

Considering Context Events in Event-

Based Testing of Mobile Applications

University of Naples
“Federico II”, Italy

Domenico Amalfitano

Anna Rita Fasolino

Porfirio Tramontana

Amatucci Nicola

4th International Workshop on TESTing Techniques &

Experimentation Benchmarks for Event-Driven Software

Luxembourg
March 19, 2013

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E TECNOLOGIE DELL'INFORMAZIONE

Context and Motivations

• Context:
▫ Testing of Android Mobile

Applications.

• Motivations:
▫ Testing the Android Apps by taking

into account their context and
context-related events.

Mobile Applications as EDS Systems

• Mobile apps are event-driven systems.
▫ They are able to sense and react to a wide set of

events besides user ones.

• Mobile devices are equipped with a wide variety

of hardware sensors that are able to sense the
context in which the device stays and to notify
context changes to the running app by means of
events.

• The user can be considered as a part of the
context of an app

Types of mobile context events

• Types of context event are:
▫ user events produced through the GUI;
▫ events coming from the external environment and

sensed by device sensors (such as temperature,
pressure, GPS, geomagnetic field sensor, etc.);

▫ events generated by the device hardware platform
(such as battery and other external peripheral port,
like USB, headphone, network receiver/sender, etc.);

▫ events typical of mobile phones (such as the arrival of
a phone call or a SMS message);

▫ events like the arrival of an e-mail or social networks
notifications, that are related to the fact that modern
mobile phones are more and more Internet connected.

MobileApps and Apps4Mobile

• Not all the mobile apps are designed to react to
context-related events not coming from the GUI.

• MobileApps, react to all contextual events
(both GUI and non-GUI ones).

• App4Mobile, react only to GUI events

▫ they are just traditional applications that have
been rewritten to run on mobile devices.

H. Muccini, A. Di Francesco, P. Esposito. Software Testing of Mobile Applications: Challenges and Future Research

Directions. Proceedings of the 7th International Workshop on Automation of Software Test (AST), 2012,

How to test the MobileApps

• The category of App4Mobile may be effectively
tested by means of testing techniques applicable to
traditional applications.

• MobileApps requires to be tested by event-based
testing techniques that properly consider all types of
context-related events.
▫ This may be very expensive due to the large number of

possible contexts, event classes and combinations of
events and contexts to be considered.

• Effective strategies of testing for MobileApps are

needed.

Some possible testing strategies

• The application behaviour has to be checked in
response to several types of context event.

• Effective strategies for test case generation
should be used to define sequences of events of
mixed types.

• Simple Strategies

• Systematic Strategies

“Simple” strategies

• May define event sequences trying to achieve the
coverage of each class of contextual events with a fair
policy.

• Not requiring any specific knowledge about the app
under test.

• Help to discover crashes or freezes, often reported in bug

reports, that may occur when an app is impulsively
solicited by contextual events like:
▫ Notification of a connection/disconnection of a plug (USB,

headphone, …)
▫ Incoming of a phone call,
▫ Notification of the GPS signal loss (for instance when the

device enters a tunnel).

“Systematic” strategies

• May require the coverage of specific event sequences
representing specific usage scenarios of the
application.

• Are scenario-based strategies that:
▫ define relevant ways of exercising an application by

firing sequences of events.

▫ may be described by different formalisms.

• In scenario-based testing, suitable techniques for

defining scenarios are needed.
▫ an interesting approach may be based on “event-

patterns”

Event - Patterns

• Representations of peculiar event sequences that
abstract meaningful test scenarios.

• can be defined as a notable sequence of contextual
events that may be used to exercise the application.

• Possibly trigger a faulty behaviour of the
application.

• Are often used for rapid testing of embedded
systems

Event – Patterns Specification

• Each Event – Pattern may be specified by:
▫ a name,
▫ a textual description,
▫ the corresponding event sequence that must include one or more

events.
 defined by appropriate regular expressions.

• For automating test execution, each event-pattern can be

associated with a test class that exposes an execute method
able to trigger the pattern’s sequence of events.

• An event-pattern may be included in other event sequences,
or used in isolation to test an app.

• An event-patterns repository have been manually populated
after a preliminary analysis conducted on the bug reports of
open source applications.

Event Pattern Example

Event Pattern Example

Approaches for using event-patterns

for testing mobile applications

• Test cases can be generated by exploiting the
event – patterns stored in the repository.

• We show three examples of testing techniques
that exploit the event-patterns for testing a
mobile app.
▫ T1: Manual technique

▫ T2: Mutation-based technique

▫ T3: Exploration-based technique

T1 - Manual technique

• Scenario-based test cases that include one or
more instances of event-patterns are manually
generated.

• The tester can add the needed assertions
manually, or test cases can just check the
occurrence of crashes.

Example of using T1

• Suppose that the tester wants to test the app
behaviour in the following scenario:

• This scenario includes instances of two event-
patterns EGSW and LRGPS.

The user activates the GPS provider in the settings menu of the

application, and begins to cross the path that goes from point A

to point B through N points. At point X of the navigation, the

application loses the GPS signal and recovers it at the point Y.

Example of using T1

• Suppose that the tester wants to test the app
behaviour in the following scenario:

• This scenario includes instances of two event-
patterns EGSW and LRGPS.

The user activates the GPS provider in the settings menu of the

application, and begins to cross the path that goes from point A

to point B through N points. At point X of the navigation, the

application loses the GPS signal and recovers it at the point Y.

T2 - Mutation-based technique

• Event-patterns are used to modify existing test
cases, by applying mutation techniques.

• Event-pattern sequences are placed inside
already existing test cases that are defined:

▫ manually

▫ by Capture techniques

▫ automatically (I.e. by a Ripper).

Example of using T2

• The absence of crashes in
an application scenario
where, after any user
event, the device goes in
stand-by and a phone call
comes (pattern SIE) must
be tested.

T3 - Exploration-based technique

• Event-patterns are used in automatic black-box
testing processes based on dynamic analysis of
mobile apps.

StartApplication();

 while (! termination Criterion) {

 ExtractCurrentSensingEvents();

 PlanTasks();

 RunNextTask();

 }

}

Assessing the feasibility of the

proposed techniques

• The feasibility of the proposed techniques was preliminary
assessed in the context of Android mobile applications.
▫ the proposed techniques are applicable to any mobile technology.

• Two main technological problems related to the Android
platform were solved:

▫ defining a solution for dynamically recognizing the context event

classes which the app is able to sense and react at a given time
(i.e., implementing the operation
ExtractCurrentSensingEvents in T3);

▫ defining techniques for triggering the context events (i.e.,
implementing the RunNextTask operation in T3).

A first exploratory case study

• To asses how the effectiveness of an event-based
testing technique varies when context events,
not only GUI events, are taken into account.

• The proposed Exploration-based technique T3
was analyzed.

Experiment Setup

• Five real-world MobileApp Android applications
were considered.

• Each of them was tested by the T3 technique
twice.

▫ The first time, simple patterns made by only user
events were exercised.

▫ The second time, simple patterns including a
different type of context event were executed.

• The effectiveness, in terms of code coverage,
achieved by the two executions was compared

Extended Android Ripper

• The Android Ripper tool was exploited to perform
the experiment.
▫ http://wpage.unina.it/ptramont/GUIRipperWiki.htm

• First the Android Ripper was configured to trigger
only user events

• Lastly the Extended Ripper version was configured
to fire context events such as:
▫ location changes, enabling/disabling of GPS, changes

in orientation, acceleration changes, reception of SMS
messages and phone calls, shooting of photos with the
camera.

• Both versions of the Ripper are able to
systematically explore the app under test by
searching for crashes and to measure the obtained
code coverage.

Results

Results

Methods and LOC that

implement the Sensor’s

Handlers were covered

Results

The source code has just

one context-related event

handler.

It is responsible for

managing the acceleration

change notification event.

Results

Event handlers related to

the management of

incoming phone calls and

SMS messages were

covered

Results

camera photo shoot

notification event handler,

and the location change

notification handler were

covered.

Conclusion
• Three proposals of techniques for event based testing of mobile

applications have been presented.

• A testing technique that represents an extension of the Android
Ripping technique has been presented.

• Some preliminary case studies conducted on real world Android apps
demonstrate the effectiveness of the implemented technique.

• Address wider experimentation in order to assess the effectiveness of
the proposed techniques.

• Build an event-patterns repository by analysing a large corpus of bug
reports related to mobile apps

• Consider events causing the interaction between different components
of the same application or different applications, by adding to the
Extended Ripper new features supporting Intent Messages generation
and execution.

Future Works

Thank you for your attention !!!

