the rest R. By (7.34), for 2 ≤ s ≤ r − 6,

‖R3∂
m
y f‖s ≤ ε3C(s,K)(‖f‖s + ‖f‖0‖u‖s+10), 0 ≤ m ≤ 3. (12.15)

By definition, Φ is a combination of multiplications and H, ∂−1
y . Every ∂y can be moved from the right

to the left of any multiplication operator with elementary calculus: [a, ∂y] = −ay, namely, for every a, f ,

a∂yf = ∂y(af)−ayf, a∂2yf = ∂2y(af)−2∂y(ayf)+ayyf, a∂3yf = ∂3y(af)−3∂2y(ayh)+3∂y(ayyf)−ayyyf.

Recall that the coefficients α(k), β(k) satisfy (12.12), (12.13), (12.14), with c = 12, 2 ≤ s ≤ r− 7. Moving
∂my to the left of Φ, m = 0, 1, 2, 3, the coefficients α(k), β(k) are subject to up to 3 derivatives in y. So
applying (12.15) gives

‖R3PΦ∂
m
y f‖s ≤ ε5C(s,K)(‖f‖s + ‖u‖s+10‖f‖2), 0 ≤ m ≤ 3, 2 ≤ s ≤ r − 10.

Each term R(a) of type (a) containing [b,H] can be estimated by Lemma 11.5(i), whence

‖R(a)∂
m
y f‖s ≤ ε2C(s,K)(‖f‖s + ‖u‖s+17‖f‖2), 0 ≤ m ≤ 3, 2 ≤ s ≤ r − 12,

and the same inequality also holds for each term R(b) of type (b) that contains Π⊥
E . Thus it holds for

‖R4∂
m
y f‖s. Since R := Φ̃−1PR4 by (7.57), the estimate for R∂my follows from (7.61).

Proof of (9.6). (The meaning of A,B, a, b, c in the following proof is independent on the rest of the
paper). By (9.4),

F (un) + F ′(un)hn+1 = F (un) + P−1
ε Ψ̃nM̃nΦ̃nL̃4(un)Φ̃

−1
n Ψ̃−1

n hn+1

= P−1
ε Ψ̃nM̃nΦ̃n

{

Φ̃−1
n M̃−1

n Ψ̃−1
n PεF (un) + L̃4(un)Φ̃

−1
n Ψ̃−1

n hn+1

}

. (12.16)

Let p = {. . .} be the quantity in parentheses in (12.16). Let

c := Φ̃−1
n M̃−1

n Ψ̃−1
n PεF (un) = Πn+1c+Π⊥

n+1 c,

L̃4(un) = A+B, A := Πn+1L̃4(un)Πn+1, B := Π⊥
n+1 L̃4(un)Πn+1 + L̃4(un)Π

⊥
n+1.

With these abbreviations, by the definition (9.5) hn+1 = −Πn+1Ψ̃nΦ̃nA
−1Πn+1c, whence

Φ̃−1
n Ψ̃−1

n hn+1 = a+ b, a := −A−1Πn+1c, b := Φ̃−1
n Ψ̃−1

n Π⊥
n+1 Ψ̃nΦ̃nA

−1Πn+1c.

Now p = c+ (A+B)(a+ b), and Aa+Πn+1c = 0. Therefore

p = Π⊥
n+1 c+Ba+ (A+B)b.

Π⊥
n+1 L̃4(un)Πn+1 = Π⊥

n+1 R̃Πn+1 because L̃4(un) = D̃+R̃ and D̃ is diagonal. Moreover L̃4(un)Π
⊥
n+1a =

0 because a ∈ Zn. Thus (9.6) follows.

Proof of Lemma 8.5. (i) Lemma (8.5) simply follows from Lemma 11.3. In particular, v̄2(ε) satisfies
(4.2). By Proposition 5.3, (ΠV AΠV ) : V ∩X → V ∩ Y , h 7→ 3∂th+ΠV ∂x(3v̄

2
1h) is invertible, with

‖(ΠV AΠV )
−1h‖s ≤ C‖h‖s−1 ∀h ∈ V ∩ Y, s ≥ 1, (12.17)

where C depends only on the set K, like in (8.6). By (1.5) and (11.11), ‖N4(h)‖s ≤ C(s)‖h‖34‖h‖s+2 for
0 ≤ s ≤ r. Hence

‖v̄2(ε)‖s ≤ Cε−4‖N4(εv̄1)‖s−1 ≤ C(s)‖v̄1‖
3
4‖v̄1‖s+1 = C′(s) (12.18)

where C′(s) depends on s and ‖v̄1‖s+1. (12.18) for s = 4 implies that ε‖v̄1‖4+ε2‖v̄2‖4 < δ0 for all ε < ε0,
for some ε0 depending on ‖v̄1‖5.
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To complete the proof of (8.19), differentiate (4.2) with respect to ε, then use (12.17),

‖∂εv̄2(ε)‖s ≤ C(4ε−5‖ΠV N4(εv̄1)‖s−1 + ε−4‖ΠV N
′
4(εv̄1)[v̄1]‖s−1) ≤ ε−1C(s).

(8.20) follows from formula (4.3) and estimates (8.19). To prove (ii), observe that

Q(u, h, ε) = ε−2P−1
ε

(

∂x{3(εv̄1+ε
2u)(ε2h)2+(ε2h)3}+N4(εv̄1+ε

2u+ε2h)−N4(εv̄1+ε
2u)−N ′

4(εv̄1+ε
2u)[ε2h]

)

,

then apply (11.11) to N4.
(iii) follows from (4.5) by the usual tame estimates.
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