

tesi di laurea

Stato dell'arte sulle tecniche di testing di Sistemi Embedded

Anno Accademico 2011/2012

relatore

Ch.mo prof. Porfirio Tramontana

candidato

Alfonso Cutolo Matr. 041/3068

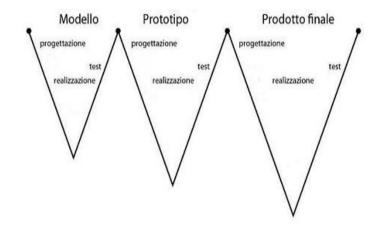
Obiettivi

- Ordinare e descrivere in maniera metodologica gli aspetti inerenti alla letteratura sul testing di sistemi embedded
 - Telefoni cellulari
 - Elettrodomestici
 - Lettori musicali portatili
 - Lettori e masterizzatori CD/DVD etc.
- Fornire linee guida generiche per affrontare un qualsiasi problema di testing in ambiente embedded
 - Se ad esempio si deve testare una lavatrice ed una centralina di un'automobile bisogna poter partire dagli stessi concetti di base.

Obiettivi

- Superare i problemi di specificità del testing per i sistemi embedded
 - L'approccio al testing per un telefono cellulare è differente rispetto a quello per un navigatore satellitare. Si cercherà quindi di:
 - Ottenere un approccio base al test che sia in grado di inquadrare più problematiche in senso generico.
 - Solo successivamente utilizzare misure specifiche per affrontare il singolo problema.
- Descrivere un vero e proprio ciclo di vita dell'attività di testing
 - Si cercherà di definire in modo preciso tutte le attività da svolgere e soprattutto l'ordine preciso di esecuzione.

Problematiche inerenti alla qualità


- I Sistemi embedded si stanno diffondendo velocemente in ambienti molto critici
 - Elettronica Aeronautica : hardware e software di controllo per voli ed altri sistemi integrati nei velivoli e nei missili.
 - Centraline degli autoveicoli per il controllo del motore e dell' ABS
 - Un possibile difetto in tali ambienti può provocare il fallimento del sistema.
 - Possibilità di perdere elevate somme di denaro o addirittura si mette in pericolo la vita umana.
 - C'è la necessità di dare maggiore attenzione ai requisiti di criticità.

- Modelli di testing Il ciclo di vita
 - Si organizza tutto il processo di testing in fasi ben definite:
 - Pianificazione e controllo
 - Preparazione
 - Specifica
 - Esecuzione
 - Completamento
 - Si analizza tutta una serie di modelli, ognuno dei quali fornisce una propria organizzazione del processo di testing.
 - Per i sistemi di grandi dimensioni si realizza il "Master Test Planning", un piano globale che sia in grado di coordinare e gestire il processo generale di test

- Modelli di testing V-Model
 - Durante il processo di sviluppo il sistema può presentarsi in diverse forme fisiche.
 - Un modello che simula il comportamento del sistema.
 - Dei prototipi che evolvono con una serie di iterazioni fino ad arrivare alla forma reale.
 - In base alla funzionalità si valuta se è conveniente testare il modello, il prototipo o il sistema reale.

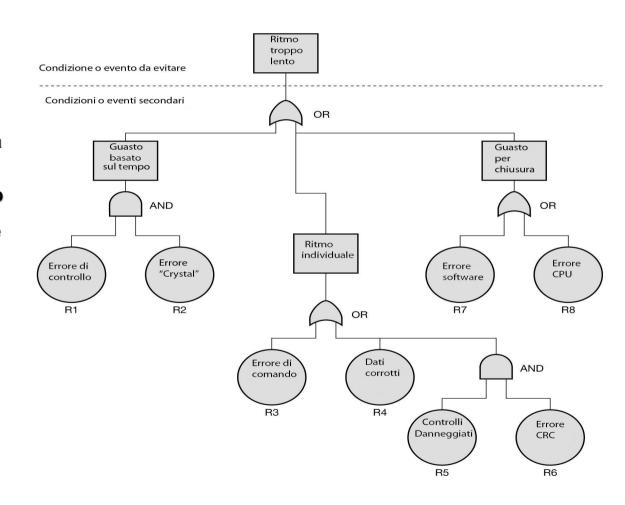
- Tecniche di testing Strategia Risk-Based
 - E' basata sul principio che non si può testare tutto, ma bisogna fare delle scelte, si fissano delle priorità e si decide quali aspetti sono da considerare importanti.
 - Testare tutto porterebbe ad uno spreco di risorse in termini di tempo, denaro, personale ed infrastrutture.
 - L'importanza in ambito Riskbased si misura analizzando il rischio che si corre in caso qualcosa non vada bene, rischio inteso come la possibilità di quasto.

- Tecniche di testing Strategia Risk-Based
 - La probabilità di verifica di un guasto può aumentare a causa di:
 - Sviluppatori inesperti
 - Insufficiente garanzia di qualità in fase di sviluppo
 - Team di sviluppo di grandi dimensioni
 - Scarsa comunicazione nel team di sviluppo
 - Il test deve coprire tali rischi, fornire un'analisi sulla misura in cui il sistema soddisfa determinati requisiti di qualità.

- Strategia Risk-Based Matrice di assegnazione
 - Si assegnano le caratteristiche di qualità definite ai livelli di test.
 - Sulle righe ci sono i livelli di test, sulle colonne le caratteristica di qualità.
 - Ogni intersezione indica come la caratteristica di qualità è assegnata a quel livello di test.

	Funzionalità	Connettività	Affidabilità	Recuperabilità	Performance	Idoneità
Importanza relativa(%)	40	10	10	5	15	20
Unità di test	++			+		
Test di integrazione software Test di integrazione hardware-software	e +	++				
	+	++		++		
Test di sistema	++		+		+	
Test di accettazione	+			++		++
Test dei campi			++		++	

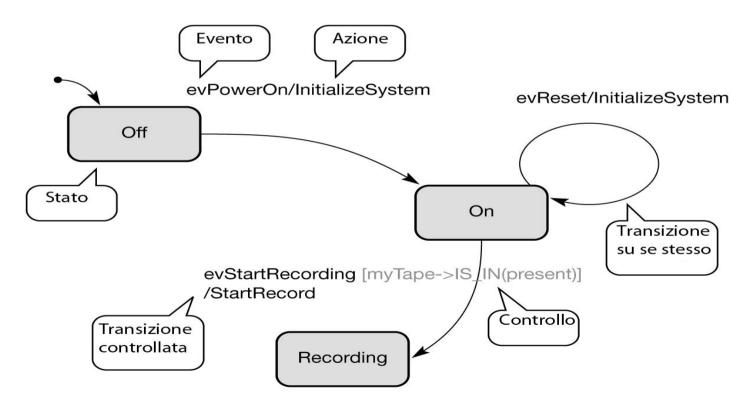
- Tecniche di testing Safety Analysis
 - La sicurezza è uno degli aspetti più importanti di un sistema, un malfunzionamento in termini di sicurezza può avere effetti gravi come:
 - Morte
 - Lesioni gravi
 - Danni ambientali
 - E' necessario prendere misure adeguate che riducano al minimo la possibilità che la sicurezza venga messa in pericolo.
 - Tutto ciò è realizzato da piccoli team composti dai responsabili della sicurezza, progettisti, esperti e tester.
 - Si utilizzano categorie di gravità che facilitano l'identificazione dei rischi, usate poi per formulare una strategia di sicurezza
 - Per ogni categoria si prendono misure diverse in base alla gravità.



- Tecniche di testing Safety
 Analysis FMEA (Failure mode and effect analysis)
 - Determina l'effetto di un guasto sul sistema.
 - Si applica all'inizio della fase di progettazione essendo più semplice risolvere eventuali problemi.
 - Una volta individuato un guasto permette di formulare le azioni per ridurre le modalità di guasto o gli effetti da esso provocati.

- Tecniche di testing Safety
 Analysis FTA (Fault tree analysis)
 - Individua le cause dei guasti.
 - Analizza la progettazione in termini di sicurezza ed affidabilità
 - In questo modo si genera una condizione di guasto, un evento cioè da evitare.
 - Si analizza il comportamento indesiderato che è causa del malfunzionamento del sistema.
 - Si individua la causa che ha provocato il guasto per poi arrivare alla causa del malfunzionamento.

- FTA Esempio di Albero per un Pacemaker
 - Utilizza uno schema ad albero, detto albero dei guasti, in cui i guasti vengono combinati tramite le porte logiche AND e OR.
 - La condizione indesiderata si pone in cima all'albero.
 - Essa può derivare da una serie di guasti o da ulteriori condizioni indesiderate.
 - Tali condizioni dipendono da ulteriori guasti collegati dalle porte logiche.



- Tecniche di testing Testing di Transizione di Stato
 - Molti sistemi embedded presentano un comportamento basato sullo stato, sono progettati tramite un modello basato sullo stato.
 - Il comportamento di un sistema embedded basato sullo stato può essere rappresentato tramite i diagrammi di stato, descritti con UML. Lo stato attuale dipende dalla storia del sistema.
 - Si derivano i casi di test dal modello basato sullo stato.
 - I diagrammi di stato devono rappresentare correttamente le funzionalità dello specifico sistema.
 - Tecnica SST (State transition test)
 - Si realizza la tabella Stati-Eventi che contiene tutti gli stati a partire da quello iniziale e si valutano tutte le possibili combinazione tra stati ed eventi.
 - Si realizza l'albero delle transizioni tramite la tabella Stati-Eventi
 - Si realizzano gli scrip di test.

Stato dell'arte sulle tecniche di testing di Sistemi Embedded

Diagramma di stato per un Videoregistratore

Infrastruttura

Stato dell'arte sulle tecniche di testing di Sistemi Embedded

Strumenti di testing

- Risorse automatizzate che offrono un sostegno per una o più attività di testing, come pianificazione, controllo, descrizione e costruzione dei test iniziali etc. :
 - Strumenti CASE come UML per verificare l'integrità del sistema.
 - Analizzatore di complessità, più un software è complesso più c'è la possibilità che si verifichino errori.
 - Generatori di casi di test.
 - Strumenti per il test del carico.
 - Simulatori per testare il sistema in condizioni controllate.
 - Driver e stub.
 - **■** Debugger.

Ambiente di testing

 L'ambiente necessario per poter eseguire tutte le attività di testing, il sistema in fase di testing non può ancora funzionare nel mondo reale e può fornire output che spesso richiedono speciali attrezzature per il rilevamento.

Conclusioni

- Realizzazione di un approccio generalista per il il testing di sistemi in ambiente embedded indipendentemente dal tipo di sistema con cui si ha a che fare.
- Avere un'alternativa all' uso di approcci ad hoc che hanno l'aspetto negativo di essere molto costosi.
- Realizzazione di un piano di test ben preciso, suddiviso in fasi ben specificate ed ordinate.