A Toolset for GUI Testing of
Android Applications

Domenico Amalfitano
Anna Rita Fasolino
Porfirio Tramontana

Salvatore De Carmine

Gennaro Imparato

Dipartimento di Informatica e Sistemistica
University of Naples Federico I, Italy



Context and Motivation

Android OS is currently the most diffused platform for
mobile devices [Gartner, 2012 August]

— 98 Millions of Mobile Device sales with Android OS in second quarter
2012

— Android owns 64% of Market Share
Google Play market now includes over than 500,000 apps

— Most of these apps have been developed by small
programmer teams, by evolutionary life cycles
with very frequent releases via Google Play

There is a strong need for fast and effective Testing
automation solutions



Current Technologies and Tools for
Android Testing

Testing Frameworks for Unit and GUI testing

— Robotium, MonkeyRunner, Calculon, Roboelectric, ...
Stress testing Tools such as Monkey
Testing tools from research projects:

— TEMA model-based testing tools [Harty], ...
Debugging tools

— DDMS debugging tool from the Android SDK
Monitoring tools

— platforms for monitoring app usages and reporting
app crashes to the developers (like Crittericism)



Our Proposal: A toolset for automatic
GUI Testing of Android apps

* GUI testing is an effective approach for testing an
app through its GUI, firing sequences of events
and providing it with user inputs

* The proposed GUI testing toolset is based on a
configurable GUI Ripper (Android Ripper) that:

— automatically traverses the GUI firing sequences of
events through the Ul or the device (device rotation,
press back button, etc.)

— implements a Black-Box testing approach

— obtains automatically JUnit test cases (usable for
regression testing)



Android Ripper Features

The Ripper automatically explores the GUI structure
and returns a GUI Tree model

* It can be configured in order to emulate several
kinds of user behaviours, choosing:

* types of event to be fired, input values, time delays
between events, GUI traversing strategy (e.g. depth
first, breadth first, etc.), termination criterion to stop
GUI traversal ...

|t detects runtime crashes (due to unhandled Java
exceptions) and returns the sequences of events

causing them



\TV Android Ripper

An example
o of GUI

Ripping

k Pages
Click Refresh

Sl @ rozou %M @ s:s0em

v M m i
on Post Content (W testandroidripper ¥ O3

Bl 7:00em
iV testandroidripper ~ ¥

P;

About

Content +*

Hew Post New Page

Tags & Categories «
a B

commas) Quick Phota Quick Video

Quick Photo

gs (separ

Select Categories
A @ =

Selected categories:

Comments

Settings

Status: AddA o 'G
Publish lﬂ' E "’
b @ i)

Remave Blog About

Click Add Click About
Account

Click Save

TG a7
About L2 A |

Publish: Immediately | Edit

M@ 7010w

TV testandroidripper ¥

This is an example of a page. Unlike
posts, which are displayed on yaur blog's
front page in the order they're published,
pages are better suited for mare
content that you want to be
accessible, like your About or
Contact information. Click the Edit link to
make changes to this page or 3

(® No Content Found - 5
Start blogging from your another page.
mobile in seconds.

Please enter some post
content or attach a media item.

Start a new blog at WordPress.com
Add blog hosted at WordPress.com

Add self-hosted WordPress blog




Android Ripper Technological
Details

The Ripper is implemented as an
Android JUnit Test Project.

It exploits the Robotium
framework and Android

Instrumentation classes to & Robot | & Junit

interact with the Application
Under Test (AUT)

The AUT source code can be
instrumented with EMMA to
calculate the code covered by
the Ripper.

The Saving SnapShot feature
offers a mechanism to define
the preconditions of the AUT

% SchedulerL.

Android —C O
Instrumentation| Application
Under Test
ﬁ Robotium ¢
— Storage
T Extractor| = persistence
Manager
A
% Abstractor
% Comparator
% Engine % Strategy




Toolset and Testing

Deploying Step

AUT
Source Code

Source Code
@Instrumentator

1AUT.apk

Tester
1
| Uses
1
v
Ripper

~ Options
Configurator

Interacts with

—{

Deployer 4

Ripping
Options.xml

Target AVD with Ripper and IAUT installed

AVD

procedure

Ripping Step

Ripper Executor

-3

|

Coveraqg
Files

Gul

ScreenShots

Crash
Report

Intermediate
GUI-Tree
Model

Ripper.apk

Post-processing
Step

Coverage

v
Coverage
& Generator

o
Model
& Translator

FSM Model EFG Model GUI-Tree

Model

Test Suite
& Generator

JUnit Test
Suite




Experiments

We tested some open source apps from Google
Play market using Android Ripper, finding
several unknown bugs (reported to the

developers)

A.U.T. Ripping # Bugs # Crashes | % LOC
Time Coverage
(hours)
61 2 9 57

BookCatalogue 1,677

AarDdict 93 2.2 1 5 70
Tomdroid 86 1.25 1 13 39
Wordpress 486 6.16 6 31 43



Future Works

 We plan to extend the Ripper :
By implementing new event firing strategies

* By considering new sources of events (sensors)
and new input selection strategies.

 We will address the technological issues affecting the
Ripper execution on real devices.

 We will be pleased to further explain the
toolset usage in the Tool Bazar !



