Improving Usability of Web Pages for Blind

Porfirio Tramontana
Carmine Cesarano
Anna Rita Fasolino

Dipartimento di Informatica e Sistemistica
University of Naples Federico II, Italy
The World Wide Web has a growing importance in the life of anyone, in particular of people with physical disabilities.

Web accessibility is a fundamental issue for the development of today’s Web sites and applications, stated by the most important international governments and organisations.
Accessibility for Blind Users

- Blind users can access textual contents of Web Sites by using Screen Readers
 - The blind user has to listen the full textual content of a Web page in order to obtain the needed information
- Aural Web Sites are optimised for blind users
 - Bolchini et al. stated in 2006 some requirements to take into account for designing Aural Web Sites
Web Site Usability for Blinds

- The most part of the existing Web sites are not Aural Web Sites
 - Blind users experience accessibility and usability problems
 - The Web Sites are organised according to a bi-dimensional layout, while Screen Readers and Braille Readers provide the Web site information just in a linear way, as a mono-directional text
 - The time needed to access some contents can be very long, so that the Web site is not usable for blinds
IBM ADesigner visually reports the time needed to access information in a Web page.

The time needed to access Submission information and recent news is more than two minutes!
Auralisation of Existing Web Sites

- In this work, we propose a solution to improve the usability of existing Web Sites, by generating ‘on the fly’ a summarised version of client pages.

- Requirements of the solution:
 1. To minimise the reaching time i.e. the time required to the blind user to get the information which he/she is interested in;
 2. To minimise the computational time and resources needed to transform the original Web page in the auralised one;
 3. To be potentially applicable to any Web page, independently from its structure, layout and topics;
 4. To be tuneable, so that the usability of the auralised page could be further improved by tuning some parameters.
Summarisation Techniques

- Two different summarisation techniques have been proposed:

 - T1) Based on structural analysis of built client pages;

 - T2) Based on the analysis of the textual contents of built client pages
Technique T1 (based on Structural Analysis)

- Two heuristics have been taken into account for weighting the Web page information content importance:

 H1) the most important information are highlighted or emphasised by means of particular editing formats, in order to catalyse the attention of the user;

 H2) the most important information are usually placed in the higher parts of a Web page (to make them earlier visible to users);
Example

- H2) Contents in the higher part of the built client page
- H1) Enhanced Contents
Weighting the contents: heuristic H1

- Any Text Segment (text fragment enclosed in tags) is weighted by taking into account the enhancing effect of the nested tags that influence the visualisation of the text

\[TW(TS) = \prod_{t \in NS(T_i)}[W(t) * W(TStyle(t))] \]

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, DEL, A, SMALL, STRIKE, _____</td>
<td>0.25</td>
</tr>
<tr>
<td>KBD, H6, CITE, CODE, ...</td>
<td>0.5</td>
</tr>
<tr>
<td>COL, COLGROUP, COMMENT, DD, H5, DEN,</td>
<td>1</td>
</tr>
<tr>
<td>DIR, EMBED, EM, THEAD, BUTTON, TFOOT,</td>
<td></td>
</tr>
<tr>
<td>FIELDSET, FN, FONT, FRAME, FRAMESET,</td>
<td></td>
</tr>
<tr>
<td>TEXTAREA, DIV, ADDRESS, TT, U, UL, VAR,</td>
<td></td>
</tr>
<tr>
<td>MBR, XMP, SERVER, SHADOW, SIDEBAR, BODY,</td>
<td></td>
</tr>
<tr>
<td>ACRONYM, BR, HTML, _____</td>
<td></td>
</tr>
<tr>
<td>B, OL, DL, STRONG, MENU, H3, BIG, Q PRE,</td>
<td>1.5</td>
</tr>
<tr>
<td>TH, TR, I, CENTER, CAPTION, FORM, _____</td>
<td></td>
</tr>
<tr>
<td>TITLE, H2, _____</td>
<td>2</td>
</tr>
<tr>
<td>H1</td>
<td>3</td>
</tr>
</tbody>
</table>

\(<i> Hello World </i>

TW(‘Hello World’) =
W(‘b’) * W(‘i’) =
1.5 * 1.5 = 2.25.
Weighting the contents: heuristic H2

- Any Text Segment is weighted by taking into account the position of the text in the page

Example: Linear position weighting functions

\[PW(TS) = 1 - \frac{\text{Pos}(TS)}{\text{Length}(P)} \]

The total Weight of any text content is given by the product of the weights:

\[R(TS) = TW(TS) \times PW(TS) \]

Given a fixed threshold, a summarised version of the Built client page is obtained by selecting only the contents with a weight that is greater than the threshold
Technique T2 (based on content summarisation)

A summary containing just sentences is obtained by taking into account the relative closeness (on the basis of a semantic net) of the terms they include. [*

1. Nouns contained in the sentences are considered
2. A semantic net of this nouns is built by considering synonyms, hypernyms, hyponyms, meronyms
3. The relevance of a term in the page is evaluated by taking into account how much times the term appears in the page and how much times its synonyms/hyponyms/meronyms appear
4. The relevance of a sentence is the sum of the relevance of its nouns
5. The summary is obtained by selecting the most relevant sentences

• The presented techniques have been implemented in a framework:

 • Weights needed for the technique T1 are maintained in a repository (Weight Model) and can be modified by the user via a Tuner client application

 • The summarisation technique T2 is performed by a Web Service, with the support of WordNet

 • The Auraliser is a Javascript client application, executed in the GreaseMonkey environment, generating the textual summary (Auralised Web Page) for the Screen Reader
Case Study

- Some explorative case studies have been carried out in order to assess the eventual increase of the usability of the Web pages

- Usability Measures
 - Let W be the Web page under experimentation and W* its auralised counterpart
 - Let RC be the set of pieces of information that the user expects to retrieve in the Web page and RC* ⊆ RC the ones that are sufficiently reported in the auralised Web page

- The Relevant Concepts Recall $RCR = \frac{|RC^*|}{|RC|}$
- The Reaching Time RT is the time after which a Screen Reader user can listen all the Relevant Concepts of RC* contained in W*.
Comparisons

- The proposed usability parameters have been evaluated with respect to:
 - the plain text contained in the Web page, without applying any transformation technique;
 - the auralised version obtained by applying the structural analysis technique (T1);
 - the auralised version obtained by applying the proposed summarisation technique (T2).
WSE Case Study

- 5 relevant concepts:
 - name and location of the conference (C1),
 - Special issue call (C2),
 - Introduction (C3),
 - Topics List (C4),
 - Submission Information (C5).

- Technique T1 was executed by fixing the minimum threshold for which the recall RCR=1

Results

<table>
<thead>
<tr>
<th>Expected Concept</th>
<th>Adopted Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>RT(C1)</td>
<td>29 sec</td>
</tr>
<tr>
<td>RT(C2)</td>
<td>18 sec</td>
</tr>
<tr>
<td>RT(C3)</td>
<td>68 sec</td>
</tr>
<tr>
<td>RT(C4)</td>
<td>118 sec</td>
</tr>
<tr>
<td>RT(C5)</td>
<td>121 sec</td>
</tr>
<tr>
<td>RT (to reach all the page)</td>
<td>121 sec</td>
</tr>
<tr>
<td>Saved RT %</td>
<td>0</td>
</tr>
<tr>
<td>RCR</td>
<td>1</td>
</tr>
</tbody>
</table>

- In this example, Technique T1 reduces the Reaching Time value for any expected concept by applying
- Summarisation technique T2 includes just 2 concepts but they are accessed in a very short time
Discussion

- Although a larger experimentation is needed, the case studies that have been carried out assess that the two proposed summarisation techniques can be adopted to make a Web page more usable to blind users.

- Anyway, the two proposed techniques present some limitations:
 - Technique T1 gives good results if weight models comprehending specific style weights, too, are adopted.
 - Weight models could be provided by Web site publisher.
 - Technique T2 could be, sometimes too computational expensive, with respect to expected reaching time.
Conclusions

- Two different summarisation techniques have been proposed for the generation of Auralised Web pages that reduces the Reaching Time needed to blind users to access contents of a Web Site.
Future Works

Some ideas:

- Reaching times can be furtherly reduced if the Auraliser inserts internal anchors to the more relevant contents in the built summarised pages.
- Considering hybrid techniques combining T1 and T2.
- Generalising the proposed approach to client pages which contents are dynamically generated (RIAs).
Time is over ... Are there any questions?