
TESTBEDS 2010 - Paris

Rich Internet Application Testing
Using Execution Trace Data

Dipartimento di Informatica e Sistemistica
Università di Napoli, Federico II
Naples, Italy

Domenico Amalfitano
Anna Rita Fasolino
Porfirio Tramontana
{domenico.amalfitano, fasolino, ptramont}@unina.it

TESTBEDS 2010, Paris

Context and Goal
Context

Rich Internet Applications (RIAs)

Goal
Proposing and investigating techniques,
models and tools for effective testing of
RIAs .

2/32TESTBEDS 2010, Paris

Rich Internet Applications (RIAs)

RIAs represent the new generation of Web applications,
providing richer, more interactive, dynamic and usable
user interfaces than traditional ones.
AJAX (Asynchronous JavaScript and XML) is a set of
technologies (JavaScript, XML, XMLHttpRequest
objects) providing one of the most diffused approach
for implementing RIAs.
Examples of popular RIAs: Google Maps, Flickr,
Gmail.
Hereafter we focus our attention on Ajax-based RIAs

3/32TESTBEDS 2010, Paris

User Interface of AJAX-based RIAs ...

It is implemented by Web pages composed by
individual components, which can be updated, deleted
or added at run time independently.
The manipulation of the page components is
performed by an Ajax engine written in JavaScript that

is loaded by the browser at the start of the session,
accesses the page components by the DOM interface,
is responsible for communicating with the server to exchange
few amounts of data. The communication between Client and
Server may be asynchronous.

4/32TESTBEDS 2010, Paris

... User Interface of AJAX RIAs

Its status changes due to Javascript event handlers
elaborations.

Event Handlers are triggered by user events or
other external events (such as timeout events or
asynchronous responses from the server).

The User Interface of Ajax-based RIAs can be
considered like an event-driven software system
(EDS).

5/32TESTBEDS 2010, Paris

Open issues in RIA testing

The traditional web testing approaches are based on the
assumption that the business logic is entirely
implemented by the server side of the application.
Vice-versa, in RIAs the business logic is implemented
by the client side too.
Specific testing activities involving the client side
elaborations of the RIA are needed.
A possible approach:
Adopting the testing approaches used for event-driven software systems for
the aims of testing the UI of RIAs.

6/32TESTBEDS 2010, Paris

Event based testing techniques of GUI of desktop
applications are based on models such as:

Event Flow Graphs.
Event Interaction Graphs.
Finite State Machines.

Due to the similarities between RIAs and GUIs, all
these models may be used to model the behaviour of
an RIA.
We proposed of using FSM for representing the
behaviour of RIAs.

Models For Event Based Testing

7/32TESTBEDS 2010, Paris

FSM Reverse Engineering Technique

We have proposed a reverse engineering
approach for obtaining the FSM that:

Is based on the analysis of the execution traces of the
RIA;
solves the problem of FSM states and transitions
explosion by heuristic criteria that aim at clustering
equivalent states and transitions of the FSM.

1. D. Amalfitano, A. R. Fasolino, P. Tramontana, Reverse Engineering Finite State Machines from Rich Internet Applications,
(WCRE 2008).

2. D. Amalfitano, A. R. Fasolino, P. Tramontana, Experimenting a Reverse Engineering Technique for Modelling the Behaviour of
Rich Internet Applications, (ICSM 2009).

3. D. Amalfitano, A. R. Fasolino, P. Tramontana, An Iterative Approach for the Reverse Engineering of Rich Internet Applications,
(IARIA ICIW 2010).

8/32TESTBEDS 2010, Paris

Resulting Transition
due to the ‘click’
on the ‘Adjust’ Button

Resize
Menù

Adjust
Menù

Click On
Adjust button

FSM - an example of transition

9/32TESTBEDS 2010, Paris

Example of a reverse engineered FSM
Model

The FSM Model of TuDu RIA

10/32TESTBEDS 2010, Paris

User-session based testing: a possible
approach for RIA testing?

Some state-based testing techniques relying on the FSM have
recently been proposed for RIA testing.
User-session based testing has not yet been used in the
context of RIAs
This approach aims at automatically generating test cases
composed of event sequences which are deduced by
analysing user interactions with a version of the application.
Already applied with success for:

traditional Web application testing,
GUI automated testing.

11/32TESTBEDS 2010, Paris

The proposed technique

We decided to investigate user-session based
testing in the context of RIAs.
We propose a testing technique that is based on the
following activities:
1. Collection of a set of execution traces of the

application;
2. Test suite generation;
3. Test suite reduction.

12/32TESTBEDS 2010, Paris

1. Execution trace collection

An execution trace is defined as a sequence of
couples: …, <Interf. Statei , eventi>, <Interf.
Statei+1, eventi+1>, …
Two different approaches have been
considered for collecting execution traces:

A manual approach based on the analysis of
the interactions with an RIA of real users or
testers.
An automatic approach based on Crawling
techniques.

13/32TESTBEDS 2010, Paris

2. Test Suite Generation

The test suite is generated by transforming
each execution trace into a test case.
The transformation requires that two
problems are solved:

A) definition of pre-conditions of each test
case;
B) definition of the Test Oracle.

14/32TESTBEDS 2010, Paris

2.A Pre-conditions of a test case

In general the behaviour of an RIA depends
on the current state of the application data as
well as by its environment and session data.
Our solution:

before recording each execution trace, we set the
RIA in pre-defined states.
These states will provide the pre-conditions of
the related test cases.

15/32TESTBEDS 2010, Paris

2.B The Test Oracle problem.

A testing oracle is needed to define the
PASS/FAIL result of a test case execution.

We decided to evaluate test case results by
checking the occurrence of JavaScript
crashes.

No JS crash Test Passes.
JS crash Test Fails.

16/32TESTBEDS 2010, Paris

3. Test Suite Reduction
Given a test suite, the reduction technique computes
its minimal set of test cases assuring the same
coverage of the original test suite.
Three reduction techniques M1, M2, and M3 have
been proposed, that consider different types of
coverage:
M1 covers the same set of FSM states covered by the
original suite;
M2 covers the same set of FSM transitions (or events)
covered by the original suite;
M3 covers the same set of JS code components (such
as functions) as the original test suite.

17/32TESTBEDS 2010, Paris

Experiment
We performed an experiment for evaluating the proposed
testing approach.
We considered twelve combinations of different execution trace
collection and reduction techniques.

The testing techniques considered
in the experiment

18/32TESTBEDS 2010, Paris

Research Questions

The experiment was designed to address the following research
questions:

RQ1. How effective are the testing techniques B1, B2, and B3
(without reduction)?

We decided to evaluate the effectiveness of the B1, B2, and B3
techniques in terms of the coverage and fault-detection they
provide.

RQ2. How effective are the reduction-based T1… T9
techniques with respect to the B1, B2, and B3
techniques?

This question concerns the relationship about the performance of
the B1, B2, and B3 techniques with respect to the T1…T9
techniques, in terms of the coverage and fault-detection they
provide.

19/32TESTBEDS 2010, Paris

Measured variables
The following variables are measured during the
experiment:

FSM State Coverage: percentage of FSM states covered by at least one
test case of the test suite.
FSM Transition Coverage: percentage of FSM transitions covered by
at least one test case of the test suite.
JavaScript function Coverage: percentage of JavaScript functions
executed during the test suite execution with respect to the number of
script functions contained by the JavaScript modules of the application.
JavaScript LOC Coverage: percentage of JavaScript function LOC
executed during the test suite execution with respect to the LOC of
JavaScript functions of the application.
Fault detection effectiveness: percentage of faults detected by the test
suite.
Test Suite Size: number of test suite test cases.
Test Suite Event Size: number of events exercised by the test suite test
cases.

20/32TESTBEDS 2010, Paris

Supporting tools

The experimental process has been carried out with the
support of a set of tools.

CReRIA & CrawlRIA: both the tools are used to record executions
traces, manually and automatically respectively. The user session traces
(sequences of interfaces and events) and the corresponding paths on
the abstracted FSM (sequences of states and transitions) are stored
in the FSM & Trace Repository.
Test Case Generator: tool able to transform the execution traces
stored in the FSM & Trace Repository in a test suite composed of
executable test cases by the DynaRIA tool.
Test Case Reducer: tool able to reduce a test suite ts into a smaller
one that satisfies the same ts coverage requirements.
DynaRIA: tool for dynamic analysis and testing of RIAs. It is able to
execute the test cases produced by the Test Case Generator or the Test
Case Reducer tool, to monitor their execution in a browser
environment, to produce a report of detected crashes and to report the
coverage measures.

21/32TESTBEDS 2010, Paris

Experimental Process
The experimental process is shown in Figure.
Chosen the subject RIA, execution traces are
both manually collected (using the CreRIA
tool) and automatically by the CrawlRIA tool.
Produced traces are stored in the repository.
The Test Case generator tool produces test cases
from the collected execution traces.
The Test Case Reducer applies the
minimization techniques and produces reduced
test suites.
The produced test suites are submitted to the
DynaRIA tool for the execution.
The DynaRIA tool evaluates the results of all test
case executions both on the original version
of the RIA, and on a set of RIA versions in
which an expert has injected faults.

The experimental testing process

22/32TESTBEDS 2010, Paris

Subject application

The subject application is Tudu, an open source RIA offering
‘todo’ list management facilities.
To evaluate the fault detection capability of proposed testing
techniques, different types of fault have been injected in the
JavaScript (JS) code of the subject application.
19 faults able to produce JS crashes were injected and 19
versions of Tudu were produced, each one containing just one
fault.
The faults were of different types, such as:

JS function call instructions with undefined, incorrect, or missing
parameters;
JS syntax errors;
array out of bound errors,
server requests of missing resources or JS files.

23/32TESTBEDS 2010, Paris

Experimental Data Collection

203 execution traces were automatically collected by CrawlRIA.
21 user sessions were manually collected with CReRIA to
exercise all the application’s known use cases and their scenario.
Collected traces were used for automatically abstracting a
reference FSM model of the application.

This model was used for the test suite reduction

Overview information
about collected
execution traces

24/32TESTBEDS 2010, Paris

…Experimental Results

Data about user session test suites Data about test suites from crawled traces

Data about test suites obtained from both
user sessions and crawled (hybrid) traces

25/32TESTBEDS 2010, Paris

Fault detection results of the test
suites without reduction (R1)

The User Session based testing technique
detected all 19 injected faults
The Crawler based testing techniques
detected 17/19 faults
The hybrid technique (user session +
crawler) obtained the same results of the
user session based one.

26/32TESTBEDS 2010, Paris

Coverage results of the test suites
without reduction (R1)

The User Session based technique covered
all states, 91.8% transitions, and 172 JS
functions.
The Crawler based technique covered
73.7% states, 57.4% transitions, and 160 JS
functions.
The hybrid technique covered 100% states,
100% transitions, and 192 JS functions.

27/32TESTBEDS 2010, Paris

Fault detection and coverage results
of the test suites with reduction (R2)

The techniques with the best fault
detection were the ones based on FSM
transitions and JS function coverage.
As to the coverage the best technique was
the one based on the JS function coverage.

28/32TESTBEDS 2010, Paris

Conclusion…

In the paper we have presented a testing technique for RIAs
that transforms execution traces of an existing application
into executable test cases.
For achieving the technique’s scalability, we employed a test
suite selection technique that reduces the size of obtained test
suites.
For exploring the feasibility and effectiveness of the technique
an experiment involving an open-source RIA application was
carried out.
In the experiment, different approaches (both human-based,
and automatic) for execution trace collection and several
criteria for reducing the test suites were analyzed .

29/32TESTBEDS 2010, Paris

…Conclusion

The experiment showed that test suites produced automatically by
means of a crawler are not more effective than suites derived from
user session traces, but the former ones have the advantage of
being automatically obtained.

The more effective testing strategy is the hybrid one that combines
test cases obtained by both approaches:

test cases automatically obtained by an RIA crawler should be used
for discovering the most of application defects.
test cases based on user session data could be employed to obtain a
wider coverage of defects.

30/32TESTBEDS 2010, Paris

Future works

The validity of obtained experimental results is reduced, due to several
limitations of the experiment we performed, such as

the single RIA application involved,
the small number of collected user sessions;
the single user involved in the collection;
the single initial state of the application during trace collection.
faults injected in the application were just of a particular type (i.e. faults
causing JavaScript crashes),
faults affecting the RIA behaviour without causing crashes were not
considered;
the technique adopted for abstracting the FSM model of the RIA provides
just an approximate model of the RIA behaviour.

To overcome these limitations, further investigations and a wider
experimentation will be carried out in future work.

31/32TESTBEDS 2010, Paris

Thank you for your attention.

32/32TESTBEDS 2010, Paris

	TESTBEDS 2010 - Paris
	Context and Goal
	Rich Internet Applications (RIAs)
	User Interface of AJAX-based RIAs ...
	... User Interface of AJAX RIAs
	Open issues in RIA testing
	Models For Event Based Testing
	FSM Reverse Engineering Technique
	FSM - an example of transition
	Example of a reverse engineered FSM Model
	User-session based testing: a possible approach for RIA testing?
	The proposed technique
	1. Execution trace collection
	2. Test Suite Generation
	2.A Pre-conditions of a test case
	2.B The Test Oracle problem.
	3. Test Suite Reduction
	Experiment
	Research Questions
	Measured variables
	Supporting tools
	Experimental Process
	Subject application
	Experimental Data Collection
	…Experimental Results
	Fault detection results of the test suites without reduction (R1)
	Coverage results of the test suites without reduction (R1)
	Fault detection and coverage results of the test suites with reduction (R2)
	Conclusion…
	…Conclusion
	Future works

