Towards a Better Comprehensibility of Web Applications: Lessons Learned from Reverse Engineering Experiments

P. Tramontana G. A. Di Lucca, A.R. Fasolino

Dipartimento di Informatica e Sistemistica University of Naples Federico II, Italy

Web Applications (WA): problems and open issues

- The development of Web sites and applications is increasing dramatically to satisfy the market requests. The software industry is facing the new demand under the pressure of a very short time-to-market and an extremely high competition.
- ⇒Web sites and applications are usually developed without a disciplined process: poor documentation is produced to support the subsequent maintenance and evolution activities, thus compromising the quality of the applications

Managing existing Web Applications

- ⇒ Due to the large number of employed technologies, understanding, maintaining and evolving a dynamic application is a complex task …
- *Reverse Engineering* methods and techniques have been proposed for...
 - Analyzing the functional behavior of an existing WA
 - Reconstructing the architecture of the WA
 - Capturing and reusing the design of the application
 - Modeling static and dynamic views by UML diagrams (use cases, sequence and class diagrams)

— ...

Problems in analysis

- Presence in a WA of several heterogeneous software components, developed with different technologies and coding languages
- Absence of effective mechanisms for implementing the well-known software engineering principles of modularity, encapsulation, and separation of concerns, may significantly make harder the comprehension of an existing WA

Reverse Engineering Web Applications

Five main steps:

- 1) Static Analysis of the WA
- 2) Dynamic Analysis of the WA
- 3) Automatic Clustering of the WA
- 4) Validation of the clustering
- 5) Abstraction of UML diagrams

The conceptual model of a WA

- *Components*: Client pages, server pages, client page with frames, client modules, web objects.
- *Relationships*: Link, submit, redirect, build, load_in_frame, include.

1) Static Analysis of the WA

 This kind of analysis can be carried out with the support of a multi-language code parser, such as WARE, a tool that statically analyzes HTML code, server script code (Vbscript, JScript, PHP), client script code (Vbscript, Jscript, Javascript).

- Recover of additional information about its components and inter-relationships.

- After static and dynamic analysis, we have the Web Application Graph (WAG), where every component is a node (the shape and the color of the node depend on the type) and every edge is a relationship (the color depend on the type)

- The algorithm groups components of a WA into meaningful (highly cohesive) and independent (loosely coupled) clusters
- It evaluate the degree of coupling between interconnected components depending on both the typology and the typology of the connections, and propose a clustering configuration that includes clusters with high intra-connectivity and low interconnectivity

4) Validation of the clustering

- Proposed clustering is submitted to a Concept Assignment Process (CAP) in order to validate them
- We distinguish between:
 - Valid clusters
 - Invalid clusters
 - Incomplete clusters
 - Divisible clusters
 - Spurious clusters

5) Abstraction of the UML diagrams

Every functionality retrieved after Concept
 Assignment Process is used to reconstruct a use
 case diagram

Experimenting the reverse engineering approach

- The proposed RE approach has been experimented with 6 real WAs with different characteristics, and implemented using ASP, Javascript, PHP, and HTML technologies.
- According to Huang and Tilley's classification three of them were class 3 applications, two were class 2 applications and the last were a class 1 application.

1) Static Analysis of the WA

Summary data about the analyzed Was

Component type	WA1	WA2	WA3	WA4	WA5	WA6
Server page	75	105	21	0	0	0
Client Static page	23	38	19	80	45	257
Client Built page	74	98	20	0	0	0
External web page	0	0	5	2	34	8
Client script block	132	225	113	261	4	3
Function in Client script block	48	32	60	68	1	4
Form	49	100	5	0	25	5
Server script block	562	2358	40	0	0	0
Function in Server scripts	0	11	0	0	0	0
Redirect operation in server blocks	7	0	0	0	0	0
Redirect operation in client blocks	0	0	41	0	0	0
Anchor to Hypertextual link	45	266	121	162	448	1508

Problems :

- •Connections with a dinamically istantiated value
- •Connections dinamically istantiated

•Connections realized in extra-script object (e.g.: java applets, flash objects)

Component	WA1	WA2	WA3	WA4	WA5	WA6
type						
Redirect	7	0	0	0	0	0
operation in						
server blocks						
Anchor to	0	1	9	0	27	0
Hypertextual						
Link						
Submit Form	0	32	0	0	0	0
Redirect	0	0	27	0	0	0
operation in						
client blocks						

Dynamically retrieved information

WAG: Web Application Graph

 WARE tool automatically selects the optimal clustering of the WA, according to a quality metric based on the evaluation of the degree of the intraconnectivity of the clusters and of the degree of interconnectivity.

Component type	WA1	WA2	WA3	WA4	WA5	WA6
Number of Clusters	48	101	31	58	31	122
Average # Pages per Clusters	3,58	2,41	2,03	1,55	1,45	2,17

WSE 2002, Montreal, Canada

Problems:

 Presence of many navigation links, such as back links and cross links. These links are not representative of semantic relationships among the pages (e.g.: links associated with navigation bars)

4) Validation of the clustering

	WA1	WA2	WA3	WA4	WA5	WA6
Number of initial clusters	49	101	27	49	31	115
Number of spurious clusters	0	0	1	1	0	0
Number of split clusters	0	0	2	0	5	12
Number of incomplete clusters	8	15	3	0	0	0
Number of accepted clusters	41	86	21	48	26	103
Number of new clusters obtained from the spurious ones	0	0	1	2	0	0
Number of new clusters obtained from the subdivided ones	0	0	5	0	13	31
Number of new clusters obtained by merging incomplete clusters	3	7	1	0	0	0
Number of final clusters	44	93	28	50	39	134

5) Abstraction of the UML diagrams

Result of the Concept Assignment Process

	WA1	WA2	WA3	WA4	WA5	WA6
Clusters that	31	55	19	20	23	121
realise a use case						
Clusters	12	13	2	11	12	16
implementing						
coordinator/						
home / menu						
page						
Isolated	0	9	7	19	4	0
Clusters						
Clusters	1	16	0	0	0	0
implementing						
Utility Modules						

5) Abstraction of the UML diagrams

• Dynamic analisys is time-consuming and expensive, since it cannot be completely automated.

In order to reduce the effort devoted to static/dynamic analysis, programmers should try to introduce explicit (static) links in the code each time it is possible

```
<%
param=Request.Form("parameter")
x=Month(Now)
If x>0 then %>
<A href=a.html?par=<%=param%>>Go to page A
</A>
<% else %>
<A href=b.html?par=<%=param%>>Go to page B
</A>
<% end if %>
```

 $\sqrt{\text{Links}}$ between this page and a.html and b.html are retrieved with static analysis.

×The value of the parameter can be retrieved only with a multi-page dynamic analysis

```
<%

page1="a.html"

page2="b.html"

param=Request.Form("parameter")

x=Month(Now)

If x>0 then

response.write("<a href="+ page1+"?par="+param+">Go to page A </A>")

else

response.write("<a href="+ page2+"?par="+param+">Go to page B</A>")

end if

%>
```

×Links aren't retrieved with static analysis.

×Their value can be retrieved with a (simple) data flow analysis

```
<%
 'Read from a database the value to assign to page1 (i.e. a.html)'
 'Read from a database the value to assign to page2 (i.e. b.html)'
param=Request.Form("parameter")
x=Month(Now)
If x > 6 then
  response.write("<a href="+page1+"?par="+param+">Go to page A </A>")
else
 response.write("<a href="+page2+"?par="+param+">Go to page B</A>")
end if
%>
```

×Links aren't retrieved with static analysis.

×The value of the link can be retrieved only with a data flow analysis, comprehending to database

WSE 2002, Montreal, Canada

•Some WA have a lot of navigation links, such as back links and cross links, and they have no semantic mean

•Use of *frames* reduces the number of navigation links

•Semantic of the link can be described with the 'name' attribute

```
<title> Argument B </title>
...
<a name=crossA href="argumentA.html> Argument A </a>
<a href="argumentB1.html> Argument B.1 </a>
<a href="argumentB2.html> Argument B.2 </a>
<a name=crossC href="argumentC.html> Argument C </a>
<a name=backHome href="index.html> Home Page </a>
```

•The validation of the cluster represent a more expensive step of the RE process: we have to examine all the page of the cluster and their execution. So, this phase can be quite expensive if the clusterization has a low affidability

•Mirror the conceptual structure of the application into the directory structure of the file system, by locating groups of functionally related files into the same directory

•Employ an internal documentation standard in order to annotate each main component of the WA

```
<% @ Language=VBScript %>
<HTML>
<HEAD>
<TITLE> check </TITLE>
<META NAME="Purpose" CONTENT="This page checks Login and Password of a Teacher,
then it redirects to Teacher Home Page">
<META NAME = "Incoming Links from Pages:" CONTENT = "/autenticazionedocente.html">
<META NAME = "Outgoing Links to Pages:" CONTENT = "/autenticazionedocente.html,
/areadocente.html">
<META NAME="Input Parameters" CONTENT="login,password">
<META NAME="Output Parameters" CONTENT="">
<META NAME = "Session Variables" CONTENT = "loginOK, matricola">
<META NAME="Included Modules" CONTENT="login,password">
<META NAME="Database" CONTENT="../basedatisito.mdb">
<META NAME="Images" CONTENT="bgmain.gif">
\langle HEAD \rangle
```

Conclusions

- This paper presented an approach for Reverse Engineering Web Applications, and illustrated the results of an experiment carried out to assess which characteristics of a WA mostly affect its comprehensibility
- Lessons learned: the programmers did not abuse the mechanisms offered for obtaining dynamic behavior.

Future work

- More rules to improve quality of WA
- More powerful tools to automate dynamic analysis and concept assignment process
- Experimenting the reverse engineering approach to other case studies in order to validate and improve the methodology