
Software Testing

PERCORSI PER LE COMPETENZE TRASVERSALI E PER
L’ORIENTAMENTO

ANNO SCOLASTICO 2023-2024

– Ing. Porfirio Tramontana
e-mail: porfirio.tramontana@unina.it

http://wpage.unina.it/ptramont/

Software Testing - Introduzione 1

Calendario

• 8 febbraio 2024 : 9.30 – 14.00, aula II-3, Edificio 1

Via Claudio

• 21 febbraio 2024 : 9.30 – 18.00 , aula II-3, Edificio

1 Via Claudio

• 29 febbraio 2024 : 13.30 – 18.00 , aula II-3, Edificio

1 Via Claudio

• 1 marzo 2024 : 9.30 - 14.00 , aula II-3, Edificio 1

Via Claudio (da confermare)

Software Testing - Introduction 2

Materiale da scaricare

• https://sites.google.com/view/porfiriotramontana/pcto2024

• Eclipse download : https://www.eclipse.org/downloads/

– Insieme ad Eclipse c’è anche una versione di Java e Junit,

che saranno gli strumenti fondamentali che utilizzeremo

• Selenium :

https://chromewebstore.google.com/detail/selenium-

ide/mooikfkahbdckldjjndioackbalphokd

– Selenium è un plug-in disponibile per tutti i browser cje

consente di creare casi di test

Software Testing - Introduction 3

https://sites.google.com/view/porfiriotramontana/pcto2024

Di cosa ci occuperemo …

• Testing del software

– Che cosa è? A cosa serve? Ma serve davvero? Ma

perché si fa? Chi lo fa? Chi lo insegna? Come si può

fare? Come si fa a vedere se è riuscito bene?

• Casi di test

– Cosa sono? Come si definisce un test? I test possono

essere utilizzati anche al di fuori del software?

• Testing automation

– I test possono essere eseguiti automaticamente dal

computer? Il computer sa riconoscere se il test è

andato bene oppure no? Il computer può creare da

solo i casi di test?
Software Testing - Introduction 4

Di cosa ci occuperemo …

• Testing Black Box

– Possiamo provare un programma senza sapere come

è fatto al suo interno? Come facciamo a capire se ha

funzionato bene? Come facciamo a capire se abbiamo

fatto abbastanza prove?

• Testing White Box

– Come possiamo testare meglio un programma se

sappiamo come è stato scritto? Come facciamo a

capire se ha funzionato bene? Come facciamo a capire

se abbiamo fatto abbastanza prove?

Software Testing - Introduction 5

In aggiunta …

• Cosa si insegna ad Ingegneria Informatica

relativamente al software?

• Cosa si insegna ad Informatica relativamente al

software?

• Come sono strutturati questi corsi di laurea?

Software Testing - Introduction 6

Tipologia di lezione

• Un po’ di teoria e definizioni, direttamente dalle

slide, ma ragionandoci un po’

• Un po’ di esercizi da risolvere con carta e penna o

sul mio pc

• Un po’ di esercizi da risolvere con il pc

• Un po’ di esercizi da risolvere a casa

• Esercizi di progettazione dei casi di test, ricerca

degli errori, correzione degli errori e altro

Software Testing - Introduction 7

Motivazioni

Software Testing - Introduction 10

Spectacular Software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt

11

Intel’s Pentium FDIV fault : Public relations
nightmare

THERAC-25 radiation machine : Poor testing of
safety-critical software can cost lives : 3 patients
were killed

Mars Polar

Lander crash

site?

THERAC-25

design

Ariane 5:

exception-handling

bug : forced self

destruct on maiden

flight (64-bit to 16-bit

conversion: about

370 million $ lost)

We need our software to be dependable
Testing is one way to assess dependability

NASA’s Mars lander: September 1999, crashed
due to a units integration fault

Ariane 5 explosion : Millions of $$

Northeast Blackout of 2003

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt

12

Affected 10 million

people in Ontario,

Canada

Affected 40 million

people in 8 US

states

Financial losses of

$6 Billion USD

508 generating

units and 256

power plants shut

down

The alarm system in the energy management system failed due

to a software error and operators were not informed of the power

overload in the system

Costly Software Failures

NIST report, “The Economic Impacts of Inadequate
Infrastructure for Software Testing” (2002)

– Inadequate software testing costs the US alone between $22 and
$59 billion annually

– Better approaches could cut this amount in half

Huge losses due to web application failures

– Financial services : $6.5 million per hour (just in USA!)

– Credit card sales applications : $2.4 million per hour (in USA)

In Dec 2006, amazon.com’s BOGO offer turned into a
double discount

2007 : Symantec says that most security vulnerabilities are
due to faulty software

Spectacular software Failures

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt
14

• Healthcare website : Crashed repeatedly
on launch—never load tested

Software testers try to find faults before

the faults find users

• Boeing A220 : Engines failed after software
update allowed excessive vibrations

• Toyota brakes : Dozens dead, thousands of crashes

• Northeast blackout : 50 million people, $6
billion USD lost … alarm system failed

• Boeing 737 Max : Crashed due to overly
aggressive software flight overrides (MCAS)

Introduction to Software Testing, Edition 2 (Ch 1) © Ammann & Offutt

16

Cost of Not Testing

• Testing is the most time consuming and

expensive part of software development

• Not testing is even more expensive

• If we have too little testing effort early,

the cost of testing increases

• Planning for testing after development is

prohibitively expensive

Poor Program Managers might say:
“Testing is too expensive.”

Software Testing Testing – Theoretical foundationsTesting – Theoretical foundations 18

Testing

Theoretical Foundations

Software Testing Testing – Theoretical foundations 19

Verify and Validation (V&V)

• Verify and Validation (V & V) show is the
software satisfies its requirements and
(Verification) and if it satisifies user
requirements (Validation).

– Verification: Are we making the product right?

– Validation: Are we making the right product?

• Two complementary approaches to the verification:
– Experimental approach (by testing or dynamical

analysis of the software during its execution)

– Analytic approach (static analysis, of code and
documentation, formal analysis)

Software Testing Testing – Theoretical foundations 21

Definitions, in better detail

• Error (human error)

– Human error in programming, due to wrong interpretations,
insufficient knowledge of the problem to solve, material
mistake or any other issue

• Defect (fault, bug)

– Defect into the software code due to a human error, that could
cause the failure of the software system

• Failure

– An execution of the software that does not provide the
expected results and behaviour

– Failures may be dynamic: they happens in a given time due to
a given input and can be observed only via software execution

Software Testing Testing – Theoretical foundations 22

An example

void raddoppia()

{

cin>>x;

y := x*x;

cout<<y;

}

Software Testing Testing – Theoretical foundations 23

An example

ERROR due to lack of knowledge or

editing

ERROR

We think that the double of x can be

computed as x*x OR we have typed *

instead of +

FAULT

“*” instead of “+”

FAILURE

=> The wrong result is shown

The failure can be detected by inputting

10 (but it could not be detected by

inputting 2 …)

void raddoppia()

{

cin>>x;

y := x*x;

cout<<y;

}

Software Testing Testing – Theoretical foundations

• Note: probably the first use of the ‘bug’ term as
a fault is due to Thomas Edison

Grace
Hopper’s
bug

Software Testing Testing – Theoretical foundations 27

Defect testing

• It is used to find faults in a software
• Faults are found by searching for failures

• Defect testing succeeded if the program fails
(i.e. failures are observed)
• Why testing fails if no defects are found? It is a

philosophical question

• Testing may demonstrate the presence of faults
– May testing demonstrate the absence of faults,

too?

Software Testing Testing – Theoretical foundations

Software Testing Testing – Theoretical foundations

Io non volevo solo

partecipare alle feste. Volevo

avere il potere di farle fallire.

Geppino «Jep» Gambardella

Software Testing

Legge di Murphy

Se qualcosa può andar male, lo farà

Software Testing - Introduction 30

Software Testing Testing – Theoretical foundations 31

Dijkstra Thesis

• Dijkstra Thesis
– Testing cannot prove absence
of defects, but only their presence

• There is no guarantee that if at the n-th test a module
or a system has responded correctly (i.e. no defects
have been found), the same can be done at the
(n+1)-th test

• Inability to produce all possible configurations of input
values (test cases) at all possible internal states of a
software system

Software Testing Testing – Theoretical foundations 32

• "We did about 10,000 tests on it, and it
was working fine until Monday."
- Anonymous - Spokesperson for 7-11 after Y2K-
related failure of their credit card processing on
2001-01-01

Software Testing Testing – Theoretical foundations 33

Absence of continuity properties

• In many fields of engineering, testing is simplified by the
existence of continuity properties.

• If a bridge withstands a load of 1000 tons, then it will withstand even
lighter loads

• In the field of software we are dealing with discrete systems,
for which small variations in input values can lead to incorrect
results

• Exhaustive testing (ideal) is a necessary condition to be able to evaluate
the correctness of a program starting from testing

Software Testing

Legge di Murphy

Se qualcosa può andar male, lo farà

Corollari

Niente è facile come sembra.

Software Testing - Introduction 34

Software Testing Testing – Theoretical foundations 35

Dependency on input values

char x;

cin>>x;

In how many ways can be executed this code?

x is a char (with 256 possible values), so the code can be executed

in 256 different ways but …

the >> operator allows the insertion of unlimited input sequences:

abcde0

qiunonooiiouuoiounoinoinoinonoiioio0

‘string causing buffer overflow’

0

...

Software Testing Testing – Theoretical foundations 36

Amenità sul Testing

Software Testing

Legge di Murphy

Se qualcosa può andar male, lo farà

Corollari

Niente è facile come sembra.

Tutto richiede più tempo di quanto si pensi.

Software Testing - Introduction 37

Software Testing Testing – Theoretical foundations 38

What if the program has branches and loops?

By excluding the loop, the program can be

executed following 5 different paths.

By considering the loop, the program can be

executed following an unlimited number of

paths

By limiting the execution to n loops, the

program can be executed in 5^n ways

The problem of the execution of the exhaustive

test suite needs an exponential time!

Software Testing Testing – Theoretical foundations 39

Exhaustive testing

• Exhaustive testing consists consists of the execution of all the
possible behaviours of a software system

• If exhaustive testing does not show any failure, the program is
correct

• Is it always possible to generate and execute the exhaustive test
suite?

• If the program has no branches and have no inputs, then the
exhaustive test suite exists and is composed of a single test case

•It is possible to test exhaustively the «Hello, World» program

• What if the program has branches and the program execution
depends on input values?

• What if the program has loops?

Software Testing Testing – Theoretical foundations

In quanti modi si può provare

questo programma?

Software Testing Testing – Theoretical foundations

conta

E quest’altro programma?

Software Testing

Legge di Murphy

Se qualcosa può andar male, lo farà

Corollari

Niente è facile come sembra.

Tutto richiede più tempo di quanto si pensi.

I cretini sono sempre più ingegnosi delle precauzioni
che si prendono per impedirgli di nuocere.

Software Testing - Introduction 42

User Interface Testing 43

"Twenty percent of all input forms filled out
by people contain bad data."
- Dennis Ritchie, More Programming Pearls:
Confessions of a Coder by Jon Louis Bentley

http://www.softwarequotes.com/showquotes.aspx?id=543&name=Ritchie,Dennis

User Interface Testing

User Interface Testing 45

Input validation

• A typical problem of UI testing is verifying
the validity of input data
• It is the cause of many attacks (exploits) against

applications

• For example, in pointer-based languages, such as C,
entering a string that is too long as input, in the
absence of validation, can lead to overwriting other
data or even areas of code of the program itself
(stack overflow problem)

• In interpreted languages, such as those often used
for the web, the problem is even more felt

User Interface Testing 46

The problem of input validation into the Web

➢Data validation can be done both on the client and server side

➢Client-side validation has the advantage of using client machine CPU time rather than

server machine CPU time

➢However, client-side validation can be bypassed by an attacker who solicits the server

with an http request that has not passed through the client page: in this case the server may

have anomalies

The most correct solution is to place the validation on both

the client and server side, so as to block most incorrect

requests on the client (saving resources on the server). Only

fraudulent requests would thus be blocked by server-side

validation

User Interface Testing 47

Example: Cross-Site Scripting

➢Occurs when a client-side script, maliciously inserted into an input field,

is executed on the client machine of an unsuspecting user

➢

Sign.html
<form method="post" action="sign.asp">

 <textarea name="txtMessage"></textarea>

 <input type="submit" value="Sign!">

</form>

Sign.asp
<% Message=request.form("txtMessage")

 conn=OpenDBConnection

 set rs=server.createobject("Adodb.recordset")

 rs.open "Guestbook",conn,1,2,2

 rs.Addnew

 rs("Message")=Message

 rs.update

%>

Guestbook.asp
<% conn=OpenDBConnection

 rs=server.createobject("Adodb.recordset")

 rs.open "SELECT Message FROM GuestBook" ,

 conn,3,3

%>

<table>

<% rs.movefirst

 while not(rs.eof)

 response.write (rs.fields("Message"))

 rs.movenext

 wend

%>

</table>

<% rs.close

 set rs=nothing

 conn.close

 set conn=nothing

%>

Message=Server.HtmlEncode(Message)

Software Testing

The Seven Principles of Testing (from ISTQB)

• Principle 1 – Testing shows the presence of defects, not their absence

• Principle 2 – Exhaustive testing is (generally) impossible

• Principle 3 – Early testing saves time and money

• The sooner the defect is discovered, the fewer changes need to be made to

correct it

• Principle 4 – Defects tend to form clusters

• A sort of adaptation of the principle of locality of the accesses

• Principle 5 – Beware of the pesticide paradox

• The code "tends to adapt" to testing: in other words, to find new defects

introduced over time it is always necessary to design new tests

• Principle 6 – Testing is context-dependent

• There are no universal testing strategies and techniques applicable in every

context

• -Principle 7 – The absence of errors is a false belief

• Practical consequence of principles 1 and 2
•

Com’è fatto un test?

Software Testing 50

• Minimal set of information able to describe a test case
specfication

– ID Number and Description
– Preconditions

•Hypotheses that must be veriified before the test is executed

– Input values
– Expected output values (the «Oracle»)

– Expected Postconditions
•Hypotheses that must be verified after the test is executed

ID Precond Input Expected

Output

PostCond

Test case specification

Software Testing 51

• In addition to the information needed for test case specification:
• Output values
• Result

•Success if preconditions and postconditions are true and
output values are judged equivalent to expected output
values
•Failure if preconditions and postconditions are true but
output values are not judged equivalent to expected output
values
•Not applicable (N/A) if al least a precondition or a
postcondition is not true

ID Precond Input Expected

Output

Output PostCond Result

Test case execution report

Software Testing 52

Input

• Input can be described as attribue-value pairs …

• … or by a stream

• For example, they can be represented by a text file

• Input may be described by a sequence of actions

• For example in GUI based applications, input may be
represented by a sequence of user actions

• Input may also be described by a set of signals and by the time of arrival
to the system / exit from the system

Software Testing 53

Input

• Some examples, in order of ascending difficulty:
• Testing of methods

•The list of variable is known, the type of values is known

• Testing of (web) services

•The list of variables is known, the type of values is unknown/may be changed by the user

• Testing of Command Line programs

•The length of the list of variables is unknown/may be changed, the type of values is
unknown/may be changed

• Testing of GUI based programs

•Input is composed of a list of events and input values, the length of the sequence may assume
any possible value

• Testing of videogames / real time programs

•The (analogic) time of execution of each event / input insertion is relevant and may assume any
possible value

• Testing of distributed real time programs

•Multiple analogic inputs may occur at different times and may assume any possible value

Software Testing 54

Example: method test case specification

• Method prototype:

• int sum (int x, int y)

• Example of Test case Input Specifications

• Input is specified as a set of pairs (name, value)

ID Precond Input Expected

Output

PostCond

x=1

y=2

Software Testing 55

Output

• The output may be specified:

• As values/objects in method / services testing

• As a text on screen in command line programs

• As a graphical screen / object on the screen in GUI

program testing

• As a combination of an output in a given time / interval in

a real time system / videogame

• …

Software Testing 56

Example: static method test case specification

• Method prototype:

• static int sum (int x, int y)

• Example of Test case Output Specifications

• Output is specified as a int value

ID Precond Input Expected

Output

PostCond

x=1

y=2

3

Software Testing 57

Preconditions and postconditions

• Preconditions and postconditions may be about:

– The existence and state of external services or data
sources

–For example files, databases, services, global variables …

– The state of the application before/after the test
execution

•For example: the correct authentication, the presence or absence

of such data in the database, the reaching of a specific interface

•Usually, if a test is quite complex, then

intermediate conditions are added to improve the

fault localization ability of the test case

Software Testing 58

Example: method test case specification

• Method prototype:

• static int sum (int x, int y)

• Example of Test case Precondition Specification

• The method has no state : no precondition are needed

ID Precond Input Expected

Output

PostCond

None x=1

y=2

3

Software Testing 59

Example: method test case specification

• Method prototype:

• static int sum (int x, int y)

• Example of Test case PostCondition Specification

• The method has no state : no postconditions are needed

ID Precond Input Expected

Output

PostCond

None x=1

y=2

3 None

Software Testing 60

•The (Actual) Output obtained by the
test execution has to be compared with
the Expected Output designed in the
test case in order to evaluate the test
Result

• The Comparator is able to
compare the oracle expected
behavior and the tested
software behavior and to
evaluate if a failure has
occurred

• The Comparator has to evaluate objectively if
the Expected Output and the Output are
equal / identical / equivalent between them

Expected

Output
Output

Compar

ator

Test result

Output, Expected Output, Test Result

Software Testing 61

• the Oracle knows exactly
what are the Expected
Outputs of the system
under test in response to
the each test case

• In the easiest scenario,
the Oracle is represented
by the column of the
Expected Outputs

Software

to test
Oracle

Compar

ator

Test result

Test cases

the Oracle

Software Testing

Who is the Oracle?

• Human oracle
– He evaluates the success of the test cases on the

basis of the requirements and of his personal
judgement

–For example, in acceptance testing

– Software oracle

– An Oracle is another software having the same behavior of the software to be
tested

–For example, a known version of bubblesort can be used to test a faster quicksort

–A previous version of a software can be the oracle to evaluate the behavior of a newer software offering the

same functionality (regression testing)

– Implicit oracle

– Testing against crashes, the oracle found a failure in each case a crash occurs

– Formal specification oracle

– If the requirements are expressed in a formal way, then the oracle can be
automatically derived from them

62

Software Testing

What is the role of the comparator?

• If the oracle provides exact expected values for the output,
the comparator has to evaluate a simple bit comparison

• If the oracle is expressed in terms of a set of valid values,
the comparator has to evaluate if the obtained result belongs
to this set

• For example, the expected behavior can be expressed as «a positive number», then the comparator
has to evaluate a «greater than» condition

• If the oracle is expressed in terms that are not exactly
represented by the computer, then the comparator has to
perform an approximate evaluation

• If the expected behavior is the number PI, then the comparator has to compare the difference
between the obtained result and an approximate representation of PI

• If the expected behavior is an image of Naples, the comparator has to compare the output image
with a base of Naples images in order to argue if the image is sufficiently similar to a Naples image

63

	Diapositiva 1: Software Testing
	Diapositiva 2: Calendario
	Diapositiva 3: Materiale da scaricare
	Diapositiva 4: Di cosa ci occuperemo …
	Diapositiva 5: Di cosa ci occuperemo …
	Diapositiva 6: In aggiunta …
	Diapositiva 7: Tipologia di lezione
	Diapositiva 10: Motivazioni
	Diapositiva 11: Spectacular Software Failures
	Diapositiva 12: Northeast Blackout of 2003
	Diapositiva 13: Costly Software Failures
	Diapositiva 14: Spectacular software Failures
	Diapositiva 16: Cost of Not Testing
	Diapositiva 18
	Diapositiva 19
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30: Legge di Murphy
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34: Legge di Murphy
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37: Legge di Murphy
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42: Legge di Murphy
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48: The Seven Principles of Testing (from ISTQB)

	Diapositiva 49: Com’è fatto un test?
	Diapositiva 50: Test case specification
	Diapositiva 51: Test case execution report
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60: Output, Expected Output, Test Result
	Diapositiva 61: the Oracle
	Diapositiva 62
	Diapositiva 63

