
Scuola Politecnica e delle Scienze di Base
Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale in Ingegneria del Software 2

Analysis of usage of Continuous
Integration practices in open-source
projects

Anno Accademico 2018/2019

relatore
Ch.mo prof. Porfirio Tramontana
candidato
Ewelina Jablonska
matr. M63000829

Contents

1 Background 3

1.1 GitHub . 3

1.2 Continuous integration . 5

1.2.1 Tools . 5

1.3 GitHub actions . 6

1.3.1 Workflows . 6

1.3.2 Limits . 8

1.4 YAML . 9

1.4.1 Processes . 10

1.4.2 Block styles . 10

1.4.3 Flow styles . 11

1.4.4 Node properties . 11

1.4.5 Character streams . 12

1.4.6 Workflow GitHub . 13

2 Related work 18

2.1 Information sources . 18

2.2 Mining Github . 19

2.3 Continuous integration . 26

2.3.1 General usage . 26

2.3.2 Bad Practices . 30

3 Technology 34

3.1 Node.js . 34

i

Analysis of usage of Continuous Integration practices in open-source projects

3.1.1 Advantages of Node.js . 35

3.1.2 NPM . 35

3.1.3 Used libraries . 36

3.2 GitHub Api . 37

3.2.1 Authentication . 38

3.2.2 Pagination . 38

3.2.3 Search . 39

3.2.4 Rate limiting . 39

3.2.5 Example . 40

4 Preliminar study 41

4.1 Research questions . 41

4.2 Objects . 42

4.3 Variables . 42

4.4 Experimental procedure . 43

4.5 Results . 48

4.6 Threats to validity . 49

4.6.1 Internal . 49

4.6.2 External . 50

5 Empirical study 51

5.1 Research questions . 51

5.2 Objects . 52

5.3 Variables . 52

5.4 Experimental procedure . 54

5.5 Results . 59

5.6 Threats to validity . 78

5.6.1 External . 78

6 User manual 80

6.1 Installation . 80

6.2 Prerequisities . 81

ii

Analysis of usage of Continuous Integration practices in open-source projects

6.3 Execution . 82

7 Final discussion 85

8 Conclusions and future directions 89

8.1 Conclusions . 89

8.2 Future directions . 90

iii

Introduction

Open-source software projects are the epitome of collaboration. They represent

the amalgamation of the work and effort of hundreds or thousands of developers

coming together to achieve a single purpose: to create an application that fulfills

user needs. However, there is a point where such a large workforce becomes too

difficult to manage.

Social coding sites like GitHub have started offering solutions, such as con-

tribution guidelines and continuous integration (CI) tools, to get core developers

and contributors on the same page and help unify expectations. Because of the

benefits of using CI tools, GitHub now offers a native, fully integrated CI solution.

Due to the role CI plays in evaluating code contributions on GitHub, developers

have started considering CI among their contribution evaluation criteria.

This work aims to analyze the usage of Continuous Integration practice, in

particular in open-source projects, and to study the diffusion of bad practices

related to the use of this practice.

Continuous Integration (CI) is a set of software development practices that

allow software development teams to generate software builds more quickly and

periodically. Thanks to the advent of the Continuous Integration practices builds

can be generated more frequently, which allows the earlier identification of errors.

Recently, researchers have begun to study CI empirically to understand its

associated costs and benefits. Indeed, Continuous Integration has been claimed

to introduce several benefits in software development, including high software

1

Analysis of usage of Continuous Integration practices in open-source projects

quality and reliability. However, recent work pointed out challenges, barriers, and

bad practices characterizing its adoption.

This work investigates the general usage of CI practice in open-source projects,

but also how the bad practices are widespread while applying CI. In summary,

previous work discussed the advantages of CI, outlined possible bad practices, and

identified barriers and challenges in CI’s usage. However, prior work particularly

focuses on the usage of Travis CI tool, whilst, to the best of our knowledge, there

is no prior investigation about the usage of Github actions CI tool.

2

Chapter 1

Background

1.1 GitHub

GitHub is the largest collaborative source code hosting site built on top of the

Git version control system. It represents the newest generation of software forges,

which are web-based collaborative platforms providing tools to ease distributed de-

velopment, especially useful for Open Source Software (OSS) development. GitHub

uses a "fork & pull" collaboration model, where developers create their own copies

of a repository and submit requests when they want the project maintainer to

incorporate their changes into the project’s main branch. Every repository can

optionally use GitHub’s issue tracking system to report and discuss bugs and other

concerns.

Figure 1.1: Github logo

3

Analysis of usage of Continuous Integration practices in open-source projects

Moreover, GitHub contains integrated social features, such as the opportunity

for an user to subscribe to update by "watching" projects and "following" other

users. Therefore, GitHub has become both the target of choice and the source of

data for various research efforts, ranging from distributed collaboration to deep

learning on software data. The typical pull request development model, as used

by GitHub, is a newer method for collaborating in distributed software develop-

ment. With this model, the project’s main repository is not writable by potential

contributors. Instead, the contributors fork (clone) the repository and make their

changes independent of each other. Due to this popular development model, repos-

itories can be divided into two types: base repositories (ones that are not forks)

and forked repositories. Each GitHub pull request contains a branch (local or in

another repository) from which a core team member should pull commits. GitHub

automatically discovers the commits to be merged and attaches them to the pull

request. By default, pull requests are submitted to the destination repository for

review.

Also, Git repositories are an important source of empirical software engineering

product and process data. Running the Git command-line tool and processing its

output with other Unix tools allows the incremental construction of sophisticated

data processing pipelines. The use of Unix command tools to analyze Git reposito-

ries offers interactivity, readability, performance, scalability, and portability. Git

data analytics on the command-line can be systematically presented through a

pattern that involves fetching, selection, processing, summarization, and report-

ing. The git command-line tool has a notoriously complex command-line interface.

However, using just a few key commands allows researchers to access source code

across revisions without requiring expensive copies to disk. After extracting the

data with git commands, we can apply traditional Unix tools to perform rela-

tional algebra operations, without needing to store the data in an intermediate

SQL database. Then, a big part of empirical work in software engineering is ex-

4

Analysis of usage of Continuous Integration practices in open-source projects

ploratory, when researchers try to understand the data, perform basic hypothesis

testing, or draw simple plots of raw data. The final step of all research efforts is

reporting the results.

1.2 Continuous integration

Continuous integration (CI) is a software engineering practice typically imple-

mented as the automation and frequent execution of the build and test steps to

make software integration easier. Continuous Integration has been introduced by

Fowler in a blog post in 2000, as means for the systematic integration and ver-

ification of code changes. CI practices have gained momentum only in the last

10 years, being more widely discussed, employed, and researched. Consequently,

CI is nowadays one of the pillars of the software engineering practice, not only

in commercial projects but also in open source projects. The adoption of CI has

been shown multiple benefits for software engineering practices related to build,

test, and dependency management. Thanks to the advent of the CI practices,

for example, builds can be generated more frequently, which allows the earlier

identification of errors.

1.2.1 Tools

There are several tools offering support for developers that plan to incorporate the

CI practices into their software projects, such as TravisCI, CircleCI, and Hudson.

More interestingly, however, is the fact that some of these tools are readily available

in social coding environments such as GitHub and GitLab, which implies that ev-

eryone with a GitHub account can gratuitously benefit from the complex pipeline

of version control systems, code review systems, and continuous integration tools,

with little to no configuration effort. In particular, Travis CI is an open-source,

distributed, CI tool that supports more than 25 programming languages. Every

5

Analysis of usage of Continuous Integration practices in open-source projects

GitHub repository can be configured to use Travis CI to automatically generate

CI builds. Projects that use the TravisCI service inform TravisCI about how jobs

are to be executed using a .travis.yml specification file. The properties set in this

configuration file specify which revisions will initiate builds, how the build envi-

ronments are to be configured for executing builds, and how team members should

be notified about the outcome of the build.

1.3 GitHub actions

GitHub Actions enables you to create custom software development life cycle

(SDLC) workflows and to build end-to-end continuous integration (CI) and contin-

uous deployment (CD) capabilities directly in your GitHub repository. [1] GitHub

Actions powers GitHub’s built-in continuous integration service, and help you au-

tomate your software development workflows in the same place you store code

and collaborate on pull requests and issues. You can write individual tasks, called

actions, and combine them to create a custom workflow.

Figure 1.2: Github actions logo

1.3.1 Workflows

Workflows are custom automated processes that you can set up in your repository

to build, test, package, release, or deploy any code project on GitHub. They can

run on GitHub-hosted virtual machines, or on machines that you host yourself.

6

Analysis of usage of Continuous Integration practices in open-source projects

You can configure your CI workflow to run when a GitHub event occurs (for

example, when new code is pushed to your repository), on a set schedule, or

when an external event occurs using the repository dispatch webhook. GitHub

provides preconfigured workflow templates to automate your workflow or create

a CI workflow for specific languages and frameworks. GitHub analyzes your code

and shows you the CI templates that are the best fit for your repository. Moreover,

you can browse and search for actions in GitHub Marketplace to use in your

workflows. GitHub Marketplace is a central location for you to find actions created

by the GitHub community. Actions with a badge indicate GitHub has verified the

creator of the action as a partner organization. You can discover new actions from

the workflow editor on GitHub and the GitHub Marketplace page.

Workflows need to be stored in the .github/workflows directory in the root of

your repository, and they must have at least one job, containing a set of steps

that perform individual tasks, and able to run commands or use an action. The

workflows must be configured using YAML syntax, and be saved as workflow files

in your repository. Once a YAML workflow file is successfully created and triggered

the workflow, you will see the build logs, test results, artifacts, and statuses for

each step of your workflow. At a high level, these are the steps to add a workflow

file:

1. At the root of your repository, create a directory named .github/workflows

to store your workflow files.

2. In .github/workflows, add a .yml or .yaml file for your workflow. For exam-

ple, .github/workflows/continuous-integration-workflow.yml.

3. Use the "Workflow syntax for GitHub Actions" reference documentation to

choose events to trigger an action, add actions, and customize your workflow.

4. Commit your changes in the workflow file to the branch where you want

7

Analysis of usage of Continuous Integration practices in open-source projects

your workflow to run.

Figure 1.3: An example of github actions workflow

1.3.2 Limits

There are some limits on GitHub Actions usage, depending on whether you use

GitHub-hosted or self-hosted runners, and they are subject to change:

Job execution time : Each job in a workflow can run for up to 6 hours of

execution time. If a job reaches this limit, the job is terminated and fails to

complete. This limit does not apply to self-hosted runners.

Workflow run time : Each workflow run is limited to 72 hours. If a workflow

run reaches this limit, the workflow run is canceled. This limit also applies

to self-hosted runners.

Job queue time : Each job for self-hosted runners can be queued for a maximum

of 24 hours. If a self-hosted runner does not start executing the job within

8

Analysis of usage of Continuous Integration practices in open-source projects

this limit, the job is terminated and fails to complete. This limit does not

apply to GitHub-hosted runners.

API requests : You can execute up to 1000 API requests in an hour across all

actions within a repository. If exceeded, additional API calls will fail, which

might cause jobs to fail. This limit also applies to self-hosted runners.

Concurrent jobs : The number of concurrent jobs you can run in your account

depends on your GitHub plan. If exceeded, any additional jobs are queued.

There are no concurrency limits for self-hosted runners.

Job matrix : A job matrix can generate a maximum of 256 jobs per workflow

run. This limit also applies to self-hosted runners.

1.4 YAML

YAML is a human-friendly, Unicode-based data serialization language designed

around the common native data types of agile programming languages. It is

broadly useful for programming needs ranging from configuration files to Internet

messaging to object persistence to data auditing.

YAML was first proposed by Clark Evans in 2001, who designed it together

with Ingy döt Net and Oren Ben-Kiki. Originally YAML was said to mean Yet

Another Markup Language, referencing its purpose as a markup language with the

yet another construct, but it was then repurposed as YAML Ain’t Markup Lan-

guage, a recursive acronym, to distinguish its purpose as data-oriented, rather than

document markup. [4] The official recommended filename extension for YAML

files has been .yaml since 2006. The syntax of YAML was motivated by Internet

Mail (RFC0822) and remains partially compatible with that standard. Further,

borrowing from MIME (RFC2045), YAML’s top-level production is a stream of

independent documents, ideal for message-based distributed processing systems.

9

Analysis of usage of Continuous Integration practices in open-source projects

YAML is both a text format and a method for presenting any native data structure

in this format.

1.4.1 Processes

YAML information is used in two ways: for machine processing, and human con-

sumption. The challenge of reconciling these two perspectives is best done in

three distinct translation stages: representation, serialization, and presentation.

Representation addresses how YAML views native data structures. Serialization

concerns itself with turning a YAML representation into a serial form, that is, a

form with sequential access constraints. The presentation deals with the format-

ting of a YAML serialization as a series of characters in a human-friendly manner.

There are myriad flavors of data structures, but they can all be represented with

three basic primitives:

1. Mappings (hashes/dictionaries)

2. Sequences (arrays/lists)

3. Scalars (strings/numbers)

While most programming languages can use YAML for data serialization,

YAML excels in working with those languages that are fundamentally built around

the three basic primitives. These include the wave of agile languages such as Perl,

Python, PHP, Ruby, and Javascript.

1.4.2 Block styles

In YAML block styles, the structure is determined by indentation, in general,

defined as zero or more space characters. A block style construct is terminated

when encountering a line that is less indented than the construct. Each node must

be indented further than its parent node, and all sibling nodes must use the same

10

Analysis of usage of Continuous Integration practices in open-source projects

indentation level at the start of a line. Block sequences indicate each entry with a

dash and space ("- "), while mappings use a colon and space (": ") to mark each

key: value pair.

1.4.3 Flow styles

YAML also has flow styles, using explicit indicators rather than indentation to

denote scope. The flow sequence is written as a comma-separated list within square

brackets. Similarly, flow mapping uses curly braces. YAML’s flow styles can be

thought of as the natural extension of JSON to cover folding long content lines for

readability, tagging nodes to control the construction of native data structures,

and using anchors and aliases to reuse constructed object instances.

1.4.4 Node properties

Each presentation node includes two major characteristics called anchor and tag.

The anchor property represents a node for future reference. The character stream

of YAML representation in a node is denoted with the ampersand "&" indicator.

The tag property represents the type of native data structure which defines a node

completely, and it’s represented with the "!" indicator. Subsequent occurrences

of a previously serialized node are presented as alias nodes. The first occurrence

of the node must be marked by an anchor to allow subsequent occurrences to be

presented as alias nodes. An alias node is denoted by the "*" indicator and refers

to the most recent preceding node having the same anchor.

Scalar content can be written in block notation, using a literal style (indicated

by "|") where all line breaks are significant. Alternatively, they can be written

with the folded style (denoted by ">") where each line break is folded to space

unless it ends an empty or a more-indented line.

11

Analysis of usage of Continuous Integration practices in open-source projects

1.4.5 Character streams

To ensure readability, YAML streams use only the printable subset of the Unicode

character set. In YAML, you come across various character streams as follows:

• Directives

• Document Boundary Markers

• Documents

• Complete Stream

Directives are basic instructions used in YAML processor, and they are the

presentation details like comments which are not reflected in serialization tree.

Reserved directives are initialized with three hyphen characters (—). Concerning

Document Boundary Markers, YAML uses these markers to allow more than one

document to be contained in one stream. These markers are specially used to

convey the structure of YAML document. Note that a line beginning with “—“is

used to start a new document. YAML document is considered as a single native

data structure presented as a single root node. The presentation details in YAML

document such as directives, comments, indentation, and styles are not considered

as contents included in them. There are two types of documents used in YAML:

Explicit Documents : It begins with the document start marker followed by the

presentation of the root node. It includes an explicit start and end markers

which is “—“and “. . . ”

Implicit Documents : These documents do not begin with a document start

marker.

Finally, YAML includes a sequence of bytes called a character stream. The

stream begins with a prefix containing a byte order denoting a character encoding.

12

Analysis of usage of Continuous Integration practices in open-source projects

The complete stream begins with a prefix containing a character encoding, followed

by comments.

1.4.6 Workflow GitHub

Workflow Github files use YAML syntax and must have either a .yml or .yaml file

extension. The file is characterized by the following elements:

name : The name of the workflow. GitHub displays the names of the workflows

on the repository’s actions page. If omitted, GitHub sets it to the workflow

file path relative to the root of the repository.

on : The name of the GitHub event that triggers the workflow (Required). You

can provide a single event string, array of events, array of event types, or an

event configuration map that schedules a workflow or restricts the execution

of a workflow to specific files, tags, or branch changes.

• types: Selects the types of activity that will trigger a workflow run.

Most GitHub events are triggered by more than one type of activity.

For example, the event for the release resource is triggered when a

release is published, unpublished, created, edited, deleted, or released.

The types of keywords enable you to narrow down activity that causes

the workflow to run. When only one activity type triggers a webhook

event, the types of keyword is unnecessary.

• branches & tags: When using the push and pull_request events, you

can configure a workflow to run on specific branches or tags. For a

pull_request event, only branches and tags on the base are evaluated.

If you define only tags or only branches, the workflow won’t run for

events affecting the undefined Git ref.

13

Analysis of usage of Continuous Integration practices in open-source projects

• paths: When using the push and pull_request events, you can config-

ure a workflow to run when at least one file does not match paths-ignore

or at least one modified file matches the configured paths. Path filters

are not evaluated for pushes to tags.

env : A map of environment variables that are available to all jobs and steps in

the workflow. You can also set environment variables that are only available

to a job or step.

defaults : A map of default settings that will apply to all jobs in the workflow.

You can also set default settings that are only available to a job.

• defaults.run: You can provide default shell and working-directory op-

tions for all run steps in a workflow. You can also set default settings

for run that are only available to a job.

jobs : A workflow run is made up of one or more jobs. Jobs run in parallel by

default.

• id: Each job must have an id to associate with the job. The key

job_id is a string and its value is a map of the job’s configuration

data. You must replace <job_id> with a string that is unique to the

jobs object. The <job_id> must start with a letter or _ and contain

only alphanumeric characters, , or _. If you need to find the unique

identifier of a job running in a workflow run, you can use the GitHub

API.

• name: The name of the job displayed on GitHub.

• needs : To run jobs sequentially, you can define dependencies on other

jobs using the jobs.<job_id>.needs keyword.

• runs-on: Each job runs in an environment specified by runs-on, that

14

Analysis of usage of Continuous Integration practices in open-source projects

is required and represents the type of machine to run the job on. The

machine can be either a GitHub-hosted runner or a self-hosted runner.

• outputs: A map of outputs for a job. Job outputs are available to all

downstream jobs that depend on this job. Job outputs are strings, and

job outputs containing expressions are evaluated on the runner at the

end of each job. Outputs containing secrets are redacted on the runner

and not sent to GitHub Actions.

• env: A map of environment variables that are available to all steps in

the job.

• defaults: A map of default settings that will apply to all steps in the

job.

• if : You can use the if conditional to prevent a job from running unless

a condition is met. You can use any supported context and expression

to create a conditional.

• steps: A job contains a sequence of tasks called steps. Steps can run

commands, run setup tasks, or run an action in your repository, a pub-

lic repository, or an action published in a Docker registry. Not all steps

run actions, but all actions run as a step. Each step runs in its own

process in the runner environment and has access to the workspace and

filesystem. Because steps run in their own process, changes to envi-

ronment variables are not preserved between steps. GitHub provides

built-in steps to set up and complete a job.

id : A unique identifier for the step. You can use the id to reference

the step in contexts.

if : You can use the if conditional to prevent a step from running

unless a condition is met. You can use any supported context and

expression to create a conditional.

15

Analysis of usage of Continuous Integration practices in open-source projects

name : A name for your step to display on GitHub.

uses : Selects an action to run as part of a step in your job. An action is

a reusable unit of code. You can use an action defined in the same

repository as the workflow, a public repository, or in a published

Docker container image. It’s strongly recommended to include the

version of the used action by specifying a Git ref, SHA, or Docker

tag number. If a version isn’t specified, it could break the workflow

or cause unexpected behavior when the action owner publishes an

update.

with : A map of the input parameters defined by the action. Each

input parameter is a key/value pair. Input parameters are set

as environment variables. The variable is prefixed with INPUT_

and converted to upper case. Review the action’s README file

to determine the inputs required. Actions are either JavaScript

files or Docker containers. If the action you’re using is a Docker

container you must run the job in a Linux environment.

run : Runs command-line programs using the operating system’s shell.

If you do not provide a name, the step name will default to the

text specified in the run command. Commands run using non-login

shells by default. You can choose a different shell and customize

the shell used to run commands.

shell : You can override the default shell settings in the runner’s oper-

ating system using the shell keyword. You can use built-in shell

keywords, or you can define a custom set of shell options.

env : Sets environment variables for steps to use in the runner envi-

ronment. You can also set environment variables for the entire

workflow or a job.

16

Analysis of usage of Continuous Integration practices in open-source projects

• strategy: A strategy creates a build matrix for your jobs. You can

define different variations of an environment to run each job in.

• container: A container to run any steps in a job that doesn’t already

specify a container. If you have steps that use both script and container

actions, the container actions will run as sibling containers on the same

network with the same volume mounts. If you do not set a container,

all steps will run directly on the host specified by runs-on unless a step

refers to an action configured to run in a container.

• services: Used to host service containers for a job in a workflow. Ser-

vice containers are useful for creating databases or cache services like

Redis. The runner automatically creates a Docker network and man-

ages the life cycle of the service containers.

17

Chapter 2

Related work

We group our related work into three different areas:

1. Information sources

2. Mining Github

3. Continuous Integration

2.1 Information sources

Due to the abundance and availability of data, code hosting services, such as

GitHub, have piqued the interest of many software engineering researchers. The

public availability of data from many projects simplifies the data collection and

processing issues that are often encountered in research. However, there are still

practical difficulties that can potentially alter conclusions drawn from the data.

The availability of a comprehensive API has made GitHub a target for many

software engineering and online collaboration research efforts. Some research

shows that obtaining data from GitHub is not trivial and that the data may not

be suitable for all types of research. First of all, GitHub imposes limits on their

API, that can put a significant delay on data acquisition. Moreover, there is no

18

Analysis of usage of Continuous Integration practices in open-source projects

data schema, since GitHub is only exposing its data as JSON responses through

a REST API. Several research projects have provided easier access to the data

available through the GitHub API.

The GHTorrent project [9] provides a mirror of the GitHub data, which it

obtains by monitoring and recording GitHub events as they occur, and applying

recursive dependency-based retrieval of the related resources. GHTorrent follows

the GitHub event stream and systematically retrieves from it all data, their meta-

data, and their dependencies. It then processes and stores all retrieved items in a

relational database, while also storing the original data in a MongoDB database.

GHTorrent offers to interested researchers both downloads of the corresponding

database dumps, and online access facilities, including live database access and

Google BigQuery. In January 2020, MongoDB stores around 18TB of JSON data

(compressed), while MySQL more than 6.5 billion rows of extracted metadata. A

large part of the activity of 2012-2019 has been retrieved, while researchers are also

going back to retrieve the full recorded history of important projects. GHTorrent

has been very successful: indeed, more than 200 researchers have subscribed and

used the online access points, so we can say that GHTorrent is becoming the de

facto standard dataset for large scale quantitative analysis for GitHub data.

2.2 Mining Github

The large amount of public data on GitHub and its availability via an API make it

possible for researchers to easily mine project data. In the last years, a considerable

amount of research papers have been published reporting findings based on data

mined from GitHub.

A Systematic Mapping Study of Software Development With GitHub [6] con-

ducting a meta-analysis of 342 papers reporting results based on GitHub data

mining, aimed at understanding how software development practices have changed

19

Analysis of usage of Continuous Integration practices in open-source projects

due to the popularization of social coding platforms like GitHub, and how project

owners, committers and end-users could optimize their way of collaborating. The

main goal is to provide an overview of research efforts focusing on the analysis

of all kinds of software development practices. The study addresses the following

research questions:

• What topics/areas have been addressed?

• What empirical methods have been used?

• What technologies have been used to extract and build datasets from GitHub?

• What is the research community behind these works like?

The main findings reported by the selected works of the study can be grouped

into four main areas of research, focused on:

1. Development

2. Projects

3. Users

4. GitHub ecosystem

Regarding software development, and in particular the code contributions,

the study found that contributions on the platform are unevenly distributed and

that mostly few developers are responsible for a large set of code contributions

(more than two-thirds of projects have only one committer). Also, most contribu-

tions come in the form of direct code modifications.

Moreover, most pull requests are less than 20 lines long, processed (merged

or discarded) in less than 1 day, and the discussion spans on average to 3 com-

ments. The study claims the importance of casual contributions, stating that

casual contributions are rather common in GitHub (48.98%).

20

Analysis of usage of Continuous Integration practices in open-source projects

Furthermore, according to the research, there are several factors to accept or

reject pull requests, ranging from technical to social and geographic factors. First,

pull requests fully addressing the issue they are trying to solve, self-contained,

and well documented, as well as including test cases and efficiently implemented

are more likely to be accepted. Conversely, pull requests containing unconven-

tional code are less likely to go through. Second, social factors also influence the

acceptance of pull requests. Indeed, contributions from submitters with prior con-

nections to core members, having a stronger social connection or holding a higher

status in the project are more likely to be accepted, whereas a pull request from

an external collaborator has 13% less chance of being accepted. Concerning the

geographical factors, the research shows that when submitters and integrators are

from the same geographical location there are 19% more chances that the pull

requests will get accepted.

Also, the latency of processing pull requests has been discussed in different

works, finding that the increase in the time needed to analyze a pull request

reduces the chances of its acceptance.

Furthermore, several findings of the study concern the issue topic. It founds

that issues tracker are scarcely used and that issues are unevenly distributed on

the projects that actively use the GitHub issue tracker. The number of open issues

is on average higher right after the project creation, while it tends to decrease a

few months later. Moreover, even though GitHub offers a label mechanism to ease

the categorization of issues, only less than 30% of issues are tagged. Furthermore,

the older an issue is, the smaller is the chance that it will be addressed.

Another topic the study deals with is forking. According to the findings, the

distribution of forks follows a power-law distribution, meaning that there are lots

of projects with few forks, and few projects forked a very large number of times.

Moreover, the number of forks of a project is positively correlated with the number

of open issues, watchers, and stars, as well as with the number of commits and

21

Analysis of usage of Continuous Integration practices in open-source projects

branches, but it does not correlate with the number of pull requests accepted.

The study found that forks are mostly used to fix bugs and add new features,

and less frequently to add documentation. Also, forking is considered positive

for several reasons such as to preserve abandoned programs and to improve the

quality of a project. The chances to get a project forked depends on different

factors: a project where developers provide additional public contact information

that is clearly active or with popular project’s owners are more probable to be

forked.

With regard to projects, the study shows that most projects are personal and

little more than code dumps such as example code, experimentation, backups, or

exercises not intended for customer consumption, and most of them ignore Github

collaboration capabilities. Also, GitHub is not only for open source software, but

commercial projects use GitHub and the functionalities provided by the platform

as well. The top three domains for the projects are system software, web, and

non-web libraries, followed by software tools, whereas JavaScript, Ruby, Python,

Objective-C, and Java are the top used languages in terms of the number of

projects in GitHub. Also, projects that are actively maintained are more likely to

be alive in the future than projects that only show occasional commits. The study

focuses also on the project’s popularity factor, claiming that popularity is useful to

attract new developers. Nevertheless, only a few projects are popular (in particular

the distribution of stars and downloads follows a power-law distribution).

Moreover, projects owned by organizations tend to be more popular than the

ones owned by individuals. According to the study, there exists a relationship be-

tween the popularity and the documentation effort. In particular, popular projects

exhibit higher and more consistent documentation activities and efforts. Regard-

ing teams, most of the projects have small development teams (72% of projects

have only a single contributor). Furthermore, the study claims that there exists a

positive impact on the collaboration experience and productivity in diverse teams.

22

Analysis of usage of Continuous Integration practices in open-source projects

With regard to users in Github, most of them come from North America,

Europe, and Asia, and a large majority of them are males, while females account

only for a small percentage of GitHub. Approximately half of GitHub’s registered

users work in private projects, thus their activities on the platform are not publicly

visible. User productivity depends on factors such as the number of projects the

user is involved in and her commitment to the project. A rockstar, or popular

user, is characterized by having a large number of followers, who are interested

in how she codes, what projects she is following, or working on. Users become

popular as they write more code and monitor more projects.

Finally, regarding the ecosystem, defined as a collection of software projects,

most ecosystems in GitHub revolve around one central project, and most of them

are interconnected. However, activities around a software development project are

not exclusively performed in GitHub, but they leverage on other platforms and

channels with superior capabilities in terms of social functions: Twitter is used

by developers to stay aware of industry changes, for learning, and for building

relationships, while StackOverflow is often used as a communication channel for

project dissemination.

The previous work [11] aimed at examining how GitHub is used for collabo-

ration through surveys and interviews. The study used the GHTorrent dataset

and identified thirteen perils that pose potential threats to validity for studies

involving software projects hosted in GitHub. They can be divided into 4 main

categories:

1. Projects related

2. Pull request related

3. User related

23

Analysis of usage of Continuous Integration practices in open-source projects

4. Github related

With regard to projects, the research found that a repository is not necessarily

a project (a project is typically part of a network of repositories). Moreover, most

projects have low activity, for example, they have very few commits, and most

of them are inactive. Also, the study shows that a large portion of projects is

not used for software development activities and that most of them are personal.

Indeed, more than two-thirds of projects (71.6 % of repositories) have only one

committer: its owner. Finally, many active projects do not conduct all their

software development activities in GitHub, and only a fraction of projects use pull

requests.

Concerning pull requests, merges only track successful code (if the commits

in a pull request are reworked in response to comments, GitHub records only

the commits that are the result of the peer review, not the original commits),

and many merged pull requests appear as non-merged. The user related perils

concern the fact that not all activity is due to registered users, and only the user’s

public activity is visible. Nevertheless, approximately half of GitHub’s registered

users do not work in public repositories.

In conclusion, the study has shown that the GitHub API exposes either a

subset of events or all data entities and that GitHub continues to evolve and it

has changed some features and provided new ones. Similarly, the projects evolve

and are capable of changing their own history. Finally, one project can be subject

to more than one perils.

The social coding site GitHub provides developers with many management

tools to facilitate project maintenance and developer collaboration. Milestone

tool, in particular, plays an important role in organizing and tracking progress on

groups of issues and pull requests in a project. Milestone tool acts as a container for

24

Analysis of usage of Continuous Integration practices in open-source projects

issues and pull requests, corresponding to specific features or project phases. Using

this tool, developers can easily file bugs that need to be fixed before launching the

beta of the project. Also, developers can easily file issues that they would like to

work on to focus their efforts or file issues related to redesigning the project to

collect ideas.

A recent research [14] has investigated the use of the milestone tool in GitHub

open-source projects, to find its benefits and limits. First, some data were collected

by using the GHTorrent and GitHub API V3, which yielded 184 464 projects. The

study asks the following questions:

• How many projects used the milestone tool in their development history?

• Do certain types of projects tend to use milestone tool more than others?

• What is the relationship between the usage of milestone tool and project

outcomes?

• Are the milestone setting details associated with the milestone completion

time?

The findings are that nearly 20% of GitHub analyzed projects used milestone

tool in their development history, which means that many projects did not use

the milestone tool, although it is automatically set up for them. Also, since the

project creation, 73.5% of the projects need more than one month to create their

first milestone.

Moreover, there is no obvious correlation between the project programming

language and the milestone tool’s usage, but projects that have been created for

a long time tend to use the milestone tool, depending largely on the size of the

tasks that need to be processed. Besides, projects that are small, unsuccessful,

or developed by small teams, may not use the milestone tool to manage issues

and pull requests, because they may not use the GitHub issue tracking system or

25

Analysis of usage of Continuous Integration practices in open-source projects

not have too many issues or pull requests. Also, projects with milestone tend to

release more than projects without milestone, and are associated with more stars.

According to the research, the most common reason for developers using the

milestone tool is that it helps developers focus their attention and efforts on im-

portant things, and many developers want to use milestone tool to communicate

to users, which indicates that the current milestone tool has benefits in terms of

work efficiency, visibility, and collaboration. On the other side, the most common

reasons for developers not using the milestone tool are that their projects don’t

have many issue data and they are not familiar with milestone tool, which has

limitations in terms of operability, functionality, and maintenance. When using

the milestone tool, developers would like the milestone tool to be both powerful

and easy to manage and maintain. This can cause some tension, since adding

feature/support tends to increase complexity and simplification may reduce func-

tionality.

2.3 Continuous integration

2.3.1 General usage

The impact of CI on the software development process is a topic of active research.

Research published in 2016 studies the usage of CI in open-source projects,

analyzing 34,544 open-source projects from GitHub. [10] They answer several

research questions grouped into three themes:

1. Usage of CI

2. Costs of CI

3. Benefits of CI

26

Analysis of usage of Continuous Integration practices in open-source projects

In particular, we are interested in the questions belonging to the first category,

that are:

RQ1: What percentage of open-source projects use CI?

RQ2: What is the breakdown of usage of different CI services?

RQ3: Do certain types of projects use CI more than others?

RQ4: When did open-source projects adopt CI?

RQ5: Do developers plan on continuing to use CI?

The study found that 40% of all the projects in breadth corpus use CI. With

regard to services, according to the research Travis CI is, by far, the most widely

used CI service. Because of this result, the study’s further analysis focus on the

projects that use Travis CI as a CI service. The research shows that most popular

projects (as measured by the number of stars) are also the most likely to use CI.

The answer to RQ4 is that the median time for CI adoption is one year. Finally,

the study predicts that in the future CI adoption rates will increase even further.

A recent study [5], in particular, addresses the impact of CI on a paradigmatic

socio-technical activity within the software engineering domain, namely code re-

views. Basically, it aimed at seeing how pull request review discussions changed

after the introduction of CI, by using a dataset of code reviews (pull request discus-

sions) from a sample of 685 Github open-source projects that adopted Travis-CI as

their sole CI service at some point in their history. The notion of code inspections

to improve software quality was introduced by Fagan in 1976, who describes a pro-

cess of line-by-line inspection of source code during team-wide meeting, requiring

a significant amount of human effort.

The study addresses the following research questions:

• How does the amount of communication during pull request reviews change

with the introduction of CI?

• How does the amount of updates to pull requests after they have been opened

27

Analysis of usage of Continuous Integration practices in open-source projects

change with the introduction of CI?

Overall, the study shows that on average and while controlling for other vari-

ables such as pull request updates after creation, there is a less general discussion

of pull requests overtime after adopting CI.

Also, a previously increasing trend in the number of line-level review comments

made during pull request reviews is, on average, reversed after CI adoption, just

like the trend in the number of change-inducing review comments.

Finally, the outcome of the pull request review process, measured in terms of

subsequent code changes made during a pull request review, does not change on

average after adopting CI. The apparent hand-off gives rises to the idea of contin-

uous integration as a silent helper, where some of the tasks traditionally executed

by human reviewers are now carried out by CI, leading to fewer discussions in

code reviews.

Recent research has shown that a considerable amount of development time is

invested in optimizing the generation of builds. An empirical study of the long

duration of continuous integration builds [8] has investigated which factors are

associated with the long duration of CI builds, using 67 GitHub projects that

are linked with Travis CI. The research questions of the study are the following:

• What is the frequency of long build durations?

• What are the most important factors to model long build durations?

• What is the relationship between long build durations and the most impor-

tant factors?

The findings are that over 40% of the considered builds took over 30 minutes to

run and that only 16% of the builds had durations under 10 min. According to the

research, build durations have a strong association with CI build factors, such as

28

Analysis of usage of Continuous Integration practices in open-source projects

the build triggering time, the number of times to rerun failing commands, caching,

and finishing as soon as the required jobs finish. Indeed, findings Configuring CI

builds to finish as soon as the required jobs finish is most likely to be associated

with short build durations. Moreover, caching content that does not change often

has a strong inverse association with long build durations. Finally, maintaining

a stable build status has also a strong association with long build durations, but

with a negligible reduction in the build failure ratio.

A recent work [12] aimed at improving the robustness and efficiency

of Continuous Integration and Deployment, detecting some problems related to

CI services, such as misconfiguration of CI environments, misinterpretation of CI

results, and inefficient use of CI resources. A typical CI service has different

nodes for creating build jobs, processing them, and reporting on the outcome.

Nevertheless, configuring job processing nodes is complex. The study addresses

the following research questions:

• How are features in CI/CD environments being used?

• How are features in CI/CD environments being misused?

• To what extent are noise and heterogeneity present in off-the-shelf CI/CD

outcome data?

• Is CI/CD queuing time a problem? If so, how can it be improved?

• Can CI/CD be accelerated without relying on the build dependency graph?

The study found that 48% of the studied TravisCI specification code is instead

associated with configuring job processing nodes. This shows that the developers

rarely use CI/CD services for CD, despite CI/CD service providers supporting

the deployment to many popular cloud services including AWS, AZURE, and

29

Analysis of usage of Continuous Integration practices in open-source projects

HEROKU. For this reason, the study proposes Gretel, an anti-pattern removal

tool for TravisCI specifications, which can remove 70% of the most frequently

occurring anti-pattern automatically.

Moreover, CI/CD outcome data, used by software practitioners and researchers

when building tools and proposing techniques to solve software engineering prob-

lems, can be used “off the shelf” without checking for noise and complexity. The

study shows that one in every 7 to 11 builds is incorrectly labeled. This noise may

influence analyses based on CI/CD outcome data, suggesting that noise needs to

be filtered out before subsequent analyses of CI/CD outcome data.

Furthermore, the results of the CI/CD builds could be delayed due to waiting

time in the queues of CI/CD service providers and bottlenecks in the execution of

CI/CD jobs, so to improve overall CI/CD performance queuing and job execution

time needs to be reduced. Queuing time can be improved by evaluating different

queuing algorithms under historical CI/CD service workload conditions while re-

garding execution time, a large-scale empirical evaluation of the job decomposition

solution by comparing the duration of accelerated CI/CD builds of a sample of

projects to baselines from popular CI/CD service providers can be performed.

2.3.2 Bad Practices

Continuous Integration (CI) has been claimed to introduce several benefits in

software development, including high software quality and reliability. However,

recent work pointed out challenges, barriers, and bad practices characterizing its

adoption.

A mostly quantitative analysis [7] investigated a set of CI bad practices that

are employed in open source projects, related to the use of CI with infrequent

commits on the master branch, in a software project with poor test coverage,

with builds that remain broken for long periods for time, and with builds with

30

Analysis of usage of Continuous Integration practices in open-source projects

considerably long duration. These bad practices constitute what is known as

the “Continuous Integration Theater”. The study found that, in general, 60%

of the projects in the considered dataset, curated by TravisTorrent, suffer from

infrequent commits. In particular, half of Java have infrequent commits, which

may hinder software development activities. With regard to build test coverage,

although the overall coverage was 78%, the coverage of Java and Ruby projects

differs greatly. The average code coverage of Ruby projects was 86%, whilst for

Java projects, it was 63%. This suggests that although poor test coverage exists, a

significant number of studied projects take care of their code coverage. Also, 85%

of the analyzed projects have at least one build that took more than four days to be

fixed. Interestingly, it was observed that large projects have less long broken builds

than smaller projects. Finally, the study discovered that only 16% of the projects

do not adhere to the 10 minutes rule of thumb for build duration. However, when

considering Java large projects, the landscape changes significantly: 52% of them

take more than 10 minutes.

The closest work to ours is by Zampetti et al.[13]. They performed an empirical

characterization of bad practices in Continuous Integration, aimed at investigating

what bad practices developers incur when using CI in their daily development

activities. The investigation has been conducted by leveraging semi-structured

interviews of 13 experts and mining more than 2,300 Stack Overflow posts. In

particular, the goal of the study is to identify the bad smells developers incur

when adopting CI and assess the perceived importance of such bad smells.

The study aims at addressing the following research questions:

• What are the bad practices encountered by practitioners when adopting CI?

• How relevant are the identified CI bad smells for developers working in CI?

• How our pieces of evidence confirm/contradict/complement the existing CI

31

Analysis of usage of Continuous Integration practices in open-source projects

pattern/antipattern catalog by Duvall (2011)?

79 CI bad smells emerged from the investigation, grouped into 7 categories

related to different dimensions of CI pipeline management:

Repository : groups bad smells concerning a poor repository organization, and

misuse of version control system (VCS) in the context of CI. Some smells

deal with problems related to the repository structure which may affect the

modularity of CI solutions; then, there are bad smells about branch misuses;

finally, some smells concern the poor choice of configuration items.

Infrastructure Choices : groups bad smells related to a sub-optimal choice of

hardware or software components while setting a CI pipeline. Hardware

issues are mainly related to a poor allocation of the CI process across hard-

ware nodes that could overload development machines or lose scalability,

while software-related bad smells concern poor tool choices and configura-

tion.

Build Process Organization : This category, the one with the largest number

of bad smells (29), features CI bad smells related to a poor configuration

of the whole CI pipeline. Some of such bad smells are related to the CI

environment’s initialization.

Build Maintainability : Since build configuration files often change over time

and their changes induce more relative churn than source code changes,

their maintainability is also an important concern. Problems can arise when

a build configuration is coupled with a specific workspace, or when the build

script is poorly commented, uses meaningless variable names, and modular-

ity is not used when it should be.

Quality Assurance : This category relates to CI bad smells that are linkable

to testing and static analysis phases. Bad smells related to testing are due

32

Analysis of usage of Continuous Integration practices in open-source projects

to the lack of optimization for testing tasks within a CI pipeline. Moreover,

this category features smells related to how the test coverage thresholds are

set.

Delivery Process : This category of bad smells concerns the storage of artifacts

related to a project release. Furthermore, this category includes bad smells

related to software release in the production environment.

Culture : This category includes bad smells whose symptoms might not be in-

ferred by observing the CI pipeline, but are more human-related. They deal

with the lack of a shared culture on how developers should behave when

adopting CI. These include bad push/pull practices, e.g., pushing changes

before a previous build failure is being fixed; poor prioritization of CI-related

activities including the fixing of build failures, and Dev/Ops separation.

In the table below we list some of the bad smells identified, that we took into

consideration in our analysis.

ID Category CI Bad Smell

BP3 Build Process Organization Wide and inchoesive build jobs
are used

BP4 Build Process Organization Monolithic builds are used in
the pipeline

BP14 Build Process Organization Use of nightly builds

BM1 Build Maintainability Absolute/machine-dependent
paths are used

BM3 Build Maintainability Environment variables are not
used at all

BM8 Build Maintainability

Missing/Poor
strict
naming
convention for build jobs

33

Chapter 3

Technology

3.1 Node.js

The entire project was realized using Node.js, an open-source, cross-platform,

JavaScript runtime environment that executes JavaScript code outside a web

browser.

Though .js is the standard filename extension for JavaScript code, the name

"Node.js" doesn’t refer to a particular file in this context and is merely the name

of the product.

Figure 3.1: Node.js logo

Node.js has an event-driven architecture capable of asynchronous I/O. These

design choices aim to optimize throughput and scalability in web applications with

many input/output operations, as well as for real-time Web applications.

Node.js was written initially by Ryan Dahl in 2009, about thirteen years af-

ter the introduction of the first server-side JavaScript environment, Netscape’s

34

Analysis of usage of Continuous Integration practices in open-source projects

LiveWire Pro Web. The initial release supported only Linux and Mac OS X. Its

development and maintenance were led by Dahl and later sponsored by Joyent.

In June 2011, Microsoft and Joyent implemented a native Windows version of

Node.js. The first Node.js build supporting Windows was released in July 2011.

3.1.1 Advantages of Node.js

1. Node.js is an open-source framework under MIT license. (MIT license is a

free software license originating at the Massachusetts Institute of Technology

(MIT).)

2. Uses JavaScript to build the entire server-side application.

3. Lightweight framework that includes bare minimum modules. Other mod-

ules can be included as per the need of an application.

4. Asynchronous by default. So it performs faster than other frameworks.

5. Cross-platform framework that runs on Windows, MAC or Linux

3.1.2 NPM

In January 2010, a package manager was introduced for the Node.js environment

called npm. The package manager makes it easier for programmers to publish

and share the source code of Node.js packages and is designed to simplify the

installation, updating, and uninstallation of packages.

Figure 3.2: Npm logo

35

Analysis of usage of Continuous Integration practices in open-source projects

Recapping, NPM is a package manager for Node.js packages or modules, and

it is installed on your computer when you install Node.js. A package in Node.js

contains all the files you need for a module, a JavaScript library you can include

in your project. Downloading a package is very easy:

npm i n s t a l l package_name

3.1.3 Used libraries

Below we list the libraries that we used for the project, installed using the NPM

program.

• fs: a module that provides a lot of very useful functionality to access and

interact with the file system. There is no need to install it.

• readline: a module providing a way of reading a data stream, one line at a

time.

var r e ad l i n e = r equ i r e (’ l i n e by l i n e ’) ,

r l = r e ad l i n e (’ . / s ome f i l e . txt ’) ;

r l . on (’ l i n e ’ , f unc t i on (l i n e , l ineCount , byteCount) {

// do something with the l i n e o f t ex t

})

. on (’ e r ro r ’ , f unc t i on (e) {

// something went wrong

}) ;

• node-fetch: a light-weight module that brings window.fetch to Node.js.

• axios: promise-based HTTP client for the browser and node.js

• path: provides utilities for working with file and directory paths.

36

Analysis of usage of Continuous Integration practices in open-source projects

• yaml: yaml is a JavaScript parser and stringifier for YAML, a human

friendly data serialization standard. [3] It supports both parsing and stringi-

fying data using all versions of YAML, along with all common data schemas.

As a particularly distinguishing feature, yaml fully supports reading and

writing comments and blank lines in YAML documents.

The library is released under the ISC open source license, and the code is

available on GitHub. It has no external dependencies and runs on Node.js

6 and later, and in browsers from IE 11 upwards.

The API provided by YAML has three layers, depending on how deep you

need to go: Parse & Stringify, Documents, and the CST Parser. The first

has the simplest API and "just works", the second gets you all the bells and

whistles supported by the library along with a decent AST, and the third is

the closest to YAML source, making it fast, raw, and crude.

Finally, to include the installed modules, use the require() method as follows:

const f s = r equ i r e (’ f s ’) ;

const r e ad l i n e = r equ i r e (’ r e ad l i n e ’) ;

const f e t ch = r equ i r e (’ node−f e tch ’) ;

const ax io s = r equ i r e (’ ax ios ’) ;

const path = r equ i r e (’ path ’) ;

const yaml = r equ i r e (’ yaml ’) ;

3.2 GitHub Api

The accomplishment of our goal was possible mainly thanks to the use of API

Rest GitHub v3. [2]

By default, all requests to https://api.github.com receive the v3 version of the

REST API. All API access is over HTTPS and accessed from https://api.github.com.

37

Analysis of usage of Continuous Integration practices in open-source projects

All data is sent and received as JSON.

When you fetch a list of resources, the response includes a subset of the at-

tributes for that resource. This is the "summary" representation of the resource.

When you fetch an individual resource, the response typically includes all at-

tributes for that resource. This is the "detailed" representation of the resource.

3.2.1 Authentication

There are two ways to authenticate through GitHub API v3, to prevent the acci-

dental leakage of private repositories to unauthorized users:

1. Basic authentication: using GitHub username

2. OAuth2 token: a token sent in a header.

The one used in this project is the OAuth2 token : you can generate a per-

sonal access token for quick access to the GitHub API by going in your GitHub

account/settings/developer settings/personal access tokens. The token was used

to make the calls to Api GitHub in the following way:

const headers ={

"Author i zat ion " : ’Token putyourtokenhere ’

}

3.2.2 Pagination

Requests that return multiple items will be paginated to 30 items by default. You

can specify further pages with the ?page parameter. For some resources, you can

also set a custom page size up to 100 with the ?per_page parameter.

38

Analysis of usage of Continuous Integration practices in open-source projects

3.2.3 Search

The Search API helps you search for the specific item you want to find. For

example, you can find a user or a specific file in a repository. Think of it the way

you think of performing a search on Google. It’s designed to help you find the one

result you’re looking for (or maybe the few results you’re looking for). Just like

searching on Google, you sometimes want to see a few pages of search results so

that you can find the item that best meets your needs. To satisfy that need, the

GitHub Search API provides up to 1,000 results for each search. However, it is

possible to narrow your search using queries, as we will see in the next chapter.

Each endpoint in the Search API uses query parameters to perform searches

on GitHub. See the individual endpoint in the Search API for an example that

includes the endpoint and query parameters.

A query can contain any combination of search qualifiers supported on GitHub.com.

The format of the search query is:

q=SEARCH_KEYWORD_1+SEARCH_KEYWORD_N+QUALIFIER_1+QUALIFIER_N

The Search API does not support queries that:

• are longer than 256 characters (not including operators or qualifiers).

• have more than five AND, OR, or NOT operators.

These search queries will return a "Validation failed" error message.

3.2.4 Rate limiting

For API requests using Basic Authentication or OAuth, you can make up to 5000

requests per hour. Authenticated requests are associated with the authenticated

user, regardless of whether Basic Authentication or an OAuth token was used.

This means that all OAuth applications authorized by a user share the same quota

39

Analysis of usage of Continuous Integration practices in open-source projects

of 5000 requests per hour when they authenticate with different tokens owned by

the same user.

However, the Search API has a custom rate limit: for requests using Basic

Authentication, OAuth, or a client ID and secret, you can make up to 30 requests

per minute; for unauthenticated requests, the rate limit allows you to make up to

10 requests per minute.

3.2.5 Example

In conclusion of this chapter, we show an example of GitHub API Search query

and corresponding JSON result:

Figure 3.3: Query GitHub Api and JSON result using Postman

40

Chapter 4

Preliminar study

Continuous Integration is becoming one of the biggest success stories in automated

software engineering. CI systems automate the compilation, building, testing, and

deployment of software. Despite the growth of CI, to the best of our knowledge,

the last published research paper related to CI usage dates back to 2017 [10]. For

this reason, we decided to conduct an empirical study to study how the usage of

CI changed in the past years.

4.1 Research questions

This work aims to study the usage of CI in open-source projects in the last years.

We analyzed open-source projects from GitHub to answer the following research

questions:

• RQ1: How frequently is CI practice used in open-source projects?

• RQ2: What is the breakdown of usage of different CI services?

41

Analysis of usage of Continuous Integration practices in open-source projects

4.2 Objects

To answer the above questions, we analyzed GitHub repositories created from 2018

on, and applying a filter that considers only the ones with more than 100 stars,

we studied 43193 repositories overall.

Figure 4.1: Date ranges from 2018 to nowadays

4.3 Variables

For the first research question, we don’t have variables: we just set some parame-

ters, such as year of creation and number of stars for the project.

The second research question has type of CI service as independent variable,

and frequence of occurence of that service in GitHub repositories (still created

after 2018 and having more than 100 stars) as dependent variable.

42

Analysis of usage of Continuous Integration practices in open-source projects

4.4 Experimental procedure

Due to GitHub API limits, we first performed some queries using Postman, to see

how many repositories with more than 100 stars are created on average daily, to

establish what ranges (of how many days) we need to consider to not exceed the

limit.

Then, we wrote a script, named "getRepos.js" , that uses GitHub Api to ob-

tain repositories created in the considered ranges. To do this, we performed the

following query:

const api_url = " https : // api . g ithub . com" ;

const query = (api_url + "/ search / r e p o s i t o r i e s ?q=s t a r s :>=100");

We saved the names of the 43193 repositories, as showed in the figure 4.2, in

"repos_100stars_2018-2020.txt" file.

Then, we wrote another script, "getYamlsPaths.js" , that reads the names of

repositories from the file above, and checks if they contain at least one YAML file,

thanks to the following query:

const yaml = (api_url + "/ search /code ?q=language : yaml+repo : ") ;

43

https://github.com/EwelinaJ10/CI_thesis/blob/master/getRepos.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/repos_100stars_2018-2020.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/getYamlsPaths.js

Analysis of usage of Continuous Integration practices in open-source projects

Figure 4.2: Names of repositories with more than 100 stars created from 2018 on

However, since projects use YAML language not only for CI but also for other

purposes, we applied another filter, by code, that considers only the YAML files

containing specific words in their paths. About that, according to the study [10],

the four CI services that we were able to readily identify manually and later by

our script are Travis CI, CircleCI, AppVeyor, and Wercker. Moreover, we added

another CI tool, introduced after this study, that is GitHub actions. Indeed, the

tools listed above can be easily identified, since they presuppose that YAML files

contain specific words in the name (Travis, appveyor, wercker), or are collocated

in a specific path (.circleci/, .github/workflows).

After identifying the files’ paths, we saved them in an appropriate file, as we

can see in figure 4.3.

44

Analysis of usage of Continuous Integration practices in open-source projects

Figure 4.3: YAML files’ paths

Then, we classified the different YAML files with "downloadYamls.js" script,

downloading and putting them in the appropriate folders. To do this, we used

some simple classification rules, mainly based of the presence of a particular word

in the file’s path, as shows figure 4.4:

Figure 4.4: Some adopted classification rules

45

https://github.com/EwelinaJ10/CI_thesis/blob/master/downloadYamls.js

Analysis of usage of Continuous Integration practices in open-source projects

Doing so, the files will be downloaded and saved in the proper folder, which

represents the adopted CI service, and we can use them for further analysis.

Figure 4.5: GitHub actions yamls Figure 4.6: Wercker yamls

46

Analysis of usage of Continuous Integration practices in open-source projects

Figure 4.7: Appveyor yamls
Figure 4.8: Circle yamls

Figure 4.9: Travis yamls
47

Analysis of usage of Continuous Integration practices in open-source projects

4.5 Results

In this section, we present the results of our research questions.

RQ1: How frequently CI practice is used in open-source projects?

Project uses CI? Percentage of projects Number of projects
Yes 9,09% 3930
No 90,91% 39263

Table 4.1: Percentage of analyzed projects using CI

First of all, regarding the first research question, we found that only 9,09% of

the considered projects, so 3930 of them, use CI. That means that this practice is

still not very used in open-source projects.

RQ2: What is the breakdown of usage of different CI services?

CI services used in Github projects
Service Number of projects Percentage of projects
Travis 2053 52,2%
Github actions 1073 27,3%
Circle 408 10,4%
Appveyor 373 9,5%
Wercker 23 0,6%

Table 4.2: Percentage of usage of differents CI services

Next, we investigated which CI services are the most widely used in 3930

projects that resulted to use CI practice. Of those 3930 projects, we identified

2053 projects that use Travis CI, 1073 use the GitHub actions tool, 408 use Circle,

373 use AppVeyor, and 23 use Wercker.

Therefore, as figure 4.10 shows, Travis CI is by far the most widely used CI

service, with 52,2% of projects using this tool, as a confirmation of the previous

studies.

48

Analysis of usage of Continuous Integration practices in open-source projects

However, the percentage of usage of this tool decreased after the introduction

of GitHub actions, which is the second most used CI tool, with 27,3%.

Figure 4.10: Usage of CI services in GitHub projects

On the other hand, only a minor percentage of projects uses tools like CircleCI,

AppVeyor, whereas tool like Wercker is almost not used at all, with only 0,6%.

4.6 Threats to validity

4.6.1 Internal

Is there something inherent to how we collect and analyze CI usage data that could

skew the accuracy of our results?

It must be said that, due to GitHub API limits, the execution of our scripts

required a longer amount of time, since we couldn’t perform many HTTP requests

49

Analysis of usage of Continuous Integration practices in open-source projects

in a certain period.

Therefore, since the execution of several scripts requires an internet connection,

and the execution was not monitored for the entire time, it could be that in some

moments, due to bad internet connection, was impossible to perform a proper

analysis.

4.6.2 External

Are our results generalizable for general CI usage?

We are aware that our scripts do not find all CI usage (e.g., projects that run

privately hosted CI systems, or use different services from the ones considered in

this work). We can reliably detect the use of (public) CI services only if their

API makes it possible to query the CI service based on knowing the GitHub

organization and project name.

Moreover, we analyzed only a small part of projects, the ones with more than

100 stars, and created after 2018. Doing so, we are not taking in consideration

projects that were created before, but started to use CI practice later.

Therefore, the results we present are a lower bound on the total number of

projects that use CI.

Additionally, we only selected projects from GitHub. Perhaps open-source

projects that have custom hosting also would be more likely to have custom CI

solutions.

About RQ2, it must be said that a threat to the validity of this result could

be the fact that we considered the projects created starting from the beginning of

2018, whereas GitHub introduced the actions tool a little bit later, so the difference

between the percentage that uses Travis and the one that uses GitHub could be

different.

50

Chapter 5

Empirical study

From the results of our preliminary study, we decided to address further questions.

First, since the second most used CI tool resulted to be GitHub actions, and they

are already many existing studies about the first one, Travis, we decided to further

analyze the use of the tool introduced by GitHub.

5.1 Research questions

We want to answer the following research questions, that we grouped into 2 themes:

Theme 1: General usage

• RQ3: How much complex are CI GitHub actions files?

• RQ4: When do CI workflows of GitHub actions run?

• RQ5: What kind of tasks are performed by Github workflows?

• RQ6: How much complex are GitHub actions jobs?

Theme 2: Bad practices

• RQ7: How frequently does the job’s name not express what task has a job

to automate?

51

Analysis of usage of Continuous Integration practices in open-source projects

• RQ8: How frequently are GitHub actions used in GitHub workflows?

• RQ9: What is the usage of comments in Github actions?

• RQ10: What is the usage of job sequentiality in GitHub actions?

• RQ11: What is the usage of environment variables in GitHub actions?

• RQ12: What is the usage of absolute paths in GitHub actions?

• RQ13: How many bad practices can be found in GitHub actions files?

5.2 Objects

To answer the questions above we used the results from the preliminary study,

which are 1773 YAML files using GitHub actions as a CI tool, belonging to 1073

different repositories. However, since a later analysis found that 5 of them do

not contain any jobs, so are not used for CI purposes, we analyzed 1768 GitHub

YAML files.

5.3 Variables

RQ Independent variable Dependent variable
RQ3 Number of jobs in a file Number of files with a certain number of jobs
RQ4 Trigger event Number of files containing that trigger event
RQ5 Names of jobs Number of jobs with that name
RQ6 Number of steps in a job Number of jobs having that number of steps
RQ6 Number of lines per job Average number of lines per job
RQ7 Job’s name significance Number of jobs having not significant name
RQ8 Usage of Github actions Number of files using github actions
RQ9 Absence of comments Number of files not having comments
RQ10 Usage of sequentiality Number of files using sequential jobs
RQ11 Absence of environment variables Number of files not using environment variables
RQ12 Presence of absolute paths Number of files containing absolute paths
RQ13 Number of bad practices Number of files containing that number of bad practices

52

Analysis of usage of Continuous Integration practices in open-source projects

For the RQ3, the independent variable is represented by the number of jobs in a

file, whereas the dependent variable is the number/percentage of files having that

number of jobs.

To answer the RQ4, we use type of trigger event as independent variable,

while the dependent variable is the number/percentage of files in which that event

is contained.

To answer the RQ5 we use the names of jobs as independent variable to classify

the jobs, and the percentage of jobs belonging to a certain class as dependent one.

For the RQ6, the independent variable is represented by the number of steps

in a job, whereas the dependent variable is the number/percentage of jobs having

that number of steps.

The independent variable for the RQ7 is represented by job’s name significance,

whilst the dependent variable is the amount of jobs having not significative names.

We address this research question as one of the bad smells in [13], belonging

to Build Maintainability category, is "Missing/Poor strict naming convention for

build jobs".

To answer the RQ8 we use the usage of GitHub actions as independent variable,

and the number/percentage of files that do/do not use Github actions as dependent

one.

One of the bad smells listed in [13] it that "the build script is poorly com-

mented". For this reason, we decided to address RQ9 and see if this bad smell can

be also encountered in GitHub actions files. For the RQ9, the independent variable

is represented by the absence of comments in a project, whereas the dependent

variable is the number/percentage of projects not using comments.

For the RQ10, the independent variable is the usage of sequential jobs, while

the dependent variable is represented by number of files using sequential jobs.

As another bad smell in CI usage identified by [13] is that "Environment vari-

ables are not used at all", we decided to address RQ11, so to analyze what is the

53

Analysis of usage of Continuous Integration practices in open-source projects

usage of environment variables in GitHub yamls. The independent variable for

this question is the absence of environment variables, and the dependent variable

is the number of files that do not use environment variables, which is considered

a bad practice.

Finally, as "Absolute/machine-dependent paths are used" bad smell has a

high perceived relevance, considering that their presence will unavoidably limit

the portability of the build resulting in statements such as "but it works on my

machine", according to [13], we address the RQ12, for which the independent vari-

able is the presence of absolute paths in GitHub files, while the dependent one is

represented by the number of files containing absolute paths.

In conclusion, we decided to analyze how many of the above bad practices are

present in each file, so we address the RQ13. For this last research question, we

considered the number of bad practices as independent variable, and number of

files containing that number of bad practices as dependent one.

5.4 Experimental procedure

As we mentioned above, to answer the research questions above we used the 1768

files contained in the folder "github_yamls" .

In particular, the script "getJobs.js" writes in "jobs_github_numbers.txt" file

the number of jobs for every file contained in the considered folder, in order to

answer the RQ3. The count of jobs was possible thanks to the yaml library, which

allows parsing the files to YAML format.

A similar procedure was used also for the RQ4, in "getTriggerEvents.js" file,

where we wrote all the trigger events present in github files in "trigger_events.txt"

file.

To answer the RQ5, we classified the 2609 jobs found in github considered

yaml files. The classification is performed by "classifyJobs.js" file, and is based

54

https://github.com/EwelinaJ10/CI_thesis/tree/master/yamls/github_yamls
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getJobs.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_github_numbers.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/trigger_events.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/classifyJobs.js

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.1: A fragment from "getJobs.js" script

Figure 5.2: A fragment from "getJobs.js" script

55

Analysis of usage of Continuous Integration practices in open-source projects

on the jobs’ names or/and ids. In case these information are not significant, we

took into consideration also the file’s name. We sum up the classification rules in

the tables below:

Job’s classes
Generic CI Documentation Build Install Quality assurance
CI, sync,
generate, stale,
issues, push,
invite, rebase,
label, run,
nightly, setup,
notification, notify,
purge-cache, license,
clean, execute

documentation,
docgen, docs,
comment

build install

test, check,
quality, bench,
qA, audit,
fuzz

Job’s classes
Integration test Unit test White-box test Static analysis Acceptance test

integration-test unit-test codecov,
coverage

lint, clang,
sonar, findbugs,
validate, verify,
scanner, flake,
static-analysis

acceptance

Job’s classes
Release Deploy Update Refactoring Hello-world

release,
publish

deploy, deliver,
docker, prepare,
macOS, windows,
ubuntu, linux

update format, prettier,
style, whitespace

hello-world,
greetings

In the tables above we can see the different job classes taken into consideration,

and the words that need to be contained in job’s name/id to affirm the job belongs

to that class.

The considered rules allow classifying 92,99% of jobs, whereas 7,01% of them

remain unclassified.

To answer the RQ6, the "getSteps.js" file calculates the number of steps for

every job, , and writes the results in "jobs_steps_number.txt" file. Plus, we also

56

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getSteps.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_steps_number.txt

Analysis of usage of Continuous Integration practices in open-source projects

wrote getRowsPerJob.js file. It considers each YAML file as an array of strings,

represented by lines. Then, it considers the index of every job’s id in this array.

Again, it performs the subtraction between each index to see how many lines every

job contains. Note that to calculate the number of rows of the last job the index

of the last row of the file is considered. The numbers of rows per job of a file are

written in rows_per_job.txt file.

To answer the RQ7 we used another script, "analyzeJobsNames.js", that is

quite similar to the "classifyJobs.js" file. It reads from the "jobs_id_name_file.txt"

the job’s names and ids, and it writes to the "jobs_names_significance.txt" all

the jobs, specifying if they are significant or not. The significance is given by the

presence of the different words that we used for the job classification, that we can

see in the tables.

To see how frequently are GitHub actions used, and answer the RQ8, the

"getActions.js" file was written. It analyzes every file contained in github_yamls

folder, and writes in "use_of_actions.txt" file if they use or not Github actions.

The getRowsComments.js file counts first the number of rows per file, and

next to the number of rows starting with "#", that is comment’s indicator in

GitHub Yaml files, to answer the RQ9. It writes the results in number_of_rows_

and_comments_per_file.txt file.

To answer RQ10, getNeeds.js file writes in jobs_needs.txt file the number of

"needs" occurrences (that is the indicator of sequentiality between jobs) per file,

and the number of jobs in that file, to see the kind of sequentiality that is used.

Regarding RQ11, first of all, we saw that environment variables in GitHub

actions can be used in 3 different ways:

1. A map of environment variables that are available to all jobs and steps in

the workflow.

2. A map of environment variables that are available to all steps in a single

57

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getRowsPerJob.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/rows_per_job.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/analyzeJobsNames.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_id_name_file.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_names_significance.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getActions.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/use_of_actions.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getRows%26Comments.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/number_of_rows_and_comments_per_file.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/number_of_rows_and_comments_per_file.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getNeeds.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_needs.txt

Analysis of usage of Continuous Integration practices in open-source projects

job.

3. A map of environment variables that are available only to a single step.

For this reason, getEnvVariables.js file has 3 functions: "analyzeGenEnv",

"analyzeJobsEnv", and "analyzeStepsEnv". It writes per each file if it uses one of

the three kinds of environment variable in use_of_env_variables.txt file.

Finally, to get an answer to RQ12, first of all is important to understand the

difference between an absolute path and a relative one:

Absolute path: An absolute path is defined as specifying the location of a file

or directory from the root directory(/). In other words, we can say the

absolute path is a complete path from the start of the actual filesystem from

/ directory. We can use an absolute path from any location.

Relative path: A relative path is defined as path related to the present working

directory. If you want to use a relative path we should be present in a

directory where we are going to specify relative to that present working

directory.

The file getPaths.js checks, for each YAML file, if they contain an absolute

path, and writes in the output file, paths.txt , the number of the absolute paths

detected and the paths themselves. It allowed a further visive analysis, that found

some false positives, which led to some changes in js file. Indeed, we avoided

considering some particular combinations of characters.

In the conclusion of our analysis, we decided to address RQ13, and see how

many of the above discussed bad practices can be found at the same time in

GitHub actions files. To reach this goal, getBadPractices.js file was written.

Mainly, the file reports the scripts already written as sub-functions, and cal-

culates for each yaml file how many of the bad practices described above are

contained in it. So, it has the following functions, called for each file:

58

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getEnvVariables.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/use_of_env_variables.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getPaths.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/paths.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getBadPractices.js

Analysis of usage of Continuous Integration practices in open-source projects

• getComments()

• getActions()

• getEnvironmentVariables()

• getAbsolutePaths()

• getJobsNamesSignificance()

We don’t report the procedure of these functions, since they are quite similar

to the scripts described above.

The goal is to find how many of these bad practices can be found simultaneously

in a file.

5.5 Results

RQ3: How much complex are CI GitHub actions files?

Number of jobs in GitHub YAML files
Number of jobs Percentage of files Number of files
1 82,5% 1412
2 10,4% 178
3 1,2% 77
4 2,6% 45
5 or more 3,3% 56

Table 5.1: Number of jobs in GitHub actions YAML files

We measured the complexity of Github actions files counting the number of

jobs that they contain. The result was that: 82,5% of files contain 1 job, 10,4%

contain 2 jobs, 1,2% contain 3 jobs, 2,6% contain 4 jobs, and 3,3% contain 5 or

more jobs.

Since the vast majority of files resulted to contain only one job, as the table

5.1 and the figure 5.3 show, we decided to study what are the names of these jobs.

59

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.3: Number of jobs in GitHub actions files

The result, that we wrote in "job_names.txt" file, was that the majority of them

containt "build" in their names (build*), which means that their only purpose is

to automatize the building process. We can see the most common words present

in single jobs’ names in the bar graph below:

RQ4: When do CI workflows of GitHub actions run?

Trigger events in github actions files
Trigger event Number of files Percentage of files
push 1344 76,01%
pull_request 888 50,22%
schedule 167 9,44%
issues 121 6,84%
repository_dispatch 35 1,97%
release 33 1,86%
others 24 1,35%

Then we investigated what are the trigger events more widely used in Github

60

https://github.com/EwelinaJ10/CI_thesis/blob/master/job_names.txt

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.4: Names of single jobs

actions files. The result that we can see in figure 5.5 is that the two more frequently

used events are push and pull_request. It means that the vast majority of

workflows are configured to run after local changes are pushed to online repository,

or once a pull request is sent.

Moreover, a minor percentage of files use events such as schedule and issues.

A scheduled build either (unnecessarily) builds a change a second time or is a sign

that a change is not automatically built, which breaks the idea of always ensuring

a working system. We propose to warn about build configurations that schedule

builds. Finally, less than 2% use events such as repository_dispatch, release, or

others.

RQ5: What kind of tasks are performed by Github workflows?

To answer this question we used the classification rules describes above, and

61

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.5: Trigger events in GitHub actions files

we analyzed how frequently jobs belong to the proposed classes. The result is

shown below:

Job’s Classification
Class Number of jobs
Build 970
Quality assurance 599
Generic CI 309
Deploy 308
Release 276
Static analysis 152
Update 37
Refactoring 37
Integration test 31
Unit test 30
Documentation 30
White-box test 22
Install 11
Hello-world 11
Acceptance 2

62

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.6: Jobs’ classes

From figure 5.6 we can see that the most automated task by GitHub workflows

is the building activity. Also, many jobs are used to perform quality assurance.

The other tasks, least frequently used, are shown in the figure above.

RQ6: How much complex are GitHub actions jobs?

Steps in Github actions jobs
Number of steps Percentage of jobs Number of jobs
1 5,4 % 142
2 13,6 % 354
3 16,4 % 428
4 18,2 % 475
5 15,8 % 413
6 10,4 % 271
7 5,7 % 150
8 5,1 % 134
9 2 % 53
10 or more 7,2 % 189

63

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.7: Steps in github actions jobs

We measured the complexity of GitHub actions jobs counting the number of

steps that they contain. The result is shown in 5.7.

As we can see, only 5,4% of jobs have 1 step, so jobs with more than 1 step

are more frequent. This is reasonable if we think that a previous result, about the

number of jobs, reports that the majority of GitHub YAML files contain only one

job.

As another metric to analyze the job complexity, we asked "What is the average

number of lines per job in GitHub actions?"

64

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.8: Average number of lines per job as the number of jobs changes

Number of jobs Average number of lines per job
1 28
2 27
3 30
4 29
5 32
6 28
7 32
8 38
9 29
10 31

To answer this question we first calculate the number of rows per each job and

then carry out the calculation of the average. In particular, we first performed the

average calculation as the number of jobs changes, whose result is shown in the

table. Finally, an overall average was calculated, and the result was of 30 lines

per job, as we can see from the red line in figure 5.8.

65

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.9: Jobs’names significance

RQ7: How frequently does the job’s name not express what task has

a job to automate?

After the RQ5, we decided to analyze how frequently job names do not express

the task performed by the job, or more generically how frequently they are not

significant, considering it a bad practice.

The result of this research question is shown in the pie graph in 5.9.

From figure 5.9 we can see that 83,9% (2190 out of 2609) of jobs have significant

names, whereas the names of 16,1% (419 out of 2609) of jobs are not meaningful.

Note that the percentage of not significant jobs’ names is major than the per-

centage of unclassified jobs for the question RQ5, since for that question we took

into consideration also the file name, and since some classes are not considered as

significant now.

66

Analysis of usage of Continuous Integration practices in open-source projects

For the jobs whose names are considered not meaningful, we decided to do

further analysis, and see why they are not significant, and what they express.

This analysis is performed by the "analyzeNotSignificantNames.js" file.

We identified some common elements expressed by the jobs’ names instead of

the performed task, that are:

• Operating system

• Technology

• Language

Nevertheless, the vast majority of jobs do not even express one of the above-

listed parameters, so they are not really significant.

In conclusion, "The poor strict naming convention for build jobs" bad practice

is not really widespread in GitHub actions files.

RQ8: How frequently are GitHub actions used in GitHub workflows?

Usage of github actions Percentage of files Number of files
Yes 98,6% 1744
No 1,4% 24

As we can see from figure 5.10, 98.6% of files use GitHub actions, whilst only

a little percentage, 1,4% do not use this service.

On the one hand, the usage of this service increases reuse. On the other,

it leads to a major dependence on a service that evolves over time and greater

difficulty in portability.

For this reason, the usage of GitHub actions could be considered as a bad

practice. However, the result of the research shows that this service is still widely

used.

67

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.10: Usage of gihub actions in github workflows

RQ9: What is the usage of comments in GitHub actions?

Usage of comments Percentage of files Number of files
Yes 31% 548
No 69% 1220

To answer this question, we analyzed the "number_of_rows_and_comments

_per_file.txt" file, and we counted how many projects have 0 rows of comments,

so they do not use comments at all. The result is shown in figure 5.11. We

can see that 37,8%, so 669 out of 1768 projects use comments, whereas 62,2% of

them, so 1099 out of 1768, do not make use of comments. It means that a lot of

GitHub workflows do not contain comments inside, which is a bad practice, since

the projects are harder to understand.

68

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.11: Usage of comments in github actions files

Also, we analyzed the density of comments in GitHub actions files, so the ratio

between the number of comment lines and the total number of lines per file. The

result is shown in figure 5.12.

Density of comments Number of files
0 1086
0.1 437
0.2 109
0.3 71
0.4 32
0.5 25
0.6 7
0.7 1

In the conclusion of this RQ’s argumentation, we can see that the absence of

comments is clearly to be considered a bad practice. However, we cannot say

that their presence is a good practice since often they are used only to comment

portions of code, or for others not meaningful purposes.

69

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.12: Density of comments in gihub actions

RQ10: What is the usage of jobs sequentiality in GitHub actions?

To answer this research question, we considered only 356 files, so the ones with

at least 2 jobs. The study found that 219 out of 356 files do not use sequential

jobs, so they use the default jobs parallelism. On the other hand, 137 out of 356

files use jobs sequentiality, as we can see in figure 5.13.

We further analyzed these 136 files to find what kind of sequentiality is used.

We found that 96 out of 137 files use sequentiality between all of the jobs, whereas

others use jobs sequentiality, but not for all of them. The overall degree of paral-

lelism is shown in figure 5.14. As we can see, the mast majority, 1631 out of 1768

of files, have a null degree of sequentialism, which means they only use parallel

jobs.

70

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.13: Usage of sequential jobs in github actions files

Figure 5.14: Degree of sequentialism in github actions files

71

Analysis of usage of Continuous Integration practices in open-source projects

Sequential jobs/Total jobs Number of files
0 1631
0.1 2
0.2 10
0.3 13
0.4 3
0.5 69
0.6 4
0.7 26
0.8 6
0.9 4

For this RQ, we are not able to establish when it has to be considered bad

practice since it would require further analysis of the eventually wrong order of

job execution.

Indeed, according to [13], the problem dealing with having a sub-optimal or-

dering of tasks (BP7) in a build process is considered relevant by the survey’s

respondents. In other words, some build steps should be always performed before

others, e.g., integration testing should be scheduled before deployment in the pro-

duction environment to discover faults earlier. On the other hand, "Independent

build jobs are not executed in parallel" (BP5) is another possible bad smell related

to this RQ, that we can still properly analyze due to the absence of information.

RQ11: What is the usage of environment variables?

General usage Jobs usage Steps usage
No 1667 1677 1286
Yes 101 91 482

The result of this RQ shows that non-use of environment variables is really a

bad practice encountered by practitioners when adopting CI (in our case, across

YAML GitHub actions files).

In the table above we can see the number of files not using environment vari-

72

Analysis of usage of Continuous Integration practices in open-source projects

ables, the mast majority, and the ones that use environment variables, for each

of the ways environment variables can be used, listed above. As we can see in

the table, for the general usage of environment variables, so the ones that are

available to all jobs and steps in the workflow, 1667 out of 1769 files do not use

environment variables, whereas only 101 out of 1768 do. Again, 91 out of 1768

use environment variables visible only in all the steps of a single job. Finally, the

environment variables in a single step are the more widely used: indeed, 482 out

of 1768 files use this kind of environment variable, whereas 1286 do not, that is a

lower percentage if compared to the other ones.

In conclusion, in figure 5.15 we show the overall usage of environment variables.

As we can see, 1142 out of 1768 files, so 64,6%, do not use environment

variables at all. It confirms that this bad practice is spread when adopting CI

practice.

Moreover, we decided to see the average number of global and local variables in

GitHub actions YAML files. The result was an average of 0,14 global variables

per file, and 0,38 local variables per file. This confirms that environment

variables are not widely used when adopting CI.

73

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.15: Usage of environment variables in github actions files

RQ12: What is the usage of absolute paths in GitHub actions?

Project uses absolute paths? Percentage of files Number of files
Yes 9,9% 175
No 90,1% 1593

The result for this RQ was that 175 out of 1768, so 9,9% of files, have at

least one absolute path.

Also, we calculated the average number of absolute paths, and the result was

of 0,43 absolute paths per file.

It must be said that some of the found absolute paths are less "severe" than

others, such as "/dev/null", a special file that’s present in every single Linux

system: however, unlike most other virtual files, instead of reading, it’s used to

write. Whatever you write to /dev/null will be discarded, forgotten into the void.

It’s known as the null device in a UNIX system.

74

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.16: Usage of absolute paths in github actions files

Since build configuration files often change over time and their changes induce

more relative churn than source code changes, their maintainability is also an

important concern.

The high perceived relevance of such a bad smell is justified considering that its

presence will unavoidably limit the portability of the build resulting in statements

such as "but it works on my machine".

RQ13: How many bad practices can be found in GitHub actions files?

Number of bad practices Percentage of files Number of files
0 0,2% 3
1 9,5% 167
2 37,6% 665
3 42,1% 744
4 10,1% 179
5 0,5% 9

75

Analysis of usage of Continuous Integration practices in open-source projects

Figure 5.17: Bad practices per file

This section shows the result of the last RQ we addressed, whose purpose is

to see how many of the bad practices discussed in this work can be found in the

analyzed GitHub actions YAML files.

Note that we do not take into consideration the bad practice related to jobs’

sequentiality/parallelism, since, as we said before, we are not able to define when

this bad practice takes place. Therefore, the bad practices considered for this RQ

are:

• The absence of comments

• The presence of GitHub actions

• The absence of environment variables

• The poor jobs’ naming convention

• The presence of absolute paths

76

Analysis of usage of Continuous Integration practices in open-source projects

The result is shown in figure 5.17. As we can see, few files are containing all of

the above bad practices simultaneously (9 files containing 5 bad practices).

However, they’re also a few files not containing bad practices at all (only 0,2%,

which means 3 out of 1768 files). Indeed, the mast majority of files containing an

average of 3 bad practices (42,1%), followed by 37,6% of files containing 2 out

of 5 bad practices. The overall result is shown in the table above.

Downstream of the result, we decided to perform further analysis of the best

files (0 bad practices) and the worst ones (5 bad practices).

Best files

As is shown in the table, we found 3 "best files", so the ones with no bad

practices.

However, they are not really interesting, since they all have only one job, and

the average number of rows per file is 31. It is clear that with a low number of

rows it is easier to have a few bad practices.

Worst files

A more interesting analysis is the one conducted on the worst files. Here, the

average number of lines per files is 86. In the table below we listed their names:

Yaml files with 5 bad practices
ci.yml
tests.yml
test.yml
ci.yml
example-2.yml
main.yml
buildx.yml
deploy.yml
release-sync-rpm.yml

As we can see, a first "bad practice" can be found by analyzing their names,

that are not particularly meaningful, especially the ones containing words such as

"ci", "main", or "example".

77

Analysis of usage of Continuous Integration practices in open-source projects

Second, all of them contain at least one job with a name that is not significant.

Below we can find the list of these names:

Job’s names in the "worst files"
signing-artifacts
archive
teslamate
grafana
example-2-linux
example-2-mac
example-2-win
MacOS
linux
others
docker
package-source
package-wheel
package
commentTestSuiteHelp

It proves our earlier finding so that the not significant names mainly report

the operating system.

5.6 Threats to validity

5.6.1 External

Are our results generalizable for general Github actions usage?

Since we did not analyze a large number of Github actions YAML files con-

tained in open-source repositories, we cannot guarantee that these results will be

the same for a larger number of analyzed files.

Moreover, many projects use more than one GitHub actions file, so studying

individual files, and not grouping them by the project they belong, could cause

several threats to validity.

78

Analysis of usage of Continuous Integration practices in open-source projects

Are our results generalizable for general Continuous Integration usage?

Some results cannot be extended to the general usage of Continuous Integration

practice.

For instance, the [13] states that "The two most positively- assessed bad smells

were related to the usage of absolute paths in the build (BM1), and the coupling

between the build and the IDE (BM2)". However, the RQ13 result reports that

the presence of absolute paths is not a widespread bad practice in GitHub actions

files. This result could be because who uses the GitHub action tool to perform

CI does not need to use absolute paths in a virtual environment. Nevertheless, it

does not guarantee that this bad practice is not widespread in other CI tools.

79

Chapter 6

User manual

In this chapter we describe all the implementation process, and the procedure

needed to execute code that allowed to obtain the described results.

6.1 Installation

As we said before, the project was realized using node.js, JavaScript runtime

environment, so the first step is to download the framework.

Figure 6.1: Node.js installation

Moreover, npm, a package manager for the JavaScript programming language,

was used to install all the necessary libraries, using "npm install" by terminal. In

figure 6.2 we can see an example of usage of this tool, in this case to install one of

80

Analysis of usage of Continuous Integration practices in open-source projects

the most important library: YAML. Similarly, we installed the others necessary

libraries, such as:

• fs

• readline

• node-fetch

• axios

• path

Figure 6.2: An example of usage of nmp install command

6.2 Prerequisities

To be able to execute our first files, that use API Rest Github v3, it is necessary

to be in possession of a token. A personal access token for quick access to the

GitHub API can be generated by going in your github account developer settings.

81

Analysis of usage of Continuous Integration practices in open-source projects

Figure 6.3: Github token generation

6.3 Execution

After Node.js and the used libraries are installed, we can proceed with the code

execution, following the order as follows:

• getRepos.js: script that queries for the repositories having more than 100

stars and created between 2018 and 2020, reading from

date_ranges_100stars.txt file and writing repositories names in repos_100stars_2018-

2020.txt file

• getYamlPaths.js: script that reads all the repos found previously from the

repos_100stars_2018-2020.txt file, and checks if they contain yaml files (if

yes, saves their paths in yaml_paths_2018-2020_100stars.txt file

• downloadYamls.js: script that reads the yaml paths from yaml_paths_2018-

2020_100stars_5.txt file, and downloads them, putting them in the proper

directory, based on what kind of CI tool they adopt.

• getJobs.js: script that writes in jobs_github_numbers.txt file the number

of jobs for every file contained in github_yamls folder.

82

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getRepos.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/input_files/date_ranges_100stars.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/repos_100stars_2018-2020.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/repos_100stars_2018-2020.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getYamlsPaths.js
repos_100stars_2018-2020.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/yaml_paths_2018-2020_100stars.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/downloadYamls.js
yaml_paths_2018-2020_100stars.txt
yaml_paths_2018-2020_100stars.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getJobs.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_github_numbers.txt

Analysis of usage of Continuous Integration practices in open-source projects

• getTriggerEvents.js: script that writes all the trigger events present in

github files in trigger_events.txt file.

• classifyJobs.js: classify all the jobs and writes the result in

jobs_per_file_classified.txt file.

• getSteps.js: script that calculates the number of steps for every job, and

writes the results in jobs_steps_number.txt file.

• getRowsPerJob.js: script that calculates the number of rows per job of a

file and writes it in rows_per_job.txt file.

• analyzeJobsNames.js: script that reads from the jobs_id_name_file.txt

the job’s names and ids, and writes to the jobs_names_significance.txt file

all the jobs, specifying if they are significant or not.

• getActions.js: script that analyzes every file contained in github_yamls

folder, and writes in use_of_actions.txt file if they use or not Github actions.

• getRowsComments.js: script that counts the number of comment rows

per file, and writes the results in

number_of_rows_and_comments_per_file.txt file.

• getNeeds.js: script that writes in jobs_needs.txt file the number of "needs"

occurrences per file, and the number of jobs in that file.

• getEnvVariables.js: script that writes per each file if it uses environment

variable in use_of_env_variables.txt file.

• getPaths.js: script that checks, for each YAML file, if they contain an

absolute path, and writes in the output file, paths.txt, the number of the

absolute paths detected and the paths themselves.

83

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getTriggerEvent.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/trigger_events.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/classifyJobs.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_per_file_classified.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getSteps.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_steps_number.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getRowsPerJob.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/rows_per_job.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/analyzeJobsNames.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_id_name_file.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_names_significance.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getActions.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/use_of_actions.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getRows%26Comments.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/number_of_rows_and_comments_per_file.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getNeeds.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/jobs_needs.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getEnvVariables.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/use_of_env_variables.txt
https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getPaths.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/paths.txt

Analysis of usage of Continuous Integration practices in open-source projects

• getBadPractices: script that counts how many of the previously analyzed

bad practices are present in each Github YAML file, and writes the result

in bad_practices.txt file.

RQ Script .js Input file Output file

1 getRepos
getYamlPaths date_ranges_100stars.txt repos_100stars_2018-2020.txt

2 downloadYamls yaml_paths_2018-2020
_100stars.txt files to github_yamls folder

3 getJobs each file from
github_yamls folder

jobs_github_numbers.txt
jobs_id_name_file.txt

4 getTriggerEvents each file from
github_yamls folder trigger_events.txt

5 classifyJobs jobs_id_name_file.txt jobs_per_file_classified.txt

6 getSteps
getRowsPerJob

each file from
github_yamls folder

jobs_steps_number.txt
rows_per_job.txt

7 analyzeJobsNames jobs_id_name_file.txt jobs_names_significance.txt

8 getActions each file from
github_yamls folder use_of_actions.txt

9 getRowsComments each file from
github_yamls folder

number_of_rows_and_
comments_per_file.txt

10 getNeeds each file from
github_yamls folder jobs_needs.txt

11 getEnvVariables each file from
github_yamls folder use_of_env_variables.txt

12 getPaths each file from
github_yamls folder paths.txt

13 getBadPractices each file from
github_yamls folder bad_practices.txt

84

https://github.com/EwelinaJ10/CI_thesis/blob/master/scripts/getBadPractices.js
https://github.com/EwelinaJ10/CI_thesis/blob/master/output_files/raw_data/bad_practices.txt

Chapter 7

Final discussion

Our study aimed to perform an analysis of bad practices in Github CI tool, ac-

cording to the bad practices stated by a previous study.

First of all, we studied the breakdown of CI tools in open-source projects. We

found out, as a confirm of previous studies, that amongst all the CI/CD tools,

Travis CI is undoubtedly one of the most popular choices. Initially, it was created

for open-source projects but with time, the tool has also migrated to close source

projects. Travis CI is also one of the early players in the CI/CD tools market.

The tool is written in Ruby and is developed & maintained by the Travis CI

community. Travis CI was earlier available only for GitHub hosted projects but

now it also supports Bitbucket hosted projects. It is available for Linux, macOS,

and Windows (early stage) operating systems, and it is free of charge for every

open-source project. For using Travis CI, you should have an account on GitHub

or Bitbucket. There is no installation required and you can get started by simply

signing up and adding a project. Below we report the salient features of Travis

CI, that make of it the most popular choice as CI tool:

• Free for testing open-source applications.

• Available for Continuous Delivery (CD) and Continuous Integration (CI).

85

Analysis of usage of Continuous Integration practices in open-source projects

• Available for macOS, Linux, Windows (early stages).

• Supports around 30 different programming languages like Ruby, Perl, Python,

Scala, etc.

• Can be configured after adding .travis.yml file (i.e. YAML format text file).

• Supports integration with external tools.

• Supports build matrix feature to accelerate the project execution.

Also, Travis CI supports parallel testing. It can also be integrated with tools

like Slack, HipChat, Email, etc. and get notifications if the build is unsuccessful.

Developers can speed up their test suites by executing multiple builds in parallel,

across different virtual machines. The ‘build matrix’ feature offered by Travis CI

allows developers to break down a build into assorted parts and thus speed up the

suites.

However, we did not perform a further analysis of this tool, since there are

already many studies about Travis. Indeed, we analyzed the second most used

tool, the one provided by Github. GitHub Actions is a tool within GitHub that

enables continuous integration and a wide range of automation. It supports the

three major operating systems, Windows, MacOS and Linux, and you can run

any programming language supported by those. Apart from being triggered by

pull requests and commits, actions allows you to respond to any GitHub event.

It allows you to trigger certain GitHub Actions workflows (including open source

actions) based on:

• the creation of issues

• comments

• the joining of a new member to the repository

86

Analysis of usage of Continuous Integration practices in open-source projects

• changes to the GitHub project board.

Actions comes with a strong level of integration with GitHub, removing the

requirement of an additional vendor for CI.

Further more, our study shows that tools like CircleCi, AppVeyor or Werker

are not used that much indeed. This result is similar to the one provided by a

study from 2016 [10]. However, the percentage of usage of different tools changes,

due to a subsequent introduction of Github actions tool. As follows we show the

two results in comparison:

Usage by CI service
Travis CircleCI AppVeyor CloudBees Werker
90,1% 19,1% 3,5% 1,6% 0,4%
12528 2657 484 223 59

Table 7.1: Usage by CI service by Hilton

Usage by CI service
Travis GitHub actions CircleCI Appveyor Werker
52,2% 27,3% 10,4% 9,5% 0,6%
2053 1073 408 373 23

Table 7.2: Usage by CI service in our study

Next, since there are not previous studies, to the best of our knowledge, about

Github actions tool, we have focused our analysis on this tool, with an analysis

of the general usage of this tool first, and then continue with an analysis of bad

practices that can be encountered when adopting this CI tool. Since popular

projects are more likely to use CI, according to [10], we analyzed only the GitHub

repositories with more than 100 stars. About the general usage of this tool, we

found out that:

• the vast majority of YAML files have only one job

• the workflows are executed mainly after a push event

87

Analysis of usage of Continuous Integration practices in open-source projects

• they are mostly used to automate the building process

• they have between 3 and 5 steps in average, and an average of 30 lines per

job

Nevertheless, we are mostly interested in analyzing the bad practices related

to the use of this tool, or more generally of any CI tool. To do this, we took

into consideration An Empirical Characterization of Bad Practices in Continuous

Integration by Zampetti et al. [13]. In particular, we focused on the bad practices

that can be detected by only analyzing the YAML code.

According to our study, 16% of build jobs have not a significative name. The

usage of suitable naming conventions inside the build scripts was considered rela-

tively important by the respondents to the survey of the study [13].

Also, we found out that the most widespread bad practices among the Github

actions YAML files are:

• absence of comments

• lack of usage of environrment variables

However, the lack of usage of environment variables received more negative

than positive assessments, so it is not considered that relevant.

Though the two most positively-assessed bad smells concerning Build Main-

tainability were related to the usage of absolute paths in the build and the coupling

between the build and the IDE, according to our results, this bed smell is not that

widespread when adopting Github actions tool. Indeed, only 9,9% of files make

use of absolute paths.

In conclusion, we can state that the bad practices considered relevant are

not widespread in Github actions workflows, whilst the one widespread are not

considered that relevant by the previous studies in literature.

88

Chapter 8

Conclusions and future directions

8.1 Conclusions

CI has been rising as a big success story in automated software engineering. How-

ever, when adopting Continuous Integration (CI) practitioners often face bad prac-

tices.

To study the usage of CI and related bad practices, we first analyzed 43193

open-source projects from GitHub, to find how much this practice is widespread

along with open-source projects and see which tools are mainly used. Our results

show that even though Travis is so far the most used CI tool, there are good

reasons for the rise of usage of Github actions CI tool.

Secondly, we conducted a further analysis of the usage of bad practices when

adopting the Github CI tool. To achieve this goal, we analyzed 1768 YAML files

using Github actions as a CI tool. We based our questions about bad practices

on some previous studies, such as [13]. In particular, we faced bad practices that

can be detected by static analysis.

Overall, we investigated 13 research questions, grouped into 2 themes: one

about the general usage of CI in GitHub actions files, and another one about bad

practices.

89

Analysis of usage of Continuous Integration practices in open-source projects

The results of our study show that some bad practices are really frequent when

adopting the Github actions CI tool, such as absence of comments, poor naming

convention for build jobs, or absence of environment variables, and some others

that are not much widespread (presence of absolute paths).

8.2 Future directions

The research presented in the previous chapters leaves many promising avenues

open for future research. This section looks at some of them:

• Deepen the questions already asked: as a future development, we might

investigate further about the questions already asked, such as usage of se-

quential jobs, and when this results in bad practice, or investigate the nature

of the comments present in CI workflows.

• Enlarge list of questions: we might address other questions, especially

about other bad practices that developers can face when adopting CI tools.

• Dissemination of bad practices in other tools: We focused our atten-

tion on the GitHub native CI tool. However, we could extend the study to

the other CI tools widespread in open-source projects.

• Validate the answers by interviewing the developers: Finally, one

might consider validating the results obtained from the experiment by inter-

viewing the developers based on their experience.

90

Bibliography

[1] GitHub actions. https://docs.github.com/en/actions.

[2] GitHub API v3. https://developer.github.com/v3/.

[3] Yaml npm library. https://eemeli.org/yaml/#yaml.

[4] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. Yaml ain’t markup language

(yamlTM) version 1.2. 2001.

[5] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. The silent

helper: the impact of continuous integration on code reviews. In 2020 IEEE

27th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 423–434. IEEE, 2020.

[6] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. A systematic

mapping study of software development with github. IEEE Access, 5:7173–

7192, 2017.

[7] Wagner Felidré, Leonardo Furtado, Daniel A da Costa, Bruno Cartaxo, and

Gustavo Pinto. Continuous integration theater. In 2019 ACM/IEEE In-

ternational Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 1–10. IEEE, 2019.

[8] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. An empir-

ical study of the long duration of continuous integration builds. Empirical

Software Engineering, 24(4):2102–2139, 2019.

91

https://docs.github.com/en/actions
https://developer.github.com/v3/
https://eemeli.org/yaml/#yaml

Analysis of usage of Continuous Integration practices in open-source projects

[9] Georgios Gousios and Diomidis Spinellis. Mining software engineering data

from github. In 2017 IEEE/ACM 39th International Conference on Software

Engineering Companion (ICSE-C), pages 501–502. IEEE, 2017.

[10] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny

Dig. Usage, costs, and benefits of continuous integration in open-source

projects. In 2016 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 426–437. IEEE, 2016.

[11] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M

German, and Daniela Damian. An in-depth study of the promises and perils

of mining github. Empirical Software Engineering, 21(5):2035–2071, 2016.

[12] K.Gallaba. Improving the robustness and efficiency of continuous integration

and deployment. 2019.

[13] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Can-

fora, Harald Gall, and Massimiliano Di Penta. An empirical characterization

of bad practices in continuous integration. Empirical Software Engineering,

25(2):1095–1135, 2020.

[14] Yang Zhang, Huaimin Wang, Yiwen Wu, Dongyang Hu, and Tao Wang.

Github’s milestone tool: A mixed-methods analysis on its use. Journal of

Software: Evolution and Process, 32(4):e2229, 2020.

92

	Background
	GitHub
	Continuous integration
	Tools

	GitHub actions
	Workflows
	Limits

	YAML
	Processes
	Block styles
	Flow styles
	Node properties
	Character streams
	Workflow GitHub

	Related work
	Information sources
	Mining Github
	Continuous integration
	General usage
	Bad Practices

	Technology
	Node.js
	Advantages of Node.js
	NPM
	Used libraries

	GitHub Api
	Authentication
	Pagination
	Search
	Rate limiting
	Example

	Preliminar study
	Research questions
	Objects
	Variables
	Experimental procedure
	Results
	Threats to validity
	Internal
	External

	Empirical study
	Research questions
	Objects
	Variables
	Experimental procedure
	Results
	Threats to validity
	External

	User manual
	Installation
	Prerequisities
	Execution

	Final discussion
	Conclusions and future directions
	Conclusions
	Future directions

