
A Toolset for GUI Testing of
Android Applications

Domenico Amalfitano

Anna Rita Fasolino

Porfirio Tramontana

Salvatore De Carmine

Gennaro Imparato

Dipartimento di Informatica e Sistemistica

University of Naples Federico II, Italy

Context and Motivation

Android OS is currently the most diffused platform for
mobile devices [Gartner, 2012 August]

– 98 Millions of Mobile Device sales with Android OS in second quarter
2012

– Android owns 64% of Market Share

Google Play market now includes over than 500,000 apps

– Most of these apps have been developed by small
programmer teams, by evolutionary life cycles
with very frequent releases via Google Play

There is a strong need for fast and effective Testing
automation solutions

2

Current Technologies and Tools for
Android Testing

Testing Frameworks for Unit and GUI testing

– Robotium, MonkeyRunner, Calculon, Roboelectric, …

Stress testing Tools such as Monkey

Testing tools from research projects:

– TEMA model-based testing tools [Harty], …

Debugging tools

– DDMS debugging tool from the Android SDK

Monitoring tools

– platforms for monitoring app usages and reporting
app crashes to the developers (like Crittericism)

4

Our Proposal: A toolset for automatic
GUI Testing of Android apps

• GUI testing is an effective approach for testing an
app through its GUI, firing sequences of events
and providing it with user inputs

• The proposed GUI testing toolset is based on a
configurable GUI Ripper (Android Ripper) that:
– automatically traverses the GUI firing sequences of

events through the UI or the device (device rotation,
press back button, etc.)

– implements a Black-Box testing approach
– obtains automatically JUnit test cases (usable for

regression testing)
 5

Android Ripper Features

The Ripper automatically explores the GUI structure
and returns a GUI Tree model

• It can be configured in order to emulate several
kinds of user behaviours, choosing:

• types of event to be fired, input values, time delays
between events, GUI traversing strategy (e.g. depth
first, breadth first, etc.), termination criterion to stop
GUI traversal ...

• It detects runtime crashes (due to unhandled Java
exceptions) and returns the sequences of events
causing them

7

Rotate

Press Menu Click Refresh
Click
New Post

Click Pages

Click About
Click Add
Account

≡
≡

Click
Edit

Crash

…

…

Click Save

… …

An example
of GUI

Ripping

Android Ripper Technological
Details

The Ripper is implemented as an
Android JUnit Test Project.

It exploits the Robotium
framework and Android
Instrumentation classes to
interact with the Application
Under Test (AUT)

The AUT source code can be
instrumented with EMMA to
calculate the code covered by
the Ripper.

The Saving SnapShot feature
offers a mechanism to define
the preconditions of the AUT

Strategy

Scheduler
Comparator

Engine

Persistence

Manager

Storage

Abstractor

Robot Extractor

Application

Under Test

Android

Instrumentation

JUnit

Planner

Robotium

Toolset and Testing procedure

The testing procedure executing the Android
Ripper is performed automatically using a set
of batch and jar files.

Experiments

We tested some open source apps from Google
Play market using Android Ripper, finding
several unknown bugs (reported to the
developers)

A. U. T. #
Events

Ripping
Time
(hours)

Bugs # Crashes % LOC
Coverage

BookCatalogue 1,677 61 2 9 57

AarDdict 93 2.2 1 5 70

Tomdroid 86 1.25 1 13 39

Wordpress 486 6.16 6 31 43

Future Works

• We plan to extend the Ripper :
• By implementing new event firing strategies
• By considering new sources of events (sensors)

and new input selection strategies.

• We will address the technological issues affecting the
Ripper execution on real devices.

• We will be pleased to further explain the
toolset usage in the Tool Bazar !

