
11

Identifying Cross Site Identifying Cross Site
Scripting Vulnerabilities in Scripting Vulnerabilities in

Web ApplicationsWeb Applications

P. Tramontana, A.R. FasolinoP. Tramontana, A.R. Fasolino
Dipartimento di Informatica e SistemisticaDipartimento di Informatica e Sistemistica
University of Naples Federico II, ItalyUniversity of Naples Federico II, Italy

G.A. Di LuccaG.A. Di Lucca
RCOST RCOST –– Research Centre on Software TechnologyResearch Centre on Software Technology

University of Sannio, Benevento, ItalyUniversity of Sannio, Benevento, Italy

M. MastroianniM. Mastroianni
Second University of Naples, ItalySecond University of Naples, Italy

22

The problem of Internet security and privacyThe problem of Internet security and privacy

Security and privacy are fundamental Security and privacy are fundamental
requirements for Web Applicationsrequirements for Web Applications
75% of the malicious attacks on the Web 75% of the malicious attacks on the Web
occur at the application level (Gartner occur at the application level (Gartner
Group)Group)
As more complex and automated Web As more complex and automated Web
Applications arise so does the probability Applications arise so does the probability
of creating security loopholes.of creating security loopholes.

33

The problem of Internet security and privacyThe problem of Internet security and privacy

Security and privacy are usually guaranteed by:Security and privacy are usually guaranteed by:
specific security systems (such as firewalls, or specific security systems (such as firewalls, or
Intrusion Detection Systems) and software Intrusion Detection Systems) and software
(such as antivirus or encryption software)(such as antivirus or encryption software)
organisational changes to business processes organisational changes to business processes
finalised to improve securityfinalised to improve security

But developers do not build security into their But developers do not build security into their
applications, based upon the false assumption that applications, based upon the false assumption that
another area of security will cover itanother area of security will cover it

44

Cross Site Scripting (XSS) Cross Site Scripting (XSS)

CrossCross--Site Scripting attack:Site Scripting attack:
A client executes a page containing script code A client executes a page containing script code
that has been injected from other sourcesthat has been injected from other sources

How can a malicious user perform a How can a malicious user perform a
Cross Site Scripting attack?Cross Site Scripting attack?

55

First scenarioFirst scenario

Web Application implementing Web Application implementing
a Guestbooka Guestbook
Malicious user inserting a Malicious user inserting a
message, containing script message, containing script
codecode
The script code is stored into The script code is stored into
the databasethe database
A victim open the Message A victim open the Message
pagepage
Since no checks are performed, Since no checks are performed,
the script code is sent to the the script code is sent to the
browser as a messagebrowser as a message
The browser executes the The browser executes the
malicious script codemalicious script code

DB table

Guestbook Page

DB Storage Page

Malicious user

Input Page
Malicious
code

Victim

66

Second scenarioSecond scenario

A Simple Search formA Simple Search form
The victim unconsciously The victim unconsciously
execute a link containing execute a link containing
a malicious script codea malicious script code
Simple Search server Simple Search server
page write an error page write an error
message…message…
… but this error message … but this error message
contains the script code, contains the script code,
that is executed by the that is executed by the
browserbrowser Malicious code

Victim

77

Key factors of XSS vulnerability Key factors of XSS vulnerability

the exploits are very simple to carry out, and no particular the exploits are very simple to carry out, and no particular
application knowledge or skill are required;application knowledge or skill are required;

the attacks may bypass perimeter defences (e.g. the attacks may bypass perimeter defences (e.g.
Firewalls), cryptography, digital signatures and site Firewalls), cryptography, digital signatures and site
trusting; trusting;

it may be very difficult for the victim to know which web it may be very difficult for the victim to know which web
application allowed the XSS attack;application allowed the XSS attack;

it may be very difficult for the developer to know which it may be very difficult for the developer to know which
element of the web application allowed the XSS attack;element of the web application allowed the XSS attack;

evolution of hypertextual language characteristics and evolution of hypertextual language characteristics and
browser capabilities may make it possible new attack browser capabilities may make it possible new attack
strategies and make vulnerable a web application which strategies and make vulnerable a web application which
was considered invulnerable.was considered invulnerable.

88

Possible solutions Possible solutions

To disable scripting language interpretation in To disable scripting language interpretation in
browsersbrowsers

To install of a software proxy which intercepts To install of a software proxy which intercepts
malicious strings in input and/or output (Scott and malicious strings in input and/or output (Scott and
Sharp, 2002)Sharp, 2002)

To introduce an input validation function To introduce an input validation function
immediately after every input statement immediately after every input statement
contained in a Web pagecontained in a Web page

To adopt this solution detection of vulnerabilities in To adopt this solution detection of vulnerabilities in
source server script code is neededsource server script code is needed

99

Detection and assessment of XSS vulnerabilities Detection and assessment of XSS vulnerabilities

Static and dynamic analysis of server pages are combined to Static and dynamic analysis of server pages are combined to
detect and assess XSS vulnerabilities:detect and assess XSS vulnerabilities:
Static analysis detects vulnerable pages and potentially Static analysis detects vulnerable pages and potentially
vulnerable pagesvulnerable pages
Dynamic analysis consists in the execution of a set of test Dynamic analysis consists in the execution of a set of test
cases reproducing XSS attackscases reproducing XSS attacks

1010

Potential vulnerability of a server page Potential vulnerability of a server page

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then

response.write(“Forbidden”)
else

. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

end if
%>

nI

1

2
3
4

8

9
10
11
nF

nI

1

2

10

nF

…

Input
Message

Output
Message

…

3

Message

A server page will be potentially XSS vulnerable if there A server page will be potentially XSS vulnerable if there
are a variable v and two Input(v) and Output(v) nodes are a variable v and two Input(v) and Output(v) nodes
that are connected by a path on the CFG.that are connected by a path on the CFG.

1111

Vulnerability of a server page Vulnerability of a server page

A server page will be vulnerable if there are a variable v, A server page will be vulnerable if there are a variable v,
and two Input(v) and Output(v) nodes, such that all the and two Input(v) and Output(v) nodes, such that all the
paths on the CFG leaving the Input(v) node reach the paths on the CFG leaving the Input(v) node reach the
Output(v) node, being defOutput(v) node, being def--clear with respect to v. clear with respect to v.

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1

5

6
7
8
nF

nI

1

7

nF

…

…

Output
Message

Input
Message

Message

1212

Invulnerability of a server pages Invulnerability of a server pages

A server page including an input data item that does not A server page including an input data item that does not
affect any output will be certainly invulnerable with affect any output will be certainly invulnerable with
respect to that input. respect to that input.

nI

1

nF

…

Input
Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store a constant string into the DB
rs.Addnew
rs("Message")=“One message received”
rs.update
%>

nI

1

5

6
7
8
nF

1313

Vulnerability conditions Vulnerability conditions

Vulnerability predicates:Vulnerability predicates:
A(v):A(v): There exists a path on the CFG between I and O nodes.There exists a path on the CFG between I and O nodes.
B(v): The O node postdominates I node.B(v): The O node postdominates I node.
C(v):C(v): Each path between I node and O node is a defEach path between I node and O node is a def--clearclear--pathpath

(obviously, B(v)=>A(v) and C(v)=>A(v))(obviously, B(v)=>A(v) and C(v)=>A(v))

Vulnerability conditions:Vulnerability conditions:
PV) PV) ∃∃v v ∈∈ P: A(v) => P is potentially vulnerable with respect to v => P: A(v) => P is potentially vulnerable with respect to v =>
P is potentially vulnerableP is potentially vulnerable
V) V) ∃∃v v ∈∈ P: B(v) AND C(v) => P is vulnerable with respect to v => P: B(v) AND C(v) => P is vulnerable with respect to v =>
P is vulnerableP is vulnerable
NV) NV) ∃∃v v ∈∈ P: NOT(A(v)) => P is not vulnerable with respect to v P: NOT(A(v)) => P is not vulnerable with respect to v

1414

Examples (1)Examples (1)

<%
‘Read Message from input form
Message=request.form("txtMessage")
‘Check for string “script” in Message
if instr(1,Message,“script")>0 then

response.write(“Forbidden”)
else

. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update

end if
%>

nI

1

2
3
4

8

9
10
11
nF

nI

1

2

10

nF

…

Input
Message

Output
Message

…

3

Message

Predicate values Condition Input variable

A B C V P NV

T F T F T F Message

The server page is
potentially
vulnerable with
respect to the
variable Message

1515

Examples (2)Examples (2)

Predicate values Condition Input variable

A B C V P NV

T T T T T F Message

The server page is
vulnerable with
respect to the
variable Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store Message into the DB
rs.Addnew
rs("Message")=Message
rs.update
%>

nI

1

5

6
7
8
nF

nI

1

7

nF

…

…

Output
Message

Input
Message

Message

1616

Examples (3)Examples (3)

Predicate values Condition Input variable

A B C V P NV

F F F F F T Message

The server page is
not vulnerable

nI

1

nF

…

Input
Message

<%
‘Read Message from input form
Message=request.form("txtMessage")
. . . open DB connection . . .
rs.open "Guestbook",conn,1,2,2
‘Store a constant string into the DB
rs.Addnew
rs("Message")=“One message received”
rs.update
%>

nI

1

5

6
7
8
nF

1717

Static analysisStatic analysis

1.1. Identify the input and output nodes of the CFG of the page P;Identify the input and output nodes of the CFG of the page P;
2.2. Identify all paths leaving the input nodes on the CFG;Identify all paths leaving the input nodes on the CFG;
3.3. For each path leaving an input(v) node and reaching an output(For each path leaving an input(v) node and reaching an output(v) v)

node, verify if the path is defnode, verify if the path is def--clear with respect to v;clear with respect to v;
4.4. Evaluates A, B, and C predicates’ values with respect to v;Evaluates A, B, and C predicates’ values with respect to v;
5.5. Evaluate the vulnerability of page P, by the PV, NV, and V Evaluate the vulnerability of page P, by the PV, NV, and V

conditions.conditions.

With reference to the second step of this process, in order to cope with the complexity
of identifying all paths leaving the input nodes on the CFG, the analysis can be limited
to a set of linearly independent paths extracted from the CFG.

1818

Dynamic analysisDynamic analysis

Tthe presence of a vulnerable page doesn’t imply that a Tthe presence of a vulnerable page doesn’t imply that a
XSS attack can be performed. To assess if a Web XSS attack can be performed. To assess if a Web
Application is actually vulnerable to XSS attacks, Application is actually vulnerable to XSS attacks,
dynamic analysis may be performed.dynamic analysis may be performed.
A vulnerability should be corrected and eliminated by A vulnerability should be corrected and eliminated by
the developer. The semantic of the source code of the developer. The semantic of the source code of
pages containing potential vulnerability should be pages containing potential vulnerability should be
analysed by the developer.analysed by the developer.
A testing strategy involving the execution of a set of A testing strategy involving the execution of a set of
attack test cases must be followedattack test cases must be followed

1919

Testing strategy (second scenario)Testing strategy (second scenario)

FOR EACH vulnerable or potentially vulnerable
page P of the Web Application

FOR EACH input field I of page P causing
vulnerability
Define a set S of XSS attack strings
FOR EACH s ∈ S

EXECUTE server page P with
input field I=s
Check for attack consequences

2020

Testing strategy (first scenario)Testing strategy (first scenario)

FOR EACH vulnerable or potentially vulnerable page
P of the Web Application

FOR EACH input field I of page P causing
vulnerability
Define a set S of XSS attack strings

FOR EACH s ∈ S
EXECUTE server page P with input field I= s

FOR EACH test case T from the test suite
EXECUTE test case T
Check for attack consequences

2121

Case studyCase study

Real world open source Web Applications Real world open source Web Applications
implemented in PHP and ASP has been analysedimplemented in PHP and ASP has been analysed
An example: Snitz Forum, version 3.4.03 An example: Snitz Forum, version 3.4.03
((http://forum.snitz.comhttp://forum.snitz.com))
Vulnerability situations has been detected using Vulnerability situations has been detected using
static analysisstatic analysis
A vulnerability to XSS attacks of the second type A vulnerability to XSS attacks of the second type
has been confirmed by dynamic analysishas been confirmed by dynamic analysis

http://forum.snitz.com/

2222

An exampleAn example

Response.Write “<input type=""text"" name=""Search""
size=""40"" value=""" & Request.QueryString("Search") &
""">
" & vbNewLine

This line of search.asp page contains a vulnerability: the value of an
input variable (Search) will be sent to the client browser with no
checks. The following test case perform a XSS attack redirecting Client
Cookie values to a page of attacker’s server :

“><script>location.URL=‘http://www.attackersite.com/atta
cker.cgi?’ + document.cookie) </script>

An example of vulnerability is contained in the following source code:

2323

An exampleAn example

This vulnerability is also reported by Bugtraq web sites
(http://www.securityfocus.com,
http://msgs.securepoint.com/bugtraq/) and it has been corrected in
the next version (3.4.04) of the forum

Response.Write ” "<td bgColor=""" &
strPopUpTableColor & """ align=""left"" valign=""middle"">
<input type=""text"" name=""Search"" size=""40"" value="""
& trim(ChkString(Request.QueryString("Search"),"display"))
& """>
" & vbNewLine & _

http://www.securityfocus.com/
http://msgs.securepoint.com/bugtraq/

2424

ConclusionsConclusions

A WA should be intrinsically secure, by adopting secure
programming practices, in order to preserve its
invulnerability as the execution environment changes.

This paper proposed an approach for assessing the XSS
vulnerability of an existing WA based on static and
dynamic analysis of source code: Static analysis criteria
have been defined to individuate vulnerable Web pages,
while dynamic analysis strategies have been proposed to
test the actual vulnerability of the Web Application
including the vulnerable pages.

2525

Future worksFuture works

To support static analysis with automatic tools

To integrate dynamic analysis with test case
execution tools

To assess the effectiveness of the approach with
a wider set of applications

	Identifying Cross Site Scripting Vulnerabilities in Web Applications
	The problem of Internet security and privacy
	The problem of Internet security and privacy
	Cross Site Scripting (XSS)
	First scenario
	Second scenario
	Key factors of XSS vulnerability
	Possible solutions
	Detection and assessment of XSS vulnerabilities
	Potential vulnerability of a server page
	Vulnerability of a server page
	Invulnerability of a server pages
	Vulnerability conditions
	Examples (1)
	Examples (2)
	Examples (3)
	Static analysis
	Dynamic analysis
	Testing strategy (second scenario)
	Testing strategy (first scenario)
	Case study
	An example
	An example
	Conclusions
	Future works

