
 1

Validation of a Dynamic Analysis Based Technique for Reverse Engineering

of Rich Internet Applications

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana

domenico.amalfitano@unina.it, anna.fasolino@unina.it, ptramont@unina.it

Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy

Abstract

Dynamic analysis techniques provide a suitable
approach for exploring and comprehending the
behaviour of Rich Internet Applications (RIAs), a new
generation of Web applications with enhanced
interactivity, responsiveness and dynamicity. However,
for addressing their intrinsic scalability problems,
dynamic analysis techniques require ad-hoc solutions
such as effective classification techniques for
identifying equivalent behaviours exhibited by the
application in several user sessions.

This paper relies on a dynamic analysis based
reverse engineering technique proposed by the authors
to reconstruct a model of the RIA behaviour based on
Finite State Machines. This technique requires the
analysis of the RIA user interface evolution shown in
user sessions, and exploits user interface equivalence
criteria for abstracting relevant states and state
transitions to be included in the model. In this paper,
the results of a validation experiment we carried out
for assessing the effectiveness and the cost of this
technique are presented. The experiment involved four
distinct RIAs implemented with AJAX technique and its
results showed strengths and weakness of the proposed
technique, and demonstrated its effectiveness.

1. Introduction

Rich Internet Applications (RIAs) are a new

generation of Web applications which exploit specific
Web technologies for overcoming the usability
limitations of traditional Web applications and offering
greater interactivity, responsiveness and dynamicity to
their users.

The new features of RIAs are basically due to the
fundamental shift from the multi-page communication
model between client and server, that is typical of
traditional Web applications, to the single-page model
that characterizes RIAs. In the multi-page model the
user experience is limited by the need of continuous
requests of Web pages from the client to the server,

which delay the user fruition of the application. Vice
versa, in an RIA the single-page user interface does not
limit itself to request pages, but it is able to perform
computations autonomously, send and retrieve data in
the background asynchronously from the user’s
requests, redraw sections of a screen, and so forth,
independently on the server or back end it is connected
to. Consequently, a Rich Internet Application can be
considered similar to a desktop application, but with
the advantage of being accessible via Internet. See
Google Maps, GMail, or Flickr as well known
examples of RIAs.

This client side processing ability of RIAs is
essentially due to a client engine, i.e., a client side
component which operates between the browser and
the Web server, being responsible both of rendering
the user interface and of communicating with the
server. As an example, in the case of RIAs
implemented with AJAX technique [Gar05], the client
engine is a Javascript engine that performs the
elaborations associated with Javascript event handlers
which can be fired by user events or other external
events. Event handlers can be associated with client
page widgets, and access and modify the client page
using the Document Object Model (DOM) interface
[DOM], a standard API for HTML and XML
documents that defines the logical structure of
documents and the way a document can be accessed
and manipulated. In addition, Javascript elaborations
can also produce asynchronous requests of portions of
data to the server, or trigger server side elaborations.

While it yields a more interactive user experience,
the RIA user interface model raises a number of new
issues such as:
• Searchability: the dynamic generation of the

client interface content disables the possibility
of indexing an RIA by traditional approaches of
search engines, which assume that each state in
a Web application corresponds to a page and a
distinct URL.

• Accessibility: accessing the full content of a
Web page by assistive technologies, such as

 2

screen readers, may worsen the user experience
of an RIA, since they make an intensive use of
dynamic DOM modifications by scripting.

• Analyzability: analyzing the functional
characteristics of an RIA user interface is not as
simple as in the case of traditional Web
applications, because of event-driven dynamic
generation of code, which make the application
behavior less predictable.

• Testability: the possibility of having several
units of work present in a single client page,
which may carry out distinct elaborations on the
DOM or server requests concurrently, is able to
create a complex scenario where several types
of new defects arise, such as incorrect
manipulations of the DOM, unintended
interleaving of server messages, swapped
callbacks, etc. [Mar08], which require new and
specific testing techniques.

A common and relevant problem when managing

existing RIAs consists of comprehending their
behaviour and developing a suitable model for
representing it. Indeed, the event-driven behaviour of
any RIA is less linear and predictable than the one of a
traditional Web application one, and static analysis
techniques cannot be sufficient for understanding it.
Vice versa dynamic analysis, and in particular user
session based dynamic analysis, is a technique that
helps in discovering the behaviour of an existing
application, using data about user session executions.
However it suffers scalability problems because it
requires that a wide set of user sessions be traced in
order to exercise all possible application behaviours,
and it requires effective analysis techniques for
classifying equivalent execution traces, i.e., traces
associated with the same behaviour.

Several approaches have been proposed in the
literature for solving this classification problem,
including concept analysis techniques [Sam04],
sequence alignment algorithms [Mai08], clone
detection techniques [Dil02]. However, the most of
these techniques have been experimented with object-
oriented software or traditional Web applications, and
none of them has been already used in the context of
Rich Internet Application. Hence, further investigation
is needed for obtaining effective reverse engineering
techniques for modelling an RIA behaviour, and based
on dynamic analysis.

In [Ama08], the authors proposed of using Finite
State Machines (FSMs) for representing the behaviour
of AJAX applications, and presented a reverse
engineering technique and a tool for obtaining them
from existing applications using dynamic analysis.

In this paper, we present the results of an
experiment that aimed at assessing the effectiveness of
this technique in reconstructing a model of the RIA
behaviour that can be used for maintenance, evolution,
or re-documentation purposes. The experiment
involved four distinct Web applications implemented
in AJAX, and was carried out for showing
effectiveness and costs of the proposed technique and
tool, and exploring its main strengths and weaknesses.

The paper is organized as it follows: Section 2
describes the characteristics of the FSM model we
adopt for representing the behaviour of an existing
Rich Internet Application. In Section 3 the FSM
reverse engineering technique based on dynamic
analysis of the RIA and the tool supporting its
execution will be presented. Section 4 reports the
experiments that have been carried out, while in
Section 5 conclusive remarks and future work will be
described.

2. A behavioural model for an RIA

Since an RIA can be considered to be a hybrid
between a Web application and a desktop application,
its behaviour may be represented by models that are
usually adopted for event-driven software or GUIs,
such as Event-Flow graphs [Bel06] or State Machines
[Bin99], [Mem03].

Finite State Machines, which have also been used
with success for modelling traditional Web
applications [And05], provide an abstract view of a
system in terms of states and transitions among them.

A FSM representing an RIA behaviour will be a
triple (S, T, E) where S is a set of states reached by the
RIA during its processing, T is the set of transitions
between states, and E is the set of events that cause
state transitions.

For developing a FSM, since the number of
possible RIA states may be unbounded, we must use a
state abstraction criterion for deciding which states of
the RIA evolution will be represented in the model.
Moreover, each RIA state must be characterized by a
sub-set of its features and then, a state representation
criterion will be needed for establishing which the
relevant characteristics of each state are.

We propose of representing in the FSM all the
elaboration states where the RIA receives any input
solicitation by its user (state abstraction criterion), and
of describing each state of the RIA by the User
Interface shown to the user at that interaction time
(representation criterion). Moreover, the proposed state
characterization criterion requires that each client
interface is characterized only by the sub-set of its
widgets that are ‘clickable’ or, more in general, that

 3

have a registered event listener and a corresponding
event handler. Finally, transitions will be associated
with user interactions (e.g., user events) that triggered
the RIA migration towards the new state. The
proposed FSM model of an RIA can be characterized
by the information shown by the UML class diagram
of Figure 1.

Figure 1: Conceptual model of the FSM

The example of FSM reported in Figure 2

represents the behaviour of an existing application that
offers facilities for managing a list of data items. The
model includes three states with labels ‘view item list’
(the starting state), ‘edit item’, and ‘add new item’,
respectively, and seven transitions which move the
RIA through the states.

Figure 2: An example of FSM representing
an RIA behaviour

3. The reverse engineering technique

The proposed technique of dynamic analysis for

obtaining a FSM-based model of the RIA behaviour
includes four sequential steps:

1) Automatic RIA instrumentation
2) Execution trace collection;
3) Trace analysis and classification;
4) FSM model abstraction and validation..

3.1 Automatic RIA instrumentation
Dynamic analysis requires that the subject

application is preliminarily instrumented in order to
record relevant information about its run-time.
Information needed for reconstructing the proposed
FSM model of an RIA refer both to states of the client
interfaces captured before a new user event is fired on
them, and to related raised user events.

Since in Rich Internet Applications the state of each
user interface is provided by a specific configuration of
the DOM model of the Web page, client interface
states can be captured by accessing the DOM. To this
aim, we have used an automatic and non-invasive
technique that does not instrument the code of the
application directly, but rather the browser that renders
it. Further details about this technique are reported in
[Ama08].

.
3.2 Execution trace collection

The aim of this activity consists of recording a set
of execution traces of the RIA from user sessions. An
execution trace can be modelled as the following
sequence of pairs generated during the user session:

…<Ii, eventi>, <Ii+1, eventi+1>,..

where, in each pair <Ik, eventk>, Ik represents a user
interface state and eventk is the user event occurred on
that interface during the execution.

In order to obtain an adequate model including all
the application behaviours, execution traces being
collected should exercise the RIA in all possible ways
and conditions. Two main approaches are usable for
collecting an adequate set of execution traces. The
former approach is based on the knowledge of the
expected behaviours of the RIA, and uses such
knowledge to pilot user sessions in order to exercise all
behaviours. Vice versa, in the latter approach (that can
be considered an explorative approach) this knowledge
is not available, and the only feasible strategy consists
of collecting execution traces from unconstrained user
sessions (such as real user sessions) until it can be
assumed that traces cover all possible behaviours. A
termination criterion is in this case needed to stop user
session collection.

FSM

State WidgetClient Interface

Transition
Event

+Event Handler

10..1

*
11 *+prev

+next
1

1

*

1

 4

3.3 Trace analysis and classification
A relevant problem of dynamic analysis techniques

consists of detecting and filtering out redundant
information contained in the set of collected execution
traces. More precisely, a given set of user session
execution traces will usually include more executions
of the same behaviours and, correspondently, more
instances of the same user interfaces.

Each group of logically equivalent interfaces
defines an equivalence class, and if equivalent user
interfaces are detected in the set of execution traces, it
is possible to substitute them with the corresponding
equivalence class, thus simplifying the information
contained in the execution traces.

Our technique solves this classification problem on
the basis of interface structural equivalence criteria
that define the required properties of two client
interfaces in order to consider them equivalent: in
particular, two client interfaces are considered
equivalent if they include exactly the same set of
‘active widgets’ (that is, elements with registered event
listeners), offering the same interaction behaviour to
their users (by means of a same set of event handlers),
and having the same values of some additional
properties (such as its absolute indexed path, or
unindexed path1 in the page DOM, its visibility
property, and so on).

In particular, since today’s RIA may have different
characteristics, we have proposed three different
interface structural equivalence criteria, C1, C2, and
C3, which evaluates the equivalence of two interfaces
on the basis of a different set of active widgets
properties. The definition of these criteria is reported
in the following Table 1.

3.4 FSM model abstraction and validation

When the trace collection activity ends, the FSM
abstraction step can be entered: the execution traces
will be analysed and a machine modelling the
behaviour of the analysed application will be defined.
The resulting FSM=(S, T, E) will include a set S of
states corresponding to all interface equivalence
classes discovered by a considered equivalence
criterion, while the set T of transitions will be defined
on the basis of recorded transitions between
consecutively visited client interfaces. The set E will
include all events that were registered on client
interfaces. Of course, the set of registered events may
be divided into equivalence classes too, by suitable

1 An example of indexed path of a widget is:
/HTML/BODY/TABLE[2]/TR[3]/TD[4]
while the corresponding unindexed path will be:
/HTML/BODY/TABLE/TR/TD

classification criteria. However, at the moment we
have not used any event classification technique, and
we decided to report all registered events in the final
FSM model.

Table 1: Client Interface Equivalence Criteria
Criterion Description
C1 Two client interfaces I1 and I2 are equivalent

if the same active widgets of I1 are also
included in I2 and vice versa, and they have
the same indexed path, the same type of
corresponding listeners, and the corresponding
event handlers have the same name.

C2 Two client interfaces I1 and I2 are equivalent
if the same active widgets of I1 that are visible
and enabled are also included in I2 and vice
versa, and they have the same indexed path,
the same type of corresponding listeners, and
the corresponding event handlers have the
same name

C3 Two client interfaces I1 and I2 are equivalent
if the same active widgets of I1 that are visible
and enabled are also included in I2 and vice
versa, and they have the same unindexed path.

The model validation activity is required for

assessing the correctness/adequacy of the
reconstructed FSM, and for assigning each validated
state with a meaningful description. Generally, the
correctness of such a model depends on the objectives
of the task the model was produced for (such as
comprehension, testing, maintenance of the
application, etc.), and its evaluation will be based on
the judgment of an expert on the specific field.

3.5 Tool support

The proposed Reverse Engineering technique can
be executed with the support of the RE-RIA (Reverse
Engineering RIA) tool that provides an integrated user-
friendly environment where execution traces
collection, traces analysis and classification, and FSM
abstraction and validation activities can be performed.
The tool was developed with Java-based technologies,
and its GUI offers a Web Browser (an instantiation of
a Mozilla Firefox Browser inside a Java GUI) where
user sessions relevant data can be captured and
recorded. Moreover, the tool implements the trace
analysis and classification techniques, and it
automatically abstracts the corresponding FSM model
from a given set of execution traces. In addition, the
tool provides some facilities for supporting the
validation activity of a FSM made by an expert of
RIAs, and performs several measurements about the
executed reverse engineering activities that were

 5

needed to carry out the experimental study that we
present in the following Section.

4. The experiment

This Section illustrates an experiment that was
carried out using real Rich Internet applications. In
particular, the experiment was designed for answering
the following research questions:

 (RQ1) What effect do the interface equivalence
criteria have on the effectiveness of the reverse
engineering technique in reconstructing a
behavioural model of an RIA?
(RQ2) What combination of technique factors
provides the best cost-effectiveness ratio?

4.1 Modelling Effectiveness and Cost of the
technique

For evaluating the effectiveness of the technique we
analyse the quality of its output and, in particular, the
correctness of the FSM model produced by it. For
FSM correctness evaluation, we consider an expert-
based evaluation approach which requires the
involvement of an expert in the specific field and task
for which the model was required. As an example, if
the model was produced with the aim of supporting the
comprehension of the application behaviour during
maintenance, the model can be considered to be correct
if it describes its behaviour correctly, according to the
opinion of an expert maintainer of RIAs.

The FSM correctness evaluation problem can be
modelled as the problem of comparing the FSM model
M produced by the technique by analysing a given set
of execution traces T (including a set I of visited user
interfaces of the RIA) against the FSM model O which
would have been produced by the expert by analysing
the same set of execution traces T.

Since both the expert and the technique actually
distribute the set of visited interfaces I into a set of
partitions (e.g., the states of the respective FSM
models), the comparison of the models M and O
corresponds to the evaluation of the distance between
their partitions. This problem is illustrated by the
example in Figure 3 that shows two partitions M, and
O of a same set of interfaces I, where M={C1, C2, C3}
represents the set of partitions of a reconstructed FSM
model, and O={O1, O2, O3, O4} represents the
expert’s model partitions. The difference between
these models may be expressed by the minimum
number of interface move operations between
partitions that are needed for transforming the set of
partitions M into the set O. In the example, d(M,O)= 3,

since three interfaces, named I3, I4 and I8, need to be
moved. This number of operations represents an edit
distance [Alm99], and can be evaluated using well
known partition distance computation algorithms.
Here, we adopt the following efficient algorithm
proposed in [Kon05] for computing partition edit
distance.

Figure 3: An example of partition
comparison

Partition distance Evaluation. Given a set I of user
interfaces Ii, and given two partitions of I, M1 and M2,
respectively, we have:

M1 = {C1, …, Ca} = { {I1, …, Ic1}, …, {Ix, …, Ica} },
 such that ∪i=1..a Ci = I
M2 = {O1, …, Ob} = { {I1, …, Io1}, …, {Iy, …, Iob} }
 such that ∪j=1..b Oj = I

The algorithm computes the square difference
matrix Δ, whose generic element, Δij = |Ci-Oj| is the
cardinality of the difference set between clusters Ci and
Oj from partitions M1 and M2, respectively 2 .

Δ = {Δij}= {|Ci-Oj|} ∀ i,j ∈ [1, n]

Hence, the algorithm of [Kon05] computes partition
distance by iteratively selecting the pair of partitions
Cx, Oy such that Δxy has the minimum value in Δ, and

2 If a≠ b, the algorithm requires |a- b| empty clusters to be
added to the partition having the smaller cardinality.
n=max(a,b) will be the final dimension of Δ square matrix.

I1 I2

I3

I4

I5

I6

I1
I2

I3

I4
I5

I6

I7 I7

C1

O2

C3
O3

C2

O1

Partition M Partition O

I8

I8

C4

O4

I1I1 I2I2

I3I3

I4I4

I5I5

I6I6

I1I1
I2I2

I3I3

I4I4
I5I5

I6I6

I7I7 I7I7

C1

O2

C3
O3

C2

O1

Partition M Partition O

I8I8

I8I8

C4

O4

 6

by reducing the Δ matrix by deleting the x-th row and
y-th column, and by updating the distance d by the
relative distance Δxy. The algorithm is illustrated in
Figure 4:

int d=0 //initializes the distance d

FOR k=1 to n

 Find (x,y): Δxy=minij (Δij)∀ i,j ∈ [1, n]

 d=d+Δxy // increments the distance d

 Delete row x from Δ

 Delete column y from Δ

END FOR

Figure 4: Partition distance computation
algorithm

Once the partition distance d (M, O) between the

reconstructed model M and the expert’s model O has
been computed, it is possible to measure the
effectiveness of the reverse engineering technique by
the following Correct Interface Ratio (CIR) metric:

CIR (M) =
= # of correctly partitioned interfaces of M /

Cardinality (I) =
= 1- d(M, O) / |I|

where I is the set of interfaces included in the set of
analysed execution traces and |I| is its cardinality.. Of
course, the best effectiveness values correspond to
CIR=100%, representing the case of two identical
partitions.

For modelling the cost of the proposed reverse
engineering technique, we analysed the cost of its
single activities, by distinguishing between manual,
automatic, or semi-automatic activities, and by
defining an approximate cost evaluation metric for
each of them. Results of this analysis are reported in
Table 2.

Intuitively, Ccoll , Cabstr and Ca depend on the number
of analysed trace interfaces, and grow with it. Canalysis

depends both on the number of analysed trace
interfaces, and on the number of active widgets
included in analysed interfaces, while Cmov grows with
the number of interface move operations needed for
correcting the reconstructed model, that is with the
partition distance d(M, O).

If we consider negligible all the costs of the
automatic activities, the most relevant cost factors
include Ccoll and Cmov.. Therefore, C will depend both
on the size of analysed trace interfaces, and on the

number of active widgets included in analysed
interfaces.

4.2 Experimental Procedure

Four distinct Web applications were selected and,
for each application, the following steps were
performed:

1) User Session Trace collection;
2) Gold Standard (GS) FSM model production;
3) FSM model abstraction;
4) Effectiveness evaluation.

Details about these steps are discussed in

subsequent sections.

Table 2: Activity Cost analysis
Activity Manual

or
Automatic

Activity Cost description

1. Trace
Collection

Semi-
automatic

It is the cost Ccoll of collecting
user session traces (with the
tool support)

2. Trace
Analysis and
Classification

Automatic It is the cost Canalysis needed
for classifying analysed
interfaces into a set of
equivalence classes, on the
basis of the equivalence
criterion C

3. FSM
abstraction

Automatic It is the cost Cabstr of defining
the FSM on the basis of
recovered interface
equivalence classes

4. FSM
Validation

Manual It includes the cost (Ca) for
analysing all trace interfaces
and the cost (Cmov) of moving
interfaces between partitions
for correcting the
reconstructed model

4.2.1 Experimental Materials. We involved in the

experiments two software engineers who were expert
in developing and maintaining Rich Internet
Applications developed in AJAX, and in finite state
machine matters, but not in the subject Web
applications, and five under-graduate students from the
Software Engineering courses held at the University of
Naples, in Italy.

Subject applications were four real AJAX
applications available online, with a rich user interface,
which offered most of their use cases in a single-page
interface [Mes07b]. The first application W1 (Tudu) is
an open source application offering ‘todo’ list
management facilities (such as adding, deleting,
searching for todos, organizing lists of todos, and so

 7

on). The second one, W2 (Pikipimp), is a free
application allowing a user to upload his photos and
add some graphical effects. The third application W3
(TheList) is a demo application providing
functionalities to manage a list of task descriptions.
The fourth one, W4 (Buttonator) is a simple utility for
Web developers that offers functionalities for
generating buttons with different shapes, size, and
colours. Table 3 summarizes the main characteristics
of these applications, including their URLs, and count
of considered use cases and relative scenarios.

Table 3: Subject applications

Subject
Applic.

URL Use
Cases

Scenarios

W1 http://app.ess.ch/tudu
/welcome.action

8 17

W2 http://www.pikipimp.com 1 2

W3 http://www.agavegroup.com
/agWork/theList/
theListWrapper.php

3 10

W4 http://www.buttonator.com 1 8

4.2.2 Step (1): Trace Collection. A set of two/

three students per application were trained about the
application use cases (and their normal and alternative
scenarios), and were asked for collecting a set of user
session traces. We required each student to cover each
use case of the application at least two times with their
user sessions.

This task was accomplished with the support of the
RE-RIA tool and returned a collection of execution
traces ET per application. Characteristics of collected
traces for each application are reported in Table 4.

Table 4: Collected Traces for subject
applications
Subject
Application

Collected User
Session Traces

Collected Interfaces

W1 30 1885
W2 8 533
W3 11 731
W4 11 829

4.2.3 Step (2): Gold Standard production. The

experts (who worked in group) produced a FSM
reference model of the behaviour for each Web
application, the so called ‘Gold Standard’ (GS) model,
to be used for comparative analysis. Each GS model
was obtained by analysing the collected execution

traces ET (with the support of RE-RIA tool) and the
component user interfaces, and producing a GS= (S, T)
that had to satisfy the following requirements: (1) each
state of the model had to be associated with a relevant
state of the application User Interface from which a
user action could be executed, (2) a transition between
states had to link pairs of consecutively visited user
interfaces, (3) each transition had to be labelled by the
user actions that triggered the transition.

Each GS model provided a specific partitioning of
execution trace interfaces. Characteristics of obtained
GS models for each application are reported in Table
5.

Table 5: Gold Standard models characteristics

Subject
Application

GS states

GS transitions

W1 15 52
W2 4 16
W3 4 9
W4 19 54

4.2.4 Step (3): FSM abstraction. Using the

proposed reverse engineering technique and the same
set of execution traces ET for each application, three
FSM models M1, M2, and M3 were obtained per
application and for each analysed execution trace, each
one on the basis of a different interface equivalence
criterion (C1, C2, and C3, respectively). Each model
provided a different partitioning of execution trace
interfaces.

4.2.5 Step (4): Effectiveness and Cost Evaluation.
Using the Partition distance computation algorithm
described in section 4.1, the partition distance d (M,
GS) for each model M, and the CIR metric values were
computed.

4.3 Threats to validity

Some internal, construct, and external threats can
affect the validity of the obtained results.

Internal validity threats concern factors that may
affect a dependent variable and were not considered in
the study. The subjective steps of the experiment may
influence obtained results. In particular, it is possible
that the Gold Standard FSM model be defined in
different ways, depending on the involved software
engineer experts. Analogously, the validation of the
FSM models produced by the technique may vary
depending on the subjective opinion of the expert. In
order to limit these threats, we involved two experts of
RIAs for producing the GS models and validating the

 8

reconstructed FSMs, for obtaining a more reliable and
objective result. Moreover, the representativeness of
user session traces may be threatened by the maturity
effect of the same persons involved in trace collection.
We limited this effect by involving two/ three students
per application, who had no previous experience about
the applications.

Construct validity threats concern the relationship
between theory and observation. We used the partition
distance for effectiveness evaluation and as main cost
factor of the validation step of the technique. It is
possible that counting the number of interface move
operation between partitions may not be the only way
for assessing effectiveness and the validation effort.
However, we used this metric since it provides an
objective way for comparing two partition sets.
Moreover, another threat consists of the fact that we
evaluated the technique effectiveness and cost by
taking into account only the states of the reconstructed
FSM model, and not its transitions. However, this
choice can be considered a valid approximation for
preliminarily validating the proposed approach.
Further experiments should address this aspect in a
specific manner, in order to obtain confirmations of the
obtained results.

External validity threats are conditions that limit the
ability to generalize the results of our experiment to
other contexts, such as other RIAs. Since our
experimental data referred to only four RIAs, no
statistical evidence could be deduced. However, the
selected applications were from different domains and
were representative of Rich Internet Applications.
Additional studies involving more applications, having
different interface styles are needed to confirm or
confute the obtained results.

4.4 Results

4.4.1 Evaluating Effectiveness. Using the
experimental procedure, the reverse engineering
technique reconstructed a FSM for each considered
application, equivalence criterion, and set of analysed
execution traces. Thus, the CIR value for each FSM
was evaluated. For brevity, we report in Figure 5 only
the FSM CIR values for application W1, depending on
the considered equivalence criterion and on the
analysed execution traces. In this figure, execution
traces are ordered on the horizontal axis on the basis of
their size (that is, number of included interfaces).

The CIR values indicate that the FSM models we
obtained by criterion C3 approximated the respective
Gold Standard model very well (their CIR values were
always not less than 75%), differently from the models
reconstructed by C1 and C2. Analogous considerations

were done for W2 e W3, whereas, for W4, a similar
good result was obtained by criterion C2.

In order to explain the effectiveness difference
between criteria, we analysed the characteristics of
RIA interfaces included in the set of analysed traces.
We deduced that the C3 criterion worked well (that is,
it effectively classified equivalent interfaces) if the
RIA interfaces mostly presented collections (such as
tables or lists) of active widgets with the same tag, but
with different and dynamically defined collection size.
Vice versa, C2 worked well in case of interfaces
without this type of collections. Finally, C1 was the
less effective criterion in both types of interfaces, since
it did not consider the visibility and enabling properties
of active widgets.

Figure 5: The values of CIR for W1 (Tudu)

Since in the considered experimental setting C3 was

most effective than C2 (in 3/4 applications) and more
effective than C1 (in 4/4 applications), we concluded
that the most effective criteria were always C2 and C3,
but the best criterion between C2 and C3 depended on
the characteristics of the analysed application.

Thus, the answer to RQ1 question was that the
interface equivalence criterion actually influences the
effectiveness of the technique.

4.4.2 Evaluating Cost-Effectiveness. For answering
the second research question RQ2, we studied the
relationship between cost and effectiveness of the
technique. To this aim, we recall that the main cost
factors are Ccoll, which grows with the number of
analysed trace user interfaces, and Cmov which grows
with the partition distance d(M, GS).

Intuitively, the partition distance grows with the
trace size, too, and experimental data confirmed this
trend. As an example, Figure 6 shows the distance
d(M, GS) of the W1 application (Tudu) as the size of
the trace and the equivalence criterion varied.
Consequently, Cmov. grows with the trace size.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700

Trace Size

C
IR

 (%
)

C3

C2

C1

 9

Hence, since the CIR values did not significantly
improve with the size of the trace (see Figure 5), to
reduce the cost of the technique without affecting its
effectiveness, it is necessary to find the best FSM
model (among the ones obtained varying the
equivalence criterion) that is obtainable from the
shorter execution trace. The best FSM model will be
the one having the best CIR value among the ones that
include all GS states, with the smaller trace size.

Figure 6: Partition distance d values for W1
(Tudu)

The number of states of FSM and GS models we

obtained in the experiment involving the W1
application is reported in Figure 7, as the size of the
trace and the equivalence criterion varied. A similar
trend was observed for the other applications.

Figure 7: Number of states of GS and FSM
models for W1 (Tudu)

Figure 7 shows that the number of states of FSM

models produced by C3 definitely tends to a stable
value, while it did not happen for models produced by
C1 and C2. Hence, we could hypothesize a possible
criterion for selecting the execution trace (from a given
set of user session traces, with unknown GS state
coverage) and the equivalence criterion that has the
maximum probability of producing a suitable FSM
model with the minimum cost. This cost-effective

selection criterion indicates (1) of choosing the
criterion where the number of states of the
reconstructed FSM assumes a stable value, and (2) of
choosing the model produced by this criterion from the
smaller trace in correspondence of which the number
of FSM states assumes the stable value: the related
FSM model will be the most cost-effective one.

For validating this criterion, we analysed the CIR
values of the models selected by it for each application
and for each interface equivalence criterion. The
analysis confirmed that this selection criterion actually
determined the model with the best cost-effectiveness,
and in particular for W1, W2 and W3 this model was
produced by the C3 criterion, while for W4 two
acceptable FSM models were reconstructed by C2 and
C3 criteria. However, the model produced by C2 was
the best one because it had the better CIR value
(100%).

The following Table 6 reports, for each Web
application, the size of the trace from which the most
cost-effective FSM model was reconstructed and, for
this model, the equivalence criterion that produced it,
the number of states, CIR and d distance values.

Table 6: Data about FSM models with the best

cost-effectiveness ratio
RIA Trace

length
Best

Criterion
FSM
states

CIR d

W1 93 C3 10 85% 14
W2 23 C3 2 65% 8
W3 40 C3 4 100% 0
W4 60 C2 19 100% 0
W4 60 C3 19 62% 23

4.5 Discussion

The experiment showed that a key point of the
proposed reverse engineering technique is represented
by the interface equivalence criteria that allow
dynamically produced execution traces of the
application to be analysed and simplified in order to
abstract a representative model of the RIA behaviour.
These criteria are general and reusable for any type of
client interfaces of RIAs, differently from the
technique [Mar08] that requires that specific features
allowing the correct classification of equivalent DOM
states be tailored manually with application-specific
mechanisms. Moreover, their effectiveness on
discriminating different DOM states is not dependent
on the choice of any similarity threshold, differently
from the ‘Levenshtein’ distance-based technique
proposed by [Mes08].
As the experiment showed, the most effective criterion
will depend on the characteristics of analysed RIA
client interfaces. However, in the reverse engineering

-100

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

Trace Size

Pa
rt

iti
on

 e
di

t d
is

ta
nc

e
fr

om
 G

ol
d

St
an

da
rd

C1

C2

C3

0

20

40

60

80

100

120

140

30 80 130 180

Trace Size

N
um

be
r o

f s
ta

te
s

of
 F

SM
 a

nd
 G

S
m

od
el

s

C2

C1

GS

C3

 10

process, given a set of execution traces, it is possible to
use all proposed criteria and generate all the
corresponding FSM models in an automatic way, and
to find the model to be submitted to a manual
validation activity on the basis of the cost-effective
selection criterion that emerged from our experiment.
The selection criterion, indeed, is able to indicate the
FSM model with best cost-effectiveness ratio.

5. Conclusions

In this paper we presented the results of a validation
experiment involving four real Web applications that
showed cost-effectiveness of a reverse engineering
technique for obtaining a model of a Rich Internet
Application behaviour by dynamic analysis.

The applicability of the proposed reverse
engineering approach depends just on the capability of
analysing the client side of the RIA, so it can be used
for any type of RIAs (such as Javascript, Flash, or
Silverlight based RIAs), provided that specific client
interface analysers are available.

The model is reconstructed on the basis of the
hypothesis that the analysis of the user interactions
with the client interface can produce a good
approximation of the RIA behaviour. This hypothesis
is acceptable and coherent with an incremental
comprehension approach that preliminarily abstracts
the salient points of the dialogue between the user and
the application, and, subsequently, deepens the
comprehension by taking into account other types of
interactions, too (like server-side asynchronous events,
or time events). We plan to address these further
aspects of the problem in future work. Moreover, as
regards the scalability of the proposed technique, we
plan to carry out further experiments in order to assess
the relationships between the scale of the RIA and the
costs of our technique.

References

[Alm99] A. Almudevar, C. Field, “Estimation of single-

generation sibling relationships based on DNA markers”,
J. Agricult. Biol. Environ. Statist., American Statistical
Association, 4(2), 1999, pp.136–165.

[Ama08] D. Amalfitano, A.R. Fasolino, P. Tramontana,
“Reverse Engineering Finite State Machines from Rich
Internet Applications“, Proc. of the 15th Working
Conference on Reverse Engineering, 2008, IEEE
Computer Society Press, pp. 69 - 73

 [And05] A. Andrews, J. Offutt, R. Alexander, “Testing Web
applications by modeling with FSM”, Software and
System Modeling, 2005, 4 (3), pp. 326-345

[Bel06] F. Belli, C. Budnik, L. White, ”Event-based
modelling, analysis and testing of user interactions:

approach and case study”, Software Testing, Verification
and Reliability, 2006; 16: 3- 32.

[Bin99] R.V. Binder Testing Object-Oriented Systems.
Models, Patterns, and Tools, Addison Wesley, 1999.

[Dil02] G.A. Di Lucca, M. Di Penta, A.R. Fasolino, “An
approach to identify duplicated Web pages”, Proc. Of the
26th Computer Software and Applications Conference,
2002, IEEE Computer Society Press, pp.481 - 486

[DOM] Document Object Model (DOM), W3C, available at:
http://www.w3.org/DOM/

[Gar05] J. Garrett, “AJAX: A new approach to Web
applications”, Adaptive Path, 2005.

[Hor07] B. Hohrmann, P. Le Hègaret, T. Pixley,
“Document Object Model Events”, W3C, 21 Dec. 2007,
available at http://www.w3.org/TR/DOM-Level-3-
events/events.html

[Kon05] D.A. Konovalov, B. Litow and N. Bajema,
“Partition-distance via the assignment problem”,
 Bioinformatics 21(10), 2005, pp. 2463-2468.

[Mai08] M. de A. Maia, V. Sobreira, K.R. Paixão, S.A. de
Amo, I.R. Silva, “Using a Sequence Alignment Algorithm
to Identify Specific and Common Code from Execution
Traces”, Proc. of 4th Int. Workshop on Program
Comprehension through Dynamic Analysis, 2008, 6- 10.

[Mar08] A. Marchetto, P. Tonella, F. Ricca, “State-Based
Testing of Ajax Web Applications”, Proc. Of 2008 Int.
Conference on Software Testing, Verification and
Validation, IEEE Computer Society Press, pp. 121-130.

[Mem03] A. Memon, L. Banerjee, A. Nagarajan, “GUI
ripping: reverse engineering of graphical user interfaces
for testing”, Proceedings of the 10th Working Conference
on Reverse Engineering, 2003, IEEE Computer Society
Press, pp.260 - 269

[Mes07] A. Mesbah, and A. van Deursen, “An Architectural
Style for Ajax”, Proc. of the Sixth Working IEEE/IFIP
Conference on Software Architecture (WICSA ‘07), IEEE
Computer Society Press, pp. 9-18

[Mes07b] A. Mesbah, A. van Deursen, “Migrating Multi-
page Web Applications to Single-page AJAX Interfaces”
Proc. of 11th European Conference on Software
Maintenance and Reengineering, 2007, IEEE Computer
Society Press, pp. 181 - 190

[Mes08] A. Mesbah, E. Bozdag, A. Van Deursen, “Crawling
AJAX by Inferring User Interface State Changes”, Proc.
Of Eight Int. Conference on Web Engineering, 2008,
IEEE Computer Society Press, pp. 122-134

[Pre07] J.C. Preciado, M. Linaje, S. Comai, F. Sanchez,
“Designing Rich Internet Applications with Web
Engineering Methodologies”, Proc. of 9th IEEE Int.
Symposium on Web Site Evolution, (WSE 2007), pp. 23-
30.

[Sam04] S. Sampath, V. Mihaylov, A. Souter, L. Pollock,
“A Scalable approach to user-session based testing of
Web applications through Concept Analysis”, Proc. of
19th International Conference on Automated Software
Engineering, 2004, IEEE Computer Society Press, pp.
132- 141.

