
A GUI Crawling-based technique for

Android Mobile Application Testing
University of Naples “Federico
II”, Italy

Dipartimento di Informatica e
Sistemistica

Domenico Amalfitano
Anna Rita Fasolino
Porfirio Tramontana

3th International Workshop on TESTing Techniques &

Experimentation Benchmarks for Event-Driven Software

Berlin, Germany
March 21, 2011

Context and Motivations

• Context:
▫ Testing of Android Applications.

•Motivations:
▫ Dealing with open issues in Android
testing.
▫ Introducing a new GUI based testing
approach.

TESTBEDS 2011,Berlin, Germany

What experts says about Android

• “There should be nothing that users can access
on their desktop that they can’t access on their
cell phone”; Andy Rubin, Guru for Google's
Android.

• “Android is predicted to become the second
largest mobile Operating System by 2012 and
challenge Symbian for the first position by
2014”; Gartner Newsroom.

TESTBEDS 2011,Berlin, Germany

What is Android

• Android is a software stack for mobile devices
that includes a Linux-based operating system,
middleware and core applications.

▫ Is possible to access the stack resources and
develop applications on the Android platform
using the Java programming language through the
tools and the APIs provided by the Android SDK.

TESTBEDS 2011,Berlin, Germany

• Android operating system is often installed on smartphone devices
that usually have limited hardware resources (like CPU or memory)
and a small-sized screen.

▫ Equipped with a large number of sensors and communication devices
such as a microphone, wi-fi and Bluetooth chips, GPS receiver, single or
multi touch screen, inclination sensors, camera, etc.

Android Devices

TESTBEDS 2011,Berlin, Germany

Android Applications

• An Android application is composed of several types
of Java components instantiated at run-time:
▫ Activities, Services, Intents, Broadcast Receivers and
Content Providers.

• Activity component:
▫ is responsible for presenting a visual user interface;
▫ provides a screen with which the users can interact in
order to do something, such as dial the phone, take a
photo, send an email, or view a map.

• An Android application usually includes one or
more Activity classes that extend the base Activity
class provided by the Android development
framework.

TESTBEDS 2011,Berlin, Germany

Android Applications are EDS

• The processing in Android applications is event-
driven.

• Two types of events can be triggered:
▫ user events (such as Click, MouseOver, etc.) that
can be fired on the user interface items (like
Buttons, Menu, etc.);

▫ events that are triggered by other input sources,
such as GPS receiver, phone, network, etc.

• Events are handled by Event Handlers.
• An Event Handler is a piece of code registered to
an Event Listener.

TESTBEDS 2011,Berlin, Germany

Open Issues in Android Testing

• Are the approaches already available for EDS
testing still applicable to Android applications?

• How the techniques used for EDS testing can be
adopted to carry out cost-effective testing
processes in the Android platform?

TESTBEDS 2011,Berlin, Germany

EDS Testing: current approaches

• EDS testing techniques described in the
literature:

▫ are based on suitable models of the system or sub-
system to be tested (EFG, EIG, or FSM);

▫ test cases are derived:

� exploiting the analysis of user session traces;

� translating possible sequences of automatically
generated events, i.e. generated by a GUI ripper or a
Web Crawler.

TESTBEDS 2011,Berlin, Germany

EDS testing strategies in the context of

Android testing
• In order to take into account the peculiar types
of event and input source that are typical of
Android devices, an adaptation of the models
and strategies for the aims of Android testing is
required. As consequence:
▫ new reverse engineering and GUI ripping
techniques for obtaining the necessary proposed
models have to be designed;

▫ platforms and tools aiding user session analysis
and implementing the proposed GUI ripping
techniques have to be developed.

TESTBEDS 2011,Berlin, Germany

The proposed technique for testing

Android applications
• An automatic testing technique for Android
applications, based on a Crawler that simulates
real user events on the user interface, is
proposed.
▫ The Crawler infers automatically a GUI model of
the application.

▫ The obtained GUI model is used for deriving test
cases that can be automatically executed for
different aims, in particular:
� crash testing;
� regression testing.

TESTBEDS 2011,Berlin, Germany

The proposed model

• The model produced by the crawler is actually a
GUI Tree, where:

▫ the nodes represent the user interfaces of the
Android application,

▫ the edges describe event-based transitions
between nodes.

TESTBEDS 2011,Berlin, Germany

The GUI Crawler

• The crawler builds the GUI tree implementing a
depth first search using an iterative algorithm.

• The crawler fires events on the application user
interface capturing data about interfaces and
events that will be also used to decide the further
events to be fired.

• During the GUI exploration the crawler is able to
perform a first crash testing.

TESTBEDS 2011,Berlin, Germany

Conceptual Model of an Android

Application GUI
• The data analysed by the crawler at run time belong to
the conceptual model of an Android GUI:

TESTBEDS 2011,Berlin, Germany

Critical aspects of a GUI Crawler

• What’s the criterion used for check if two
interfaces are equivalent?

▫ Two interfaces are equivalent if they have the
same Activity Instance attribute and they have the
same set of Widgets, with the same Properties and
the same Event Handlers.

• What’s the approach used for defining the values
of widgets properties and event parameters that
must be set before firing a given event?

▫ The crawler assigns them random values.

TESTBEDS 2011,Berlin, Germany

• The GUI tree is the starting point for obtaining
test cases (TC).

▫ TC are given by the sequences of events associated
with GUI tree paths that link the root node to the
leaves of the tree.

▫ TC are used to detect crashes and GUI mismatches
in regression testing scenarios.

Test case definition

TESTBEDS 2011,Berlin, Germany

The Testing Tool

• A tool, named A2T2 (Android Automatic Testing
Tool), is developed in Java technology to support the
testing technique proposed.

• A2T2 is composed of two main components:
▫ GUI Crawler;
▫ Test Case Generator.

• Both the components:
▫ exploit the Robotium framework originally designed
for supporting testing of Android applications;

▫ are executed in the context of the Android Emulator
provided by the Android SDK.

• Produced test cases are actually Junit test cases.

TESTBEDS 2011,Berlin, Germany

A screenshot of the tool in execution

TESTBEDS 2011,Berlin, Germany

Example

• An example of using the proposed technique and tool for
testing a simple Android application that implements a
mathematic calculator for the Android 2.2 platform is

shown.

• A GUI tree of the application is obtained by the crawler.

• During crawling:

▫ 19 Events are triggered,

▫ 19 Interfaces are obtained,

▫ 3 Class of Interfaces are obtained,

▫ An exception causing an application crash occurs.

TESTBEDS 2011,Berlin, Germany

The obtained GUI-Tree
Class IC1 that

comprehends the

Interfaces: I1, I2, I3,

I4, I5, I9, I16

Class IC2 that

comprehends the

Interfaces: I6, I7, I8,

I10, I11, I12, I19

Class IC3 that

comprehends the

Interfaces: I13, I14,

15, I17, I18

TESTBEDS 2011,Berlin, Germany

Crash detection

• While exploring the GUI interfaces via the crawler some
crashes of the application can be discovered.

• A crash occurs after firing the E18 Event:
▫ click on the “atan‟ Button on the Interface I13.

• The crash is caused by the lack of a try/catch code block
for handling the exception due to the input of a non-
numeric value in the Input TextEdit widget.
▫ This missing cause a java.lang.NumberFormatException
when the application tries to convert the string in the input
field into a Double value before computing the arctangent
function.

• After the correction of this defect, we run the crawler
again obtaining a new GUI tree and another instance of
Interface (belonging to IC3 group).

TESTBEDS 2011,Berlin, Germany

Regression Test Cases

• Test Case Generator produces 17 test cases that
correspond to the 17 different paths from the
root to the leaves of the obtained GUI tree for
the regression testing.

• In order to assess the effectiveness of the test
cases for the aims of regression testing, two
faults in the Android application are injected
and the 17 regression test cases to find these
faults are run.

TESTBEDS 2011,Berlin, Germany

First injected fault

• The second injected fault consists in the change of the
code of the Scientific Calculator Activity causing an
interface without a Button drawn on the screen window.

• The execution of the test case corresponding to the event
sequence E5- E12-E13 revealed an assertion violation
and allowed the injected fault to be discovered.

• The assertion violation is due to a layout difference
between the obtained Interface I13 and the
corresponding one collected during the previous
crawling process, since the new Interface doesn’t contain
the Button that’s included in the original one.

TESTBEDS 2011,Berlin, Germany

Example of Test Case

• The Junit Java code of the test case corresponding
to the execution of the event sequence E5-E12-E13
that detected the fault is shown.

• “solo” is one of the classes that Robotium provides
for automatically firing events onto the application.

• “InterfaceComparator” is a class that we
developed, having a method “compare” that is
used to check the coincidence between interfaces.

TESTBEDS 2011,Berlin, Germany

Second injected fault

• The second injected fault consists of associating an incorrect
event handler to the click event on the cosine Button instead
of the correct one.

• The execution of the test case corresponding to the event
sequence E5-E10 reveals an assertion violation and allows the
injected fault to be discovered.

The obtained Interface and the one
collected during the crawling
process are different since they
contain different methods
associated to the onClickListener
attribute of cosButton widget.

TESTBEDS 2011,Berlin, Germany

Discussion

• We are able to find a fault whose effects are visible
or not visible on the GUI.

• However, the fault detection effectiveness of the
technique depends considerably on the strategy
used by the crawler for defining the input values
needed for firing the events;
▫ I.e. a possible fault in the reciprocal function due to an
unmanaged exception of a division by zero might be
revealed only by a test case with a zero value in the
input field;

▫ other input generation techniques should be
considered in order to solve this problem.

TESTBEDS 2011,Berlin, Germany

Conclusions

• A technique for automatic testing of Android
mobile applications has been proposed.

• The technique is inspired to other EDS testing
techniques proposed in the literature and relies
on a GUI crawler that is used to obtain test cases
that reveal application faults like run-time
crashes, or that can be used in regression
testing.

• Test cases consist of event sequences that can be
fired on the application user interface.

TESTBEDS 2011,Berlin, Germany

Future Works

• We plan to carry out an empirical validation of the
technique by experiments involving several real world
applications with larger size and complexity, with the
aim of assessing its cost-effectiveness and scalability in a
real testing context.

• In order to increase the effectiveness of the obtained test
suites we intend to investigate further and more accurate
techniques for the crawler to generate several kinds of
input values, including both random and specific input
values depending on the considered type of widget.

• Solutions for managing test case preconditions and
postconditions related to persistent data sources (such as
files, databases, Shared Preferences objects, remote data
sources) will be looked for.

TESTBEDS 2011,Berlin, Germany

Thank you for your attention !!!

