
A Flexible Wrapper For The
Migration Of Interactive Legacy

Systems to Web Services

P. Tramontana
A.R. Fasolino
G. Frattolillo

Dipartimento di Informatica e Sistemistica
University of Naples Federico II, Italy

G. Canfora
RCOST – Research Centre on Software Technology

University of Sannio, Benevento, Italy

Introduction

Motivation

Service-Oriented Architecture (SOA)
– expresses a perspective of software architecture that defines the use of

services to support the requirements of software users.[...] Most
definitions of SOA identify the use of Web services in its implementation
(Wikipedia)

Possible approaches for obtaining Web Services
– Developing from scratch
– Reusing existing software

Form-based Legacy Systems pervade fundamental productive
activities:

– Public administration, bank, tourism, CRM, …

There is a great request for migration of interactive legacy
system functionalities toward Web Services and SOA

Comparing Interaction paradigms

Form based Systems

User types input data and issues
commands by interacting with the
user interface.

System answers by producing a
response screen, containing output
values and new input fields and
command buttons.

Web Services

A Client party invokes a service
implemented by a provider party,
using a request message.

The provider processes the
request and sends a response
message with the obtained
results.

Req

Resp

The Wrapper Tool

Uses a black-box approach

The goal of the wrapper is to make legacy systems accessible as
Web Service

Legacy system use-case constitutes the base of a Web Service

The Wrapper drives the legacy system during the execution of
each possible interaction scenario associated with the use case
to migrate, by providing it with the needed flow of data and
commands.

Wrapper

Legacy System

Web service
Request

Web service
Response

The Architecture

Features of the tool

Platform independence
– Developed using J2EE platform

Extensible architecture
– Hight modularity

Supports WSDL and SOAP specification
– For good interoperability

Uses a black-box approach
– No need for the source code of legacy system

Supports a use-case driven approach
– Iterative and incremental

Architectural overview

Legacy

System

Terminal

Emulator

Automaton

Engine

State

Identifier FSA

Description

Document

Wrapper

Web Service

Request

Application Server

Legacy Screen,
Current State

Identified

Interaction State

Actions

Legacy Screen

Screen

Template

Description

Web Service

Response

Legacy

System

Terminal

Emulator

Automaton

Engine

State

Identifier FSA

Description

Document

FSA

Description

Document

Wrapper

Web Service

Request

Application Server

Legacy Screen,
Current State

Identified

Interaction State

Actions

Legacy Screen

Screen

Template

Description

Web Service

Response

The “Terminal Emulator”

Responsibilities
– Manages the communication between the Wrapper and the

Legacy
– Is responsible for creating a virtual terminal and managing its

virtual keyboard and display
– Designed to support both stream-oriented and block-oriented

terminals

Implementation
– Modular implementation. Developers can add other terminal

protocol implementations
– Vt100 module is based on Java Terminal Application

(http://javassh.org/space/Plugin+Terminal)

The “Automaton Engine”

Responsibilities:
– Coordinates the execution of NFA, driving the Terminal

Emulator, the State Identifier and the FSA Repository
NFA is required because the next state may depend on the internal
logic or on the internal state of the legacy system

Implementation:
– Custom

?

The “State Identifier”

Responsibilities
– Disambiguates the next state while Automaton Engine is

executing the deterministic finite state automata (NFA)
The State Identifier must be able to identify the next state on the
basis of the returned screen, trying to match the current screen of the
legacy system with the Screen Templates associated with potentially
reachable Interaction States

– Localises Labels, Input Fields and Output Fields (getting their
values) from the screen

Implementation
– Custom

The “FSA Repository”

Responsibilities:
– Stores the XML files containing the specification of the Finite

State Automata associated with each wrapped use-case
– Includes the descriptions of the Interaction States,

Transitions, Screen Templates, and Actions to be provided to
the Automaton engine

– Helps the Wrapper to be independent of specific use-case

Implementation
– Xml and Xml-Schema languages
– Castor Xml (binding Java-Xml)
– File systems (persistence)

Demo

Software used

Microsoft Windows Xp Professional Sp2
– The OS installed on the laptop

Cygwin
– A Unix emulation layer over Win32 API

Pine 4.64 and Inetd - telent server
– The legacy system

Java 2 SDK 1.4.2
– Java VM and Compiler

Apache Tomcat Servlet Container
– A J2EE Web Container

Apache Jakarta Axis Web Application
– The Web Service infrastructure

Identification Phase

Use case of the legacy system is selected for the
migration
– Read the i-th message from a given folder

The legacy system is exercised by user sessions
covering the possible scenarios of that use case
– Sample telnet session...

Screens returned by the legacy system and actions
performed by user are recorded
– Sample screens and actions will be presented later...

Design Phase

Required inputs and desired outputs are identified
– Input : user, password, folder, message number
– Output: email message (formatted in Xml)

A Finite State Automaton is designed and stored in a
XML document
– FSA has to be able to replicate the behaviour of the user in

the execution of any scenario of the selected use case
– We'll see the resulting FSA later...

Deploy Phase

The WSDL document describing the Web Service's
interface is written and the Web Service is deployed

– Starting up Tomcat...
– Our WSDL... inside Axis...

Validation Phase

A testing strategy is followed, in order to validate the
correctness of the realised Web Service
– Cover all possible scenarios associated with the migrated use-

case
Folder not found
Folder with no messages
Message not found
...

– What could go wrong?
Forgetting a scenario

– The “Folder is locked” scenario
– The “Move messages in a dedicated folder” (asked

only every month) scenario

Running the Demo

A new message with Pine
– Writing...

Reading that message
– Launching the Web service invoker
– It runs for just a few seconds!

A look inside generated log file
– Animated automaton...

Q & A Session

Thank you

