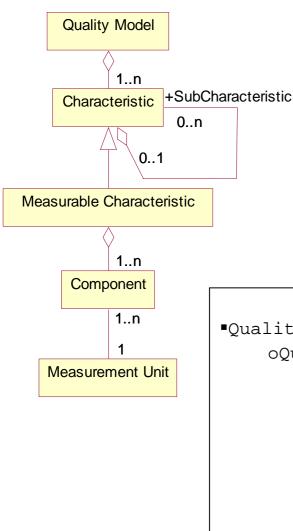
A policy-based evaluation framework for Quality and Security in Service Oriented Architectures

- V. Casola
- A.R. Fasolino
- N. Mazzocca
- P. Tramontana

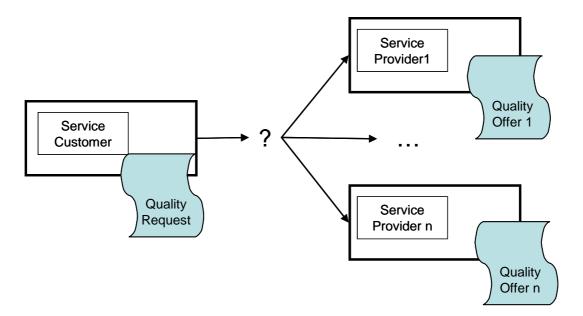
Dipartimento di Informatica e Sistemistica Universita' degli Studi di Napoli, Federico II Naples, Italy


{casolav, fasolino, n.mazzocca, ptramont}@unina.it

Current Web Service Scenarios:

- Customers ask for Web Services providing with specified Quality levels;
- Providers are interested to publish *both* functional and quality characteristics of the Web Services they provide;
- Service Level Agreements (SLAs) are contracts between a Customer and a Provider; they specify the characteristics in terms of performance and security of the provided services; they are usually expressed by means of free text documents, i.e. in natural language;
- •All these factors represent a wide limit in the formal definition and automatic evaluation of SLA.

Our Proposal: define a Quality Meta-Model



• Quality Characteristic: any quality requirements, such as Performance, Security, Cost, Maintainability

•Characteristics may be arranged in a hierarchy (Measurable Characteristics are the leaves)

• Measurable Characteristic: a Quality Characteristic that can directly be measured

Open problem: How a Customer can choose the Web Service that better fits his quality requirements?

•We propose to formally express Quality as an istance of the meta-model;

We adopt a decision framework for Quality evaluation;
The framework is based on AHP (Analytic Hierarchy Process) proposed by Saaty.

T.L. Saaty. How to make a decision: the analytic hierarchy process, European Journal of Operational **4** Research, 1990. Vol. 48, n.1, Elsevier, pp. 9-26.

The Analytical Hierarchy Process

- 1. The decision framework design activity:
 - 1. Weight Assignment step: the relative importance of the characteristics is rated;
 - 2. Clustering step: for each measurable characteristic, the sets of values that will be considered equivalent for the aims of the evaluation are defined;
 - **3. Rating Step:** each set is associated to a rating value;
- 2. The decision making activity: to compare the quality of an offered service (formalised in a Quality Offer Model) against requestor needs (formalised in a Quality Request Model)

Step 1: Weight Assignment

Intensity of Importance and its interpretation				Average	Standard	Maximum
Intensity of Importance	Interpretation	1. Build the Comparison matrix		Average Response Time	Deviation Response Time	of Response Time
1	Equal Importance		Average Response Time Standard Deviation Response Time	1	3	7
3	Moderate Importance			1/3	1	5
5	Strong Importance			1/5		5
7	Very strong Importance		Maximum Response Time	1/7	1/5	1
9	Extreme Importance	2 Normalize				

2. Normalize The matrix

Characteristic Weights are assigned by comparing their relative importance:

$$w(i) = \sum_{k=1}^{n} \frac{m'(i,k)}{n} \quad \forall i$$

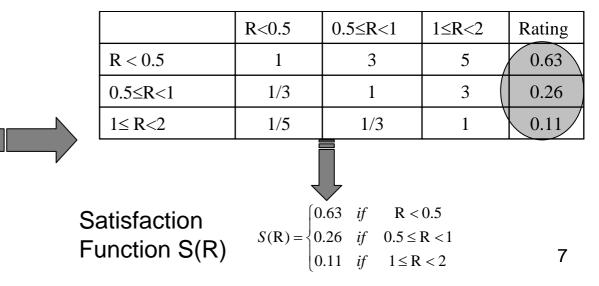
	Average Response Time	Standard Deviation Response Time	Maximum Response Time	Weights
Average Response Time	21/31	15/21	7/13	0.64
Standard Deviation Response Time	7/31	5/21	5/13	0.28
Maximum Response Time	3/31	1/21	1/13	0.07

Step 2: Clustering

Let's consider the Average Response Time characteristic

R = Offered_value / Requested_value

Possible Solutions are clustered in three levels:



R < 0.5 (very fast response); $0.5 \le R < 1$ (sufficiently fast response); $1 \le R < 2$ (quite slow response).

Intensity of Goodness and its interpretation **Intensity of** Interpretation Goodness Equivalent 1 3 Moderately better 5 Strongly better 7 Very strongly better 9 Extremely better

Step 3: Rating

Ratings are assigned to clusters by comparing their relative Goodness

The Decision Making Activity

The Quality of different Web Services is compared by evaluating:

- 1. a Satisfaction Function for each Measurable Characteristic.
- 2. a Satisfaction Function for each non-Measurable Characteristic

$$S_c(request, offer) = \sum_{sc \in C(c)} w_{sc} S_{sc}(request, offer)$$

3. the Overall Satisfaction Function:

$$S(request, offer) = \sum_{c \in Characteristic} w_c S_c(request, offer)$$

The Web Service with the greater Satisfaction Function value is chosen