An AHP-based Framework for Quality and Security Evaluation

V. Casola, A.R. Fasolino, N. Mazzocca, P. Tramontana

Dipartimento di Informatica e Sistemistica Universita' degli Studi di Napoli, Federico II Naples, Italy

{casolav, fasolino, n.mazzocca, ptramont}@unina.it

Rationale

- □ Context and open issues
- Our approach to quality and security evaluation
- Methodology
 - Policy Formalization
 - Evaluation technique
- □ Applicability in Web Service Architectures
- Conclusions and Future Works

Context: service cooperation, a security point of view

- Service Oriented Architectures are capable of intelligent interaction and are able to discover and compose themselves into more complex services;
- The open issue is: how to guarantee the "quality and security" of a service built at run-time in a potential un-trusted domain?

How a Customer can choose the Web Service that better fits his "quality" requirements?

Our approach to quality/security evaluation

- Actually, these problems are faced by explicit agreements among services:
 - Each service defines its own Service Level Agreement and Security Policy and publishes them in a public document;
 - People from the various organization that want to cooperate, manually evaluate the different SLAs and decide to agree or not.
- SLA and Policies are expressed by means of a free text document; they usually contain provisions on the "quality" of services and on "security" mechanisms adopted, <u>they are used to decide to</u> <u>extend trust to other services;</u>
- □ These documents are mostly manually evaluated.

Security evaluation Methodology

- □ We are working on different methodologies to:
 - Express quality/security through a semi-formal and not ambiguous model; the chosen formalization must be "easy to adopt" for technical and organizational people;
 - Evaluate the quality/security level that a security infrastructure is able to guarantee by aggregating the security associated to all policy provisions (multidecision approach).
 - **Compare** different services according to the measured quality/security level.

The proposed approach

- Models are needed to formally express the Quality and security of Web Services (quality of protection, QoS, security and so on) requested by Customers and offered by Providers;
- 1. We defined a quality meta-model and formally express Quality as an instance of the meta-model;
- 2. We investigated the adoption of a decision framework based on AHP (Analytic Hierarchy Process) proposed by Saaty for Quality evaluation;

The Quality Meta-Model

• Quality Characteristic: any quality requirements, such as Performance, Security, Cost, Maintainability

•Characteristics may be arranged in a hierarchy (Measurable Characteristics are the leaves)

• **Measurable Characteristic**: a Quality Characteristic that can directly be measured

Quality Characteristic: Efficiency	
OQuality Characteristic: Time Behavior	
•Quality Characteristic: Response Time	
•Measurable Quality Characteristic:	Average
Response Time	
Measurable Quality Characteristic:	Standard
deviation	
Measurable Quality Characteristic:	Maximum
response time	Ũ

The Analytical Hierarchy Process

- **1.** The decision model design activity:
 - **1. Weight Assignment step**: the relative importance of the characteristics is rated;
 - 2. **Clustering step:** for each measurable characteristic, the sets of values that will be considered equivalent for the aims of the evaluation are defined;
 - 3. **Rating Step:** each set is associated to a rating value;
- 2. The decision making activity: to compare the quality of an offered service (formalised in a Quality Offer Model) against requestor needs (formalised in a Quality Request Model)

Building the decisional model: Step 1: Weight Assignment

For each Characteristic that is not directly measurable,

the decision process designer will estimate the relative **Intensity of Importance** of any pair of its *n* Sub-Characteristics, by defining a matrix of *nxn*

Intensity of Importance and its interpretation			Response Time	Average Response	Standard Deviation	Maximum of Response
Intensity of Importance	Interpretation	N	11.00	Time	Response Time	Time
1	Equal Importance		Average Response Time	1	3	7
3	Moderate Importance	1. Build the Comparison	Standard Deviation	1/3	1	5
5	Strong Importance	matrix	Response Time			
7	Very strong Importance		Maximum Response Time	1/7	1/5	1
9	Extreme Importance					

Building the decisional model: Step 1: Weight Assignment (cont.)

Characteristic Weights
are assigned by comparing
their relative importance:

$$w(i) = \sum_{k=1}^{n} \frac{m'(i,k)}{n} \quad \forall i$$

	Average Response Time	Standard Deviation Response Time	Maximum Response Time	Weights
Average Response Time	21/31	15/21	7/13	0.64
Standard Deviation Response Time	7/31	5/21	5/13	0.28
Maximum Response Time	3/31	1/21	1/13	0.07

Building the decisional model: Step 2: Clustering

We need an Utility Function to ORDER the possible values on the basis of relative (and not absolute) preferences (LOCAL SECURITY LEVELS).

In general, an Utility function R assigns ordered values (of utility) to members of a set: given two values x and y of the set, if x is preferred to y then R(x) > R(y).

Example: Average Response Time characteristic

R = Offered_value / Requested_value

Possible Solutions are clustered in three levels:

R < 0.5 (very fast response); $0.5 \le R < 1$ (sufficiently fast response); $1 \le R < 2$ (quite slow response).

Building the decisional model: Step 3: Rating

After clustering each possible value, we need to rate such clusters according their goodness

The Decision Making Activity

The Quality of different Web Services is compared by evaluating:

- a Satisfaction Function for each Measurable Characteristic. 1.
- a Satisfaction Function for each non-Measurable Characteristic: 2.

$$S_{c}(request, offer) = \sum_{sc \in C(c)} w_{sc} S_{sc}(request, offer)$$

A non measurable characteristic (c), For example: Confidentiality

All measurable sub-characteristic of (c) denoted sc are weighted and summed

For example: (Encryption Alghoritm, KeyLenght, KeyProtection,)

The Decision Making Activity (cont.)

3. the Overall Satisfaction Function:

$$S(request, offer) = \sum_{c \in Characteristic} w_c S_c(request, offer)$$

Application of the evaluation model: evaluating measurable and not-measurable characteristics

	Characteristic	Sub-	Customer's	Provider1	Provider2
	Name	Characteristic	Values	's Values	's Values
l					

-		DGI	DGI	Dat
Integrity	Alg (0.12)	RSA	RSA	RSA
(0.35)			S=0.8	S=0.8
	MessagePart	Body	Body	Body
	(0.12)		S = 0.88	S = 0.88
	KeyLen	512 bit	1024 bit	512 bit
	(0.38)		S = 0.75	S = 0.19
	KeyLoc	HD	Smart	Floppy
	(0.38)		Card	S = 0.06
			S = 0.75	

Response	Average RT	1.5 s	1 s	1.6
Time (0.67)	(0.64)		S=0.26	S = 0.11
	Max RT	2 s	1.7 s	2 s
	(0.07)		S = 0.75	S = 0.25
	Maximum	0.2 s	0.4 s	0.2 s
	RT (0.28)		S = 0.07	S = 0.25

 $S_{Integrity}$ (Customer,Provider1)= 0.12*0.8+0.12*0.88+0.38*0.75+0.38*0.75=0.77

S_{Integrity}(Customer,Provider2)= 0.12*0.8+0.12*0.88+0.38*0.19+0.38*0.06=0.30

S _{Respo}	onseTime(Customer,Provider1)=	
	0.64*0.26+0.07*0.75+0.28*0.07=0.2	24

S_{ResponseTime}(Customer,Provider2)= 0.64*0.11+0.07*0.25+0.28*0.25=0.16

Application of the evaluation model: Overall evaluation

Finally we evaluate the overall satisfaction function (GLOBAL SECURITY LEVEL)

$$\sum_{c \in C} w_c S_c(Cust, \Pr{ovider1}) = 0.43$$
$$\sum_{c \in C} w_c S_c(Cust, \Pr{ovider2}) = 0.34$$

The first provider will be chosen on the basis of the provided security level

An idea on how to automatically enforce the evaluation: A reference architecture

V.Casola et al. An Architectural Model for Trusted Domains in Web Services Journal of Information Assurance and Security 2 (2006)

Conclusions and Future work

- We are working on methodologies to automatically evaluate quality and security provided by an internet service on the basis of the published policies;
- The AHP methodology allows to address measurable and not-measurable quality and security aspects in a unifying way and propose an evaluation model;
- We are going to integrate such methodology in the TRUMAN architecture and compare with existing ones.