
The tools of the MATERIA Project
Dipartimento di Informatica e Sistemistica

University of Naples “Federico II”, Italy

Anna Rita Fasolino
Porfirio Tramontana
Domenico Amalfitano

Outline

• Introduction
▫ Models and Reverse Engineering techniques.
▫ Testing techniques.

• The Tools
▫ CReRIA
▫ CrawlRIA
▫ TestRIA
▫ DynaRIA

• Future Works

Introduction

• The MATERIA Project
▫ MATERIA is the acronym of Modelling And

TEsting of Rich Internet Applications.

• Goals of the MATERIA project:
▫ 1) Defining representation models suitable for

comprehending and testing existing RIAs.
▫ Proposing Reverse Engineering techniques for

obtaining these models.
▫ 2) Investigating RIA testing techniques.

Goal 1) Defining RIA
representation models

• Finite State Machines

• Event Flow Graphs

• Sequence Diagrams

Finite State Machine
• A FSM provides an abstraction of the behaviour of

UI of the RIA, made up of states and transitions.

• Each state of the FSM is associated with the client
Interface shown to the user at the interaction time.
• Each client interface is characterized by a sub-set of its

widgets.
• Each transition is associated with a user event that

causes the RIA transition towards another user
interface state.

Event Flow Graph

• The EFG provides an abstraction about the flow
of user events that are triggered on the UI of a
RIA.

• The EFG is a Directed Graph made up of nodes
and directed edges.
• Each node represents a user event triggered on the

UI, or a sequence of user events clustered
together.

• The directed edges represent the execution order
and the dependencies among user events.

UML Sequence Diagram
• UML sequence diagrams are used to represent

the inner interactions between the modules of a
RIA at various levels of detail and abstraction.
• High-level sequence diagrams show the

interactions among three main layers of the
application:
▫ Web Browser – Ajax Engine – Server.

• Low-level sequence diagrams report the
interactions among :
• Web browser, JavaScript modules making up the

Ajax engine, and Server.

Obtaining the representation models
by Reverse Engineering (RE)
• We have presented RE techniques (based on the

analysis of user execution traces) to obtain the
proposed models.

• To solve the problem of FSM state and transition
explosion, several clustering criteria have been
used.

• Specific Tools implement these RE techniques:
▫ CreRIA
▫ CrawlRIA
▫ DynaRIA

CReRIA Tool- offered functionalities

▫ User session tracing by means of a Web browser included in the
UI of the tool;

▫ Extraction and storing of relevant data about user interfaces and
events occurred during the navigation;

▫ FSM abstraction;
▫ Implementation of interface and event clustering techniques

(according to different abstraction criteria);
▫ Recording of user session traces (sequences of interfaces and

events) and of the corresponding paths on the abstracted FSM
(sequences of states and transitions)

these data are stored in a “FSM & Trace Repository”
implemented by a MySQL database.

▫ Transformation of the user session traces into executable traces
the execution can be performed by the DynaRIA tool.

CrawlRIA Tool- Offered
functionalities

▫ Automatic Crawling of the RIA user interfaces
The crawler automatically triggers the events found on
RIA interfaces;
Depth first or breadth first visiting strategies can be
applied;
The obtained execution traces are stored in the “FSM &
Trace Repository”;

▫ UIs and events encountered during the crawling
process are clustered together using the same
techniques implemented by the CReRIA tool to
generate an FSM model;

FSM models are stored in the “FSM & Trace Repository”;

DynaRIA Tool : extraction functionalities

Provides an integrated Web browser where a user
can interact with a RIA while relevant data about the
user session are captured and stored.
Captured data include:

the sequence of user events fired on DOM objects of the user
interface;
the JavaScript functions that are activated by user event
handlers;
the executed lines of code of JS functions;
exceptions and errors occurred at run time;
changes (such as add, delete, or change) on DOM objects
resulting from a given event management;
message exchanges between client and server.

DynaRIA tool: Analysis and visualization
functionalities
▫ The tool provides several abstractions and views

about the RIA run-time behaviour, such as;
UML sequence diagrams;

They can be visualized by means of another tool,
“DynaRIA sequence diagram viewer”;

Event-flow-graphs that report the flow of events
fired along a user session;
JS Source code views, both at the session level and at
the JS function level;

▫ It also provides cross-referencing functions for
switching between views.

Examples of FSM and EFG

Finite State Machine Event Flow Graph

Examples of sequence diagrams

An excerpt of an high level UML
sequence diagram

An excerpt of a detailed UML
sequence diagram

Goal 2: RIA testing
• We decided to investigate user-session based

testing in the context of RIAs.
• In “TestBeds 2010” we proposed a testing

technique based on the following steps:
▫ Collection of a set of execution traces of the

application;
Manual collection by CreRIA.
Automatic collection by CrawlRIA.

▫ Test suite generation;
▫ Test suite reduction.

Test Suites Generation

• A test suite is generated by transforming each
execution trace into a test case.
▫ In general the behaviour of an RIA depends on the

current state of the application data, as well as by
its environment and session data.

▫ before recording each execution trace, we set
the RIA in pre-defined states. These states will
provide the pre-conditions of the related test
cases.

The Test Oracles

• Test oracles are needed to define the
PASS/FAIL result of a test case execution.

• We decided to evaluate test case results by:
▫ Checking the occurrence of JavaScript crashes.
▫ Checking if the reached interfaces coincide with

the expected ones.
This evaluation is performed by checking if specific
widgets with given attribute values are rendered on
the reached interface.

Test Suite Reduction
• Given a test suite, the reduction technique computes

a minimal set of test cases assuring the same
coverage of the original test suite.

• Three reduction techniques M1, M2, and M3
have been proposed, that consider different types of
coverage:
• M1 covers the same set of FSM states covered by the

original suite;
• M2 covers the same set of FSM transitions (or

events) covered by the original suite;
• M3 covers the same set of JS code components

(such as functions) as the original test suite.

TestRIA Tool

• Offered functionalities:
▫ reduces a test suite Ts into a smaller one that

satisfies the same Ts coverage requirements;
▫ transforms the execution traces stored in the FSM

& Trace Repository in a test suite composed of
executable test cases in Selenium format;

▫ executes the test cases in Selenium RC.

...DynaRIA Tool

• Testing functionalities:
▫ executes the test cases generated by CreRIA and

monitors their execution in the browser
environment;

▫ traces the JS code execution, keeps track of
performed network traffic, and detects any JS
error or network warning occurred at runtime,
during user session replay;

▫ computes several code coverage metrics with
respect to a replayed user session.

Experiments
• We have experimented the RE process on the following RIAs:
▫ Tudu List (http://app.ess.ch/tudu/welcome.action).
▫ The List (http://www.agavegroup.com/?p=51).
▫ Ajax FilmDb (http://ajaxfilmdb.sourceforge.net/).
▫ Pikipimp (http://www.pikipimp.com/).
▫ Buttonator (http://www.buttonator.com/).

• We have experimented the testing techniques using the
following RIAs:
▫ Tudu List
▫ Ajax FilmDb

http://www.buttonator.com/

Next step
▫ Experimenting our RE and testing techniques using

further RIAs.

▫ A problem:
Obtaining RIAs implemented in Ajax .
We need the source code of these RIAs in order to
inject faults and to set the RIA’s initial state (before
test execution).

▫ A question for Xun:
May you help us in finding some exemplar RIAs to
be used in the next case studies?

References

• D. Amalfitano, A.R. Fasolino, P. Tramontana: Reverse Engineering Finite
State Machines from Rich Internet Applications. WCRE 2008: 69-73.

• D. Amalfitano, A.R. Fasolino, P. Tramontana, Experimenting a Reverse
Engineering Technique for Modelling the Behaviour of Rich Internet
Applications. International Conference on Software Maintenance, ICSM
2009: 571-574.

• D. Amalfitano, A.R. Fasolino, P. Tramontana, A Tool-supported Process for
Reliable Classification of Web Pages. International Conference on
Advanced Software Engineering & Its Applications (ASEA 2009), Springer.

• D. Amalfitano, A.R. Fasolino, P. Tramontana, An Iterative Approach for the
Reverse Engineering of Rich Internet Application User Interfaces. ICIW
2010.

• D. Amalfitano, A.R. Fasolino, P. Tramontana, Rich Internet Application
Testing Using Execution Trace Data. TESTBEDS 2010.

• D. Amalfitano, A.R. Fasolino, P. Tramontana, DynaRIA: a Tool for
Ajax Web Application Comprehension. IEEE I.C.P.C. 2010

	The tools of the MATERIA Project
	Outline
	Introduction
	Goal 1) Defining RIA representation models
	Finite State Machine
	Event Flow Graph
	UML Sequence Diagram
	Obtaining the representation models by Reverse Engineering (RE)
	CReRIA Tool- offered functionalities
	CrawlRIA Tool- Offered functionalities
	DynaRIA Tool : extraction functionalities
	DynaRIA tool: Analysis and visualization functionalities
	Examples of FSM and EFG
	Examples of sequence diagrams
	Goal 2: RIA testing
	Test Suites Generation
	The Test Oracles
	Test Suite Reduction
	TestRIA Tool
	...DynaRIA Tool
	Experiments
	Next step
	References

