
ICP and the Squid Web Cache�Duane Wesselsk cla�yAugust 13, 1997AbstractWe describe the structure and functionality of the Internet Cache Protocol (ICP) and itsimplementation in the Squid Web Caching software. ICP is a lightweight message format usedfor communication among Web caches. Caches exchange ICP queries and replies to gatherinformation to use in selecting the most appropriate location from which to retrieve an object.We present background on the history of ICP, and discuss issues in ICP deployment, e�-ciency, security, and interaction with other aspects of Web tra�c behavior. We catalog successes,failures, and lessons learned from using ICP to deploy a global Web cache hierarchy.1 IntroductionEver since the World-Wide Web rose to popularity around 1994, much e�ort has focused on reducinglatency experienced by users. Sur�ng the Web can be slow for many reasons. Server systems becomeslow when overloaded, especially when hot spots suddenly appear. Congestion can also occur atnetwork exchange points or across links, and is especially prevalent across trans-oceanic links thatoften cost millions of dollars per month.A common, albeit expensive way to alleviate such problems is to upgrade the overloaded resource:get a faster server, another E1, a bigger switch. However, this approach is not only often eco-nomically infeasible, but perhaps more importantly, it also fails to consider the numerous partiesinvolved in even a single, simple Web transaction. In addition to the user and the informationprovider, typically several Internet Service Providers and exchange points participate in deliveringrequested information to the user. Like the proverbial chain, a transaction is only as good as itsweakest network link. As an example, Microsoft could have a thousand Web servers and a thousandOC3 circuits, but downloading the latest version of MSIE1 will still take 20 hours for some folks inMoscow who have a single 19.2 kbps link for all of their simultaneous TCP/IP connections.Caching has proven a useful technique for reducing end user experienced latency on the Web [1,2, 3, 4, 5, 6, 7]. The fundamental concept is the intermediate storage of copies of popular Webdocuments close to the end users. Caching is e�ective because many Web documents are requested(much) more than once [8]. Web browsers have local disk caches because individuals often browsethe same pages repeatedly. Additionally, there is likely overlap in the set of documents requestedby a large group of users. These users can bene�t from a shared network cache.�This work is supported by a grant of the National Science Foundation (NCR-9521745).1The MSIE 3.02 package for Windows 95 is 10.3 Mbytes.1



World-Wide Web caches are implemented as proxies. Normally Web clients (browsers) make directconnections to Web servers. However, clients may instead be con�gured to connect to a proxyapplication which then forwards the request to the server on behalf of the client. For this reasonWeb caching is also occasionally referred to as proxy caching. Proxies are often used as a gatewaybetween two sides of an Internet �rewall, and are not necessarily used for caching.1.1 HTTP and CachingThe Hypertext Transfer Protocol [9, 10] has several basic features relevant to Web caching. At thetime of this writing, the majority of Web clients and servers use HTTP version 1.0. In many cases,HTTP/1.1 features are incrementally added to software products. Most of what we describe herepertains to HTTP/1.0, except for the Cache-control features, which are part of HTTP/1.1.An HTTP request is comprised of three major parts: a request method, a Uniform Resource Locator(URL) [11], and a set of request headers. An HTTP reply consists of a numeric result code, a setof reply headers, and an optional reply body. The most common request method is GET, whichis a request to retrieve the information indicated by the URL. A GET request is essentially adownload operation. Another commonly used request method is POST, which is essentially anupload operation.A special kind of GET request is a conditional GET , which is di�erentiated by the inclusion of an If-Modi�ed-Since header, and whose reply depends upon the modi�cation date of the URL comparedto the date provided in this If-Modi�ed-Since header. Conditional GET is an important featurefor caching, as it allows the server to send a small Not Modi�ed response if the client already holdsa current copy of the requested resource. If the resource has changed since the If-Modi�ed-Sincetimestamp, the server sends the current version.The HTTP/1.1 Cache-control header allows both clients and servers to \override the default cachingalgorithms" [10]. For this article, we are primarily interested in the Max-age directive, which letsthe client place an upper limit on how old an object can be and still satisfy the request withoutrefreshing the document from the source. Here age refers to the elapsed time since the originserver provided the data. If the cached object is older than the client requires, the request must beforwarded to the origin server.1.2 Hierarchical Caching and ICPA group of Web caches can bene�t from sharing another cache in the same way that a group of Webclients bene�t from sharing a cache. Like other wide-area, multi-administration Internet servicessuch as the Domain Name Service (DNS) [12, 13], Usenet newsgroups, and Classless Inter-DomainRouting (CIDR) [14], the use of hierarchical structure is particularly auspicious for the scalabilityand manageability of Web caching. Figure 1 depicts a very simple cache hierarchy. A set of childcaches share a common parent cache. Child caches forward requests to their parents for documentsthey do not have. Ideally, a hierarchy of Web caches is based on the underlying Internet topology,where an Internet service provider operates a parent cache and his customers operate the childcaches.However, such a simple hierarchy is not appropriate to all situations. For example, there mightbe multiple parent caches. In that case, to which parent should a cache forward requests, andwhat information might be available to aid the cache in this decision? Or perhaps there is noparent cache at all. Consider three caches operated by di�erent departments of a university where,2



ZZZZZZZZPARENT
CHILD CHILD CHILD

��������
Figure 1: Simple cache hierarchy model. Child caches forward misses up to a parent cache.for some reason, the networking organization is unwilling to operate a cache for the university asa whole. The departments may want to leverage each others' caches, by requesting from theircounterpart caches the documents those caches have already retrieved. But how do they knowwhich documents those are?The Internet Cache Protocol (ICP), whose role is to provide a quick and e�cient method of inter-cache communication, o�ers a mechanism for establishing complex cache hierarchies. ICP allowsone cache to ask another if it has a valid copy of a named object, improving its chances of selectinga parent cache that would result in a cache hit. Section 4 describes these processes in detail. Inaddition, ICP allows requests to ow between child caches. We refer to this as a sibling relationship.The only di�erence between sibling and parent relationships is in their role during cache misses:parents can help resolve misses, and siblings do not. The parent/sibling distinction has a numberof interesting consequences and issues which we discuss in section 6.1.2 Related WorkWeb caching is based on established techniques used for improving the performance of distributed(networked) �lesystems [15, 16, 17, 18, 19]. Modern computer systems use caching for memoryand local disk accesses as well. The most di�cult part of any caching scheme is maintaining cacheconsistency , or keeping the cached data synchronized with the source. As mentioned above, HTTPhas the If-Modi�ed-Since feature for this purpose.The CERN HTTPD [20] is the original proxy cache. Under heavy load, it su�ers from two designaws: 1) each request is handled by a separate process, and 2) the �lesystem is used to index cachedobjects (i.e. each cache lookup requires a stat() system call). CERN caches can be arrangedhierarchically, but every single cache miss is forwarded on to a single parent cache.The Harvest cache [21, 22] set out to improve upon CERN by focusing on hierarchical cachingand and an e�cient process implementation (i.e. no forking and minimal disk access). However,Harvest fell short on properly implementing the HTTP protocol, most notably it does not supportIf-Modi�ed-Since requests. When the Harvest project ended, development of the cache softwarecontinued by two groups. One is a commercial product called NetCache [23]. The other is calledSquid, which we maintain as a part of our National Science Foundation grant to develop a prototypecaching architecture [24]. Harvest, NetCache, and Squid all support ICP.Most Web caching systems in use today, including Squid, are demand-driven from the clients [25,26, 27, 28, 29, 22, 20]. In other words, the caches are passive, and objects are only retrieved3



or validated when requested by a client. This is similar to how Sun Microsystems' Network FileSystem (NFS) [30] operates. NFS servers are stateless (as are HTTP servers), and NFS clients aretasked with maintaining cache consistency.One alternative to demand-driven caching is known as push-caching [31, 32]. Gwertzman andSelzter [31, 33] propose that Web servers replicate popular data in advance based on geography.2Push-caching is similar to the Andrew File System (AFS) [34] because the servers become statefuland can invalidate stale cached data. However, an AFS server does not choose where data shouldbe cached.Replication is a technique similar to caching, but is generally considered to be more active. Theprocess of setting up a new replica is often manually intensive (e.g. editing con�guration �les,installing cron jobs, and updating listings). Baentsch et. al. [35] have proposed a scheme forautomatic replication of popular data, in which users rely on proxy caches that are aware of thereplicated servers.Prefetching can be e�ective at reducing latency at the expense of increased bandwidth usage. Theinherent drawback is that some data will be prefetched but then never requested by the user. To bemost e�ective, a prefetching proxy cache must accurately predict future requests. Padmanabhanand Mogul [36] propose that Web servers o�er predictions to clients regarding the likelihood offuture requests to the server, based on which clients could decide whether to prefetch speci�cresources.Prefetching has been implemented in the Wcol proxy cache [37]. Chinen and Yamaguchi [38]examine hit rates, transfer times, and network tra�c volume for prefetching compared to demand-driven caching and to no caching at all. Prefetching increased the amount of network tra�c by afactor of 2.8 compared to no caching, and by a factor of 4.1 compared to demand-driven caching.The average retrieval time decreased by a factor of 1.6 compared to no caching, and by a factorof 2.5 for demand-driven caching. Finally, demand-driven caching resulted in a 39% document hitrate, but with prefetching it reached 64%.Some Web sites, notably the Internet Movie Database (www.imdb.com) speci�cally ban prefetchingand so-called Web accelerators based on IP address or the User-agent request header. A requestto www.imdb.com without a User-agent header results in a page that includes the following text:your address or browser or proxy server has been banned for misuse of our service, e.g.overloading our servers with automated requests.All requests from NetJet, NetCarta, Autonomy, WebWhacker, FlashSite, Java102, in-foGear, Teleport-Pro, MemoWeb, Microsoft's MS-Catapult/0.9, Netscape's Catalog-Robot are rejected because of persistent attempts to download huge numbers of URLsas fast as the networks permit.Several e�orts have focused on mechanisms for locating the best server to ask for a document. Oneapproach is to add geographical coordinate information to DNS records [39]. However, topologydoes not generally match geography, so this technique has limited utility for Web caching.Another approach is under development within the IETF. SONAR [40] is a simple message formatfor expressing the relative proximity of a set of server addresses. One implementation uses round-trip time as the proximity metric, but unfortunately the current version does not require a single2This scheme requires mapping addresses to network administrator contacts with street addresses, using a �lemade available by Merit as a part of the NSFNet project, and then using the U.S. poastal ZIP code to get latitudeand longitude coordinates from a geography server. 4



REQUEST NUMBEROPTIONSPADDINGSENDER HOST ADDRESS
PACKET LENGTH0 31OPCODE VERSION

Figure 2: ICP header format.standard metric, making it di�cult to compare SONAR information from di�erent SONAR servers.The proposed Host Proximity Service [41] is similar to SONAR, but more ambitious.Carter and Crovella argue that dynamic server selection can outperform static schemes by as muchas 50% [42]. Here a static policy would always assign the same client to the same replicated server.By measuring the Internet (i.e. throughput and latency) in near real-time, server selection canchange relatively quickly in response to network congestion and other instabilities. They o�er apair of diagnostic tools to measure both the base bandwidth and available bandwidth of an Internetpath.Floyd, Zhang, and Jacobson are beginning a research project called Adaptive Web Caching [44].Central to their approach is the use of reliable multicast to disseminate objects among proxy cachegroups. They propose to use IP routing information to forward cache misses toward origin servers.Some people believe that tree-like hierarchies have appealing scaling properties. Others argue thatupper level nodes of the tree become excessively loaded and degrade performance, so distributionis the key to scaling. Povey describes a Distributed Internet Cache [4] and modi�cations to ICPto replace top-level caches with pointer servers. Instead of holding cached data, pointer serversremember which caches hold which objects, and direct requests accordingly. A similar project,known as CRISP [45] is underway at Duke University and AT&T.We are not presently aware of any other protocols which provide the same functionality as ICP,although it might be possible to implement the same ideas with HTTP and the HEAD requestmethod. URL hashing has been proposed [46] as an alternative method for load balancing andparent selection, however only ICP enables sibling relationships among caches.3 The Internet Cache Protocol (ICP)3.1 Message FormatAn ICP message consists of a �xed, 20-octet header plus a variable-sized payload, the latter ofwhich typically contains a URL. Figure 2 shows the ICP message format; all �elds are representedin network byte order.33As of this writing the most current description of ICP is in Wessels' Internet Drafts [47, 48].
5



� OPCODE: indicates the type of message. Some common opcodes are icp query, icp miss,and icp hit.� VERSION: ICP protocol version, for maintaining backward compatibility.� PACKET LENGTH: total size of the ICP message.� REQUEST NUMBER: an opaque integer identi�er to match queries and responses.� OPTIONS: bit�eld to support optional features and recent additions to the protocol.� PADDING: currently unused. In the Harvest research code, the OPTIONS and PADDING�elds were slated for authentication purposes.� SENDER HOST ADDRESS: originally intended to hold the IPv4 address of sender. However,since the originating address is also available from the socket API, and more di�cult to spoof,this �eld is redundant and often unused.A cache will query its peers by sending each one an icp query message. The payload of theicp query message is a URL. Upon receipt of an icp query, a cache will extract the URL,check for its existence locally, then reply with either an icp hit or icp miss message. An icp missindicates that the replying cache does not have the requested URL. Conversely, icp hit indicatesthe cache does hold the URL. Later we will discuss other reply opcodes, such as icp denied.The cache originating the icp query collects the reply messages and then chooses a peer cachefrom which to retrieve the object. We describe this peer selection algorithm in section 4.3. ICPalso de�nes two special opcodes to support the inclusion of the origin server and non-ICP caches inthe selection algorithm. Since the Web server does not necessarily support ICP, in these cases weuse the server's echo service (port 7) to determine host reachability. These opcodes are icp secho,for `source ping,' and icp decho, for a `dumb cache.' After selecting a source for the object, thecache makes a regular HTTP request to retrieve it.3.2 TransportICP could use either TCP or UDP as the underlying delivery protocol, though it currently usesonly UDP for a couple of reasons. First, a UDP version is simpler to implement because each cacheneeds to maintain only a single UDP socket. Second, ICP is intended as an unreliable protocol andTCP's retransmission would actually be detrimental. The ICP query/reply exchange must occurquickly, within a second or two. A cache cannot wait longer than that before beginning to retrievean object. Failure to receive a reply message most likely means the network path is either congestedor broken. In either case we would not want to select that peer.3.3 ICP vs. HTTPNote that ICP is extremely lightweight; even the �xed size header is in binary format for compact-ness. The payload is most often simply a URL. This simplicity has both a positive and a negativeaspect.The main advantage is that a cache can quickly parse and interpret an ICP message. A cachereceiving an icp query needs only to extract the URL, check for the existence of the object, and6



then reply with hit or miss. It is important that the ICP turnaround time be extremely fast becausea cache might handle many more ICP requests than HTTP requests (e.g. a factor of 2{6 for theNLANR caches4). We want a fast turnaround time so that ICP requests do not signi�cantly burdenthe cache process, and to minimize the delays within a cache hierarchy.A signi�cant disadvantage to ICP's simplicity is that it does not match HTTP. Caches use ICPto locate objects, but must use HTTP to actually retrieve them. The recent advent of HTTP/1.1introduces many parameters of an HTTP request that are not expressible in an ICP query. Section 6gives speci�c failure mode examples. Another disadvantage, not related to the message format, isthat ICP increases the request latency by at least the network round-trip time to a neighbor cache.These di�erences between ICP and HTTP have recently become the subject of debate: whether tokeep ICP lightweight or couple it more toward the evolving functionality of HTTP. IncorporatingHTTP features into ICP would allow more sophisticated object location, since one could specifythe entire HTTP request rather than just the URL. However, obviously adding such complexitywould require additional CPU cycles to fully parse the HTTP request (in text), and the ominoussize and complexity of the recent HTTP/1.1 RFC [10] lends concern to this methodology as ageneral direction. If we go this far then we can simply reduce ICP to `HTTP over UDP,' with anadditional request method (query) and a few more status codes (hit, miss, etc.).3.4 Source Ping via ICMPAlthough the source ping feature proved useful, complaints from paranoid system operators, op-posed to having packets sent to their echo port, led us to discourage its use. The complaints wereparticularly loud following a CERT advisory regarding UDP-based denial-of-service attacks [49].In conjunction with other work, Squid supports sending icp secho messages via ICMP insteadof UDP. Unfortunately, ICMP packet transmission requires superuser privileges. Note that wecannot simply call the ping program because the icp secho messages have speci�c content (therequested URL) and the fork() and exec() system calls required to start the ping process wouldwreak havoc with Squid's performance.4 Implementation of ICP in SquidThe following sections describe algorithms for sending ICP queries and collecting the replies asimplemented in the Squid cache software.4.1 ICP Query AlgorithmBy default, Squid always sends icp query messages to each peer. In certain con�gurations (e.g.with multiple parent caches in di�erent directions) this practice can yield undesirable results, soSquid supports the ability to restrict the range of icp query messages it will send to di�erentpeers. Speci�cally, one can con�gure Squid to only send ICP queries to certain peers for URLsinside speci�c DNS (usually top-level) domains. The cache host domain option lets one specifywhich domains to query for a given peer. As an example, a U.K. cache may have a peer relationshipwith a cache in Germany, and con�gure their U.K. border cache to only send ICP queries for .de4http://ircache.nlanr.net/Cache/Statistics/Vitals/7



URLs to the cache in Germany. The German cache is not interested in handling requests for .jpURLs from sites in the U.K.Another Squid con�guration parameter, hierarchy stoplist, allows one to exclude certain re-quests from the ICP query algorithm. By default, Squid excludes any URLs containing the stringcgi-bin or a question mark (?), since these URLs tend to be dynamic and/or uncachable, and sothere is a low probability of receiving an icp hit for them. More importantly, the hierarchy stoplistallows one to limit the workload passed to an upper level cache. The upper level caches should nothandle objects unlikely to be requested more than once.For every request not handled directly due to the hierarchy stoplist, Squid sends an icp querymessage to each peer, unless:� cache host domain rules prevent use of the peer for the given URL.� a TCP connection to the peer has failed within the last minute.� the peer has been con�gured locally with the no-query option.To reduce bias from the ordered list of peers, the starting peer is o�set by one each time. If Squidhas the source ping option enabled, then it sends an icp secho message to the echo service of theorigin server (i.e. HTTP daemon) for the requested URL. To its peer caches that do not speak ICP,Squid sends an icp decho message. After sending all the queries, Squid installs a timeout to makesure it begins retrieval of the object within a short time (default is 2 seconds), whether any repliesarrive or not.4.2 Processing an ICP queryWhen a Squid cache receives an icp query, it processes the request as follows:� Extracts and parses the URL. If the URL is not valid, return an icp invalid message. Thisshould only occur rarely since the querying site should have already checked the URL forcorrectness.� Check local access controls. If access is denied, return an icp denied message. Receipt of anicp denied indicates a mismatch in con�guration between peers.� Lookup the given URL. If the object does not exist in the local cache, or exists but willbecome stale within 30 seconds, return an icp missmessage.� If the object is small enough, return an icp hit obj message, including the entire object inthe ICP payload. We discuss icp hit obj below.� Otherwise, return an icp hit message.4.3 Collecting ICP repliesThe peer selection algorithm is relatively simple. Squid collects replies until it receives an icp hit,or until all icp miss replies arrive. For this purpose icp secho and icp decho replies are alwaystreated like hits. Immediately upon receiving an icp hit, Squid begins retrieving the object from8



that peer. Otherwise, Squid waits for all replies to arrive, up to the con�gurable timeout whosedefault is 2 seconds.If an icp hit obj (section 4.6) reply is the �rst to arrive, then Squid has �nished object retrievalwithout even needing to make an HTTP request, so it just takes the object data from the ICPmessage payload and adds it to the local cache.If there are no hit replies, then Squid retrieves the object from the parent with the minimumweighted round-trip time. Normally, all parents are unweighted, which means that Squid will usethe �rst parent to reply. We added a weighting capability to allow favoring some parents overothers. If there are no miss replies from parents, then Squid fetches the object directly from theorigin server (unless there is a �rewall in place).We essentially always choose the peer with the lowest RTT. While RTT is a reasonable metric foricp hit's, its validity for resolution of icp miss'es is debatable. Many people think that bandwidthor throughput would be better metrics, but these characteristics are more di�cult to measure thanRTT. Ideally, when choosing among a set of parents, we want to forward the request to a parentin the direction toward the origin server. In section 7.1 we describe some current work-in-progressto tackle this ultimately challenging task.4.4 Detecting Unreachable PeersRecall that the selection algorithm waits for all replies to arrive (unless one of them is an icp hit).One of the peers becoming unreachable would signi�cantly increase the chances of su�ering thetwo-second timeout. To prevent this situation we need to detect when a peer becomes unreachable.We designate a peer as dead when it fails to reply to 20 consecutive ICP queries. However, wecontinue to send icp query messages to dead peers; we just don't expect to receive replies fromthem. As soon as the peer becomes reachable again, it is marked alive and we again include it inthe count of sent messages to which we expect replies.4.5 More Network FailuresUDP transport allows ICP to gracefully accommodate network failures, albeit only for failuresbetween a pair of peers. Network failures have also been known to occur between the parent andthe rest of the Internet. Consider �gure 3, where the child caches have two ways to reach the globalInternet, either via link A, or link B. Assume that link A is faster and therefore preferred over B.5What happens when link A goes down? The child caches still have good connectivity to the parent,and will therefore receive icp hit or icp miss replies as usual. However, the parent cache will beunable to satisfy any miss requests because its path to the Internet is down. The users of the childcaches will get many `connection failed' error messages, even though they have an alternate way ofreaching the Internet.Squid keeps track of its failed requests to cope with this problem. When the ratio of failed tosuccessful requests exceeds a threshold (i.e. 1) then Squid returns icp miss nofetch6 instead of5The NLANR caches [24] experienced this failure mode in September 1996. Speci�cally, the caches can all talk toeach other over the vBNS, but cache MISS tra�c primarily goes out on commodity networks. So when the commoditybackbone fails, the caches can still send ICP queries to each other over the vBNS. Although the diagram shown heredepicts a slightly di�erent situation, the concept is the same.6icp miss nofetch was previously called icp reloading.9



A INTERNETBCHILDROUTERCHILD
PARENT '&

$
%### ccc

Figure 3: When good parents go bad. Normally, the child cache requests are satis�ed via theparent and link A. But when link A fails, the child caches have an alternate path via link B. If theparent cache begins to encounter a large amount of failed requests, it should eliminate itself fromthe selection process for cache misses.icp miss replies. This feature allows a parent cache to continue serving hits, but take itself out ofthe peer selection process for misses.4.6 icp hit objThe icp hit obj idea derived from the realization that many Web objects are small (e.g. less than4 kbytes) and could be piggybacked inside the ICP replies. Avoiding the subsequent HTTP requestwith the three-way handshake and other TCP overheads could prove to be very e�cient, so weimplemented the icp hit obj capability in Squid.One problem with icp hit obj is that it makes the UDP packet quite a bit larger. The largeUDP packet will likely undergo fragmentation and reassembly, bringing with it a higher chanceof being dropped due to congestion. Increased packet loss is particularly bad for ICP since thetwo-second timeout would occur. Another problem with icp hit obj is they require more time togenerate. Whereas caches can return standard hit and miss replies immediately, they must loadthe object data into memory before returning an icp hit obj reply. icp hit obj replies may thusbe among the last to arrive, and are more likely to arrive after the two-second timeout. In somecases the tradeo� may not be worth it (avoiding the TCP connection versus losing the hit reply).In a cache hierarchy it may be better to have a normal icp hit rather than no hit at all. Somecache administrators were also concerned about the lack of rate control for UDP datagrams. Wedo not believe this is an issue since the ICP messages are not sent in a continuous stream.Fitting the object data inside the ICP message payload is somewhat ad hoc. The payload mustactually consist of the URL followed by the object data. A NULL byte terminating the URL alsomarks the beginning of object data. Fortunately the PACKET LENGTH �eld exists so we canverify receipt of the entire object data.Backward compatibility was also an issue. We use one bit in the OPTIONS �eld to indicate supportfor the icp hit obj opcode, which also allows it to be disabled on a site-by-site basis.We were originally quite enthusiastic about this feature, until we began to hear about associ-ated complications, derived from the fact that the ICP request cannot convey everything fromthe HTTP request. In particular, the ICP query does not retain information from the HTTP/1.1Cache-control: Max-age header. Some cache operators were noticing that icp hit obj was de-10



livering older-than-requested objects. Another example is the `Cookie' header, sometimes used todeliver customized content. For these reasons we now recommend against using icp hit obj.4.7 Public vs. Private ObjectsThe Harvest cache (section 8.1) version 1.4 has an interesting mis-feature, which opened up avulnerability that current versions of Squid have closed. In Harvest, multiple clients can simultane-ously receive data as an object is being retrieved. Although often a huge savings for large objects,under certain conditions this approach might allow a second client to receive something that shouldhave been given only to the �rst. The implementation decisions allowing this vulnerability are:� A single hash table is used to index all objects in the cache, including pending objects.� The hash table key is simply the URL for GET requests.One reason for keying on only the URL is that the cache uses the URL extracted from an ICPreply to look up the pending request and continue the thread of execution. During the timeinterval between sending the ICP queries and receiving the replies, additional clients could attachthemselves to the reply stream. This is a problem because the reply headers may indicate that theobject should only be given to the �rst client.The Harvest cache could likely have avoided this problem by using a separate hash table for pendingrequests, or alternatively by using the REQNUM �eld of the ICP message. In fact, Harvest alwaysset the REQNUM �eld to zero in ICP replies.Squid implements the REQNUM �eld properly and uses it to support both private and publicobjects.7 Squid indexes objects in the storage hash table with a key that includes an integer numberprepended to the URL string. Squid places this number into the REQNUM �eld of outgoing ICPquery messages, and a peer must use the same REQNUM value in its reply. This technique allowsSquid to use a cache key so that pending requests can be located from the ICP replies, but notby new clients. All requests start out as private, and remain so during the peer selection stage.Upon receipt of the HTTP reply headers, the object will become public, unless the reply indicatesotherwise. Only public objects remain in the cache|private ones are removed immediately aftertransfer. If Squid is con�gured with an old Harvest peer (which sets the REQNUM �eld to zero),then the private object feature must be disabled, because it will be unable to locate the pendingrequests from an ICP reply.5 ICP DelaysWe mentioned in section 3.3 that caches must handle ICP queries quickly. We have performed aseries of measurements to assess the delay that ICP contributes to cache transactions. We do notclaim these measurements prove that hierarchical caching with ICP gives improved performance;we consider this an important area for further experimentation. We suspect it depends on theregional and/or local network situation. For this article, we only wanted to �nd out how quicklyICP requests can be processed.We repeatedly measured two values over a four hour period: the network RTT and the ICP RTT.We used a special program to alternate between sending ICMP echo requests and icp query7Private objects are accessible only to the client originating the request; public objects are available to all clients.11



icmp icpSite Median 95% conf. int. %Loss Median 95% conf. int. %Lossit 43.3 (43.2, 43.4) 0.2 54.7 (52.4, 57.6) 1.7pb 37.2 (37.1, 37.3) 0.1 44.5 (44.1, 45.0) 0.2uc 38.5 (38.4, 38.8) 15 41.9 (41.4, 42.6) 16bo 2.0 (2.0, 2.0) 0.1 4.0 (3.8, 4.2) 0.1sv 58.6 (58.4, 58.9) 22 61.0 (60.6, 61.2) 21sd 78.2 (77.7, 79.0) 24 80.4 (79.6, 81.3) 25Table 1: Summary of the distributions shown in �gure 4. The median RTT values (in milliseconds)are shown, with 95% con�dence intervals, for both ICMP and ICP measurements. The amount ofpacket loss is shown for each measurement as well.messages, making a set of ICMP measurements, followed by a set of ICP measurements, andrecording all RTTs between the local host and each of the six NLANR Squid caches [24]. Unlike anICMP packet, the ICP request must go up to the application layer, inherently costing some extradelay. The goal of the study was to verify that Squid can process ICP requests very quickly, inwhich case the ICP RTT should be only slightly higher than the network RTT.The top graph in �gure 4 shows the cumulative percentiles for the network RTT data. The boplot represents a cache co-located near the measurement source, so the measured values are small.Paths to two of the other caches (it, pb) take the vBNS,8 and the other three (sv, sd, uc) usedMCI's commodity Internet on this particular day.The bottom graph in �gure 4 shows ICP RTT measurements. Visual inspection reveals that theICP distributions have longer and heavier tails, but about 50{60% of the ICP requests seem to beonly slightly higher than the network RTT.Table 1 summarizes the data for all the caches. We show the median values with 95% con�denceintervals, as well as the observed packet loss.9 Because these distributions are extremely asymmet-ric, calculation of a mean value has little meaning. Taking instead the median as the average, we�nd that the ICP RTT is generally just a little larger than the network delay. We note that ICPpacket loss closely follows ICMP packet loss, which is useful since it implies that ping measurementsare reasonable predictors of ICP loss rates and the probability of su�ering a timeout in the peerselection stage.The graphs in �gure 5 have implications regarding how cache load a�ects the ICP RTT. Thetwo busiest caches, it and pb, show the biggest di�erence between network and ICP RTTs. Theleast busy cache, sd, shows a stronger correlation between the two measurements. From this, wecan qualitatively deduce that the ICP turnaround time is related to the request load. As a cachebecomes busier, it takes longer to service the ICP requests, probably because they are not readfrom the ICP socket queue as frequently.8http://www.vbns.net9The measurements were made during the middle of the day, but these loss rates still seem unusually high.
12



0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000

P
er

ce
nt

ile

RTT, msec

Network RTT distributions

it
pb
uc
bo
sv
sd

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000

P
er

ce
nt

ile

RTT, msec

ICP RTT distributions

it
pb
uc
bo
sv
sd

Figure 4: Network and ICP RTT measurements. Cumulative distributions of round-trip timesbetween a single host and the six NLANR root caches. The top graph is based on ICMP data;the bottom graph on ICP data. We are looking to verify that an ICP request does not take muchlonger than the round-trip time since it will delay retrieval of the object. This data was collectedover a four hour period on January 29th, 1997. The six NLANR caches are: IT-Ithaca, NY; PB-Pittsburgh, PA; UC-Urbana-Champaign, IL; BO-Boulder, CO; SV-Silicon Valley, CA; SD-SanDiego, CA.
13



0
10
20
30
40
50
60
70
80
90

100

10 100 1000

P
er

ce
nt

ile

RTT, msec

it.cache

ICMP
ICP

0
10
20
30
40
50
60
70
80
90

100

10 100 1000

P
er

ce
nt

ile

RTT, msec

pb.cache

ICMP
ICP

0
10
20
30
40
50
60
70
80
90

100

10 100 1000

P
er

ce
nt

ile

RTT, msec

uc.cache

ICMP
ICP

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000

P
er

ce
nt

ile

RTT, msec

bo.cache

ICMP
ICP

0
10
20
30
40
50
60
70
80
90

100

10 100 1000

P
er

ce
nt

ile

RTT, msec

sv.cache

ICMP
ICP

0
10
20
30
40
50
60
70
80
90

100

10 100 1000

P
er

ce
nt

ile

RTT, msec

sd.cache

ICMP
ICP

Figure 5: Network and ICP RTT cumulative distributions. Here the ICMP and ICP values areplotted for each host. Note that it and pb are the busiest caches and show a greater di�erencebetween ICP and ICMP RTTs. Similarly, sv and sd are the least busy and have similar ICP andICMP distributions. The bo cache is located close to the source so the x-axis has a slightly di�erentrange.
14



6 Experiences and Issues with ICPWe might claim that ICP is largely successful due to its widespread deployment. We estimate thatthere are on the order of 2000 Harvest and Squid caches in operation throughout the Internet. Inmost cases ICP serves its purpose well, both in load balancing among a group of parent caches,and in locating nearby alternative caches upon misses. However, there are numerous ways in whichICP fails to meet some of the demands being placed upon it.6.1 Siblings vs. ParentsRecall that the desire to form sibling relationships is a signi�cant factor in the motivation to useICP. In the beginning, the parent/sibling distinction was clear (or so we thought). Our initialmodel, although never stated explicitly, was quite simple: sibling caches would all be a part of asingle organization, perhaps an ISP or a company.In reality, however, people want to create more complex relationships. In Europe we see quite afew bilateral cache peerings. When connecting a pair of national caches, should they be siblings ormutual parents? The mutual parent approach is appropriate in situations where using the othercountry's top-level cache is likely to yield better performance than fetching directly. In this caserequests must be restricted to domains that each side is willing to �eld. But since a peering isalready in place, it would be nice to take advantage of objects that the other cache holds, i.e. asibling relationship. In essence, we want to be able to treat another cache as a parent for somerequests, and as a sibling for others. Squid supports this functionality, where the relationship candepend on the DNS domain of the URL.An ICP query does not include any parent or sibling designation, so the receiver really has noindication of how the peer cache is con�gured to use it. This issue becomes important when acache is willing to serve cache hits to anyone, but only handle cache misses for its own customers.In other words, whether to allow the request depends on if the result is a hit or a miss. To supportthis functionality, Squid acquired the miss access feature in October of 1996.In addition to being awkward to implement, miss access brings its own complication: it requiresthat the icp query reply be an extremely accurate prediction of the result of a subsequent HTTPrequest. This prediction is challenging if not impossible since the ICP request cannot convey thefull HTTP request (section 3.3). Additionally, there are more types of HTTP request results thanthere are for ICP. The ICP query reply will either be a hit or miss, but an HTTP request mightresult in a 304 Not Modified reply from the origin server. Such a reply is not strictly a hit sincethe peer needed to forward a conditional request to the source. At the same time, its not strictly amiss either since the local object data is still valid, and the Not-Modi�ed reply required from theorigin server is quite small.6.2 Freshness ParametersOne serious problem for cache hierarchies is mismatched freshness parameters. Consider a cacheC using strict freshness parameters so its users get maximally current data. C has a sibling S withless strict freshness parameters. When an object is requested at C, C might �nd that S already hasthe object via an ICP query and icp hit response. C then retrieves the object from S.In an HTTP/1.0 world, C (and C's client) will receive an object that was never subject to its local15



freshness rules. Neither HTTP/1.0 nor ICP provides any way to ask only for objects less thana certain age. If the retrieved object is stale by C's rules, it will be removed from C's cache, butsubsequently fetched from S so long as it remains fresh there. This con�guration miscouplingproblem is a signi�cant deterrent to establishing both parent and sibling relationships.HTTP/1.1 provides numerous request headers to specify freshness requirements, which actuallyintroduces a di�erent problem for cache hierarchies: ICP still does not include any age information,neither in query nor reply. So S may return an icp hit if its copy of the object is fresh by itscon�guration parameters, but the subsequent HTTP request may result in a cache miss due toCache-control: headers originated by C or by C's client. Situations now emerge where the ICPreply no longer matches the HTTP request result.6.3 Hit or Miss?In the end, the fundamental problem is that the ICP query does not provide enough informationto accurately predict whether the HTTP request will be a hit or miss. In fact, the current ICPInternet Draft is very vague on this subject. What does icp hit really mean? Does it mean \I knowa little about that URL and have some copy of the object?" Or does it mean \I have a valid copyof that object and you are allowed to get it from me?"There are a couple of quick-�x modi�cations to ICP that could �x the freshness problem.� Include freshness requirements in the icp query. The peer cache would then be responsiblefor returning icp hit for fresh objects and icp miss for stale ones. Unfortunately HTTP/1.1has various cache-control options (max-age, max-stale, min-fresh, etc.) that complicate thistask, and there is not much unused space in the ICP header.� Include timestamps in the icp hit reply. This seems to be a better solution than the �rst.Hopefully we could get away with including only two 32-bit timestamps: the last-modi�edand expires times. The local cache would take responsibility for selecting the peer that bestful�lls the freshness requirements.Both of these solutions address only the freshness problem. There are in fact many other HTTPrequest headers that an ICP query can not accommodate, e.g., ETag , language encodings, accept-able content types, others we have not yet realized or invented. If ICP's role is to accurately predicthit versus miss, then it should include the entire HTTP request.6.4 Other Issues6.4.1 icp dechoIntegrating non-ICP-speaking caches into an ICP-based hierarchy relies on the UDP echo serviceof peer hosts. This technique can somewhat adequately gauge network connectivity, but providesno indication that the cache is actually running and accepting HTTP requests. Non-ICP cacheproducts could o�er minimal ICP support by simply providing a UDP socket that echos datagramsback to their source.
16



6.4.2 SecurityAs with all networking applications, security is often an issue. ICP assumes the application receivesan accurate IP address for the message datagram. Therefore, it is susceptible to IP spoo�ng attacks.Falsifying, altering, inserting, or blocking ICP messages could cause HTTP requests to be forwarded(or not forwarded) to certain neighbors. If the neighbor cache has also been compromised, then itcould serve bogus content and pollute a cache hierarchy.A likely method of attack would be to attempt to poison a cache with false data. Generating fakeICP icp hit or icp missmessages will not succeed in poisoning since the object data is retrieved viaHTTP. However, the icp hit obj feature does pose a potential problem if the source IP addresscan be spoofed (another reason to avoid using icp hit obj). Nonetheless, a cache should verifythe address and port number of every ICP message it receives, and only accept ICP replies fromknown peers.The ICP Internet Draft [48] has additional details on security concerns.6.4.3 ICP Scales PoorlyICP has poor scaling characteristics. It is not really practical to send more than about �ve ICPqueries for each HTTP request, if only because it increases the chance of losing at least one ICPreply and therefore frequently incurring a timeout. Another reason is that (with unicast) thenumber of exchanged ICP messages is directly proportional to the number of peers. Multicast(section 7.2) could help alleviate this problem, although it will not reduce the number of ICP replymessages. Finally, caches should spend most of their time handling HTTP requests, not ICP. Apeer relationship that yields an HTTP to ICP request ratio of 1:100 probably merits re-evaluation.Operational Web caches for large ISPs involve a considerable number of other scaling issues aswell, beyond those of ICP. The most critical parameters are the request rate and cache size. Thelatter parameter reects an upper limit on the amount of data that a cache can manage, beyondwhich the cache will spend too much time doing administrative tasks (e.g. deleting old cache �les).Also, the relationship between cache size and hit rate is not linear. Increases in cache disk spaceeventually reach a point of diminishing returns, and this point depends upon the workload pro�le.Another interesting scaling parameter is the acceptable number of levels in a cache hierarchy (ormesh). Empirical results by Baentsch et al. [50] indicate that three levels (or cache-hops) is accept-able, but four gives noticeable delay.6.5 URLsSquid and Harvest use URLs in ICP messages because they also use the URL as a part of thecache key. This allows the ICP queries to be handled very quickly and e�ciently. However, usingURLs has a negative aspect as well: URLs can vary greatly in length. Usually they are less than100 bytes, but occasionally they can grow to 4 kbytes and larger (e.g. for complex CGI scripts).ICP does not currently impose any limits on URL length. For that matter, it does not limit thesize of the ICP message. In the future, ICP may support sending an MD5 [51] hash of the URLinstead of the URL itself.
17



7 Recent Work7.1 Probing the NetworkEarlier we alluded to some new techniques to improve the peer selection process. Squid supportsdomain restrictions on peers to route requests in the right general direction. There are a few prob-lems with this approach. First, it requires a lot of manual con�guration. The cache con�guration�le must list each domain with each peer; it is only practical to list top-level-domains (TLDs).In addition, domain restrictions don't work for URLs with IP addresses instead of fully quali�eddomain names.The biggest problem is that the domain names are unrelated to network topology, apart from therough mapping provided by the two-letter country code TLDs. These national TLDs can frameonly a very coarse Web routing system, and international (top-level) domains, e.g., .com, .net, areeven worse because they have no bearing at all to topology. For these reasons, any routing schemebased on domain names is doomed. To do the job properly, a cache must have knowledge of theunderlying network topology.We have recently implemented an approach where Squid acquires topology data with ICMP. Overtime, Squid builds a table of hop counts and round-trip times for the server hosts it encounters.Squid aggregates this data by IP network under the assumption that two hosts on the same localnetwork will have similar values. Via an external process, Squid caches send and receive ICMPecho requests to server hosts at a rate of no more than once per �ve minutes. Squid then includesthe results of these network probe measurements in ICP reply messages (in the unused PADDING�eld).10 The cache collecting ICP replies uses the network measurements to select the best peer,ideally the one most toward the origin server.Initially we thought that hop count would make a good metric for peer selection; the optimal peerwould be that with the lowest hop count to the origin server. Unfortunately, we can only estimatethe hop count, using the ip->ttl �eld from the ICMP echo reply and guessing at likely startingTTL values. We might consider a technique similar to the one used by traceroute, but at theoutset this seems to generate an excessive amount of ICMP tra�c and considerably more di�cultto implement.Instead, we are now using the RTT (averaged over time) as the selection metric, which also providesan indication of congestion from peer to source. Whereas the hop count is likely to remain constantover time (and would therefore be termed static by Carter and Crovella [42]), the round-trip timecan vary widely between measurements. We use decaying averaging to achieve some stability whilestill adjusting to changing network conditions.As a cache collects network measurements from its peers, it adds them to its local table, learningover time which peers are good choices for which sources. The cache will be closer than any peersto some sources; for these it can simply fetch directly and avoid the ICP querying.This approach complicates the peer selection algorithm, since instead of remembering a singlebest parent, Squid must now remember a list of possible parents until all ICP replies arrive. Theselection process also becomes more complex as the number of selection criteria increases. Currentlywe have: type of peer, hit or miss, peer-to-peer RTTs, arti�cial weights, DNS domain restrictions,and the most recent additions of peer-to-source RTTs and hop counts. Meeting the vast range of10Since we are deviating from the standard interpretation of header �elds, support for this feature must be indicatedby setting an OPTIONS bit. 18



con�guration requirements with a single peer selection policy is growing even more challenging.Developing mechanisms to make the process more con�gurable and intuitive is an important topicfor future study.This approach is di�erent than the one proposed by Floyd, Zhang, and Jacobson [44], although thegoal is the same. In both cases we want to know which of a set of possible parent caches is closerto the origin server. They propose to base this decision on an IP routing table, perhaps from anearby router. Unlike our measurement-based approach, their technique does not account for pathcharacteristics, such as bandwidth and congestion; rather cache request routing just follows IProuting. The additional data gleaned from ICMP measurements can allow caches to avoid troubleareas along what may be default IP routing paths. The correctness of either approach is debatable.7.2 MulticastMulticast has been proposed by numerous individuals [44, 52] as a solution to some of ICP'sproblems, such as scaling and con�guration. Ideally multicast can reduce the amount of ICP tra�ca cache must send,11 and also eliminate duplicate messages traversing a single link. While multicastpurports to solve some problems, it also exposes some new ones.In a group of cooperating caches, each member must currently be speci�ed in every other con�g-uration �le. It would be nice if we could simply specify one multicast group address and groupmembers could join or leave at will. Unfortunately, joining a multicast group does not require anyspecial privileges or authentication. Should we implicitly trust any member of a multicast group?For Web caching, we can not, so even when multicast is used, all (trusted) group members muststill be speci�ed. A similar problem is that multicast allows others to very easily snoop on ICPrequests, providing an easy way to receive a list of URLs actively being retrieved.Initially we were unsure whether ICP replies should be returned via unicast or multicast, or whetherto send icp miss replies at all. Recall that Squid counts the number of replies received in responseto a query, so a lack of icp miss replies would complicate that process. We believe that it is bestto return ICP replies via unicast. This prevents other group members from receiving the replymessages, and gives the querying cache an some information about the unicast path between thepair.Multicast also brings di�culties with DNS domain restrictions on peers. With unicast it is trivialto query only a speci�c subset of peer caches. Doing so with multicast either requires each potentialsubset of peers to join separate multicast groups, or use only one group and ignore replies frompeers based on the request and domain restrictions. Squid has used the latter approach.A �nal disadvantage to multicast is the lack of widely deployed and stable infrastructure. In mostcases, Web caches operate as mission critical services. Many cache operators are unwilling to relyon the current, operationally tenuous MBone12 for Web caching.11To be speci�c, the number of times the application must call sendto()12http://www.best.com/~prince/techinfo/mbone.html
19



8 History of ICP8.1 Harvest Research SoftwareICP was originally developed as a component of the Harvest cache project, funded primarily by anARPA research grant during 1993{1995. Researchers at the University of Southern California andthe University of Colorado developed the �rst version of the hierarchical Web caching software in1994 [22]. The Harvest Web cache software (called Cached) began to acquire real users during 1995.Late that year, development slowed considerably as project members migrated toward industry jobs.A few project members formed a company to sell a commercial-strength version of the Harvestcache [23].The early Harvest cache used a very simple caching model:� Only GET requests should be cached. There is no need to query peers for non-GET requests(i.e. POST) since other caches won't have them either. Because of this, an ICP message doesnot include the request method, only a URL.� The research version did not support If-Modi�ed-Since requests. As the cache added a newobject, it calculated a Time-To-Live for the object, and released the object when the TTLexpired. Until an object expired, subsequent requests would always result in a hit. In otherwords, any non-expired object in the cache was considered valid. An expired object wasalways purged from the cache, regardless of whether or not it had actually changed.� Only HTTP/1.0 servers were in use. The only mechanism for maintaining cache consistencywas the If-Modi�ed-Since conditional request.During the Harvest research project, ICP remained largely unchanged. At that time, the ICPmessage format included an eight-byte authentication �eld, but the authentication mechanism wasnever implemented. The Harvest research cache software always set the ICP version number totwo (2).8.2 SquidBecause the NSF-funded NLANR caching project [24] required a research version of the softwarefor code experimentation, project members continued development on a derivative of the Harvestcache software, Squid [25], with considerable assistance from the user community. Our descriptionand discussion of ICP in this paper derives from our experiences with Squid.In the time we have been working on Squid, a number of new features have been added to itsICP implementation. These include the notion of private objects, ICMP support, icp hit obj,and icp miss nofetch. Like the early Harvest cache, Squid also uses two (2) as the ICP versionnumber.8.3 NetcacheThe commercial Harvest cache has made some modi�cations to ICP as well. For di�erentiation, ituses three (3) as the ICP version number. For e�cient support of If-Modi�ed-Since requests in acache hierarchy, it uses the former eight-byte authentication �eld to hold two object timestamps.We are not aware of any other ICP-related changes to the commercial version of Harvest.20



8.4 ICP CompatibilityCurrent versions of Harvest and Squid interoperate very well, although previous versions havehad problems. Since the two use di�erent ICP version identi�ers, it is simple to account for thedi�erences. An IETF working group is emerging to standardize ICP for interoperability amongmultiple cache implementations.9 ConclusionsThe Internet Cache Protocol has been in use in a global Internet caching hierarchy for approximatelytwo years. As originally conceived, ICP provides hints about the location of Web objects. Atthe same time, it probes the network for good connectivity, and it performs this task quite well.However, many administrators now seek to expand the role of ICP into cache policy expressionand enforcement, which turns out to be di�cult with such an (intentionally) simple protocol. Toproperly implement ICP as a cache policy protocol will inevitably require ICP messages to exchangefull HTTP requests.Our measurements on ICP delays merit further study. We observe a linear (or perhaps quadratic)relationship between cache load and average ICP delays. We need to make these measurementsagainst caches operating near full capacity to see if the trend holds.In addition to evolving the protocol itself, there are numerous interesting avenues to explore in theapplication of ICP. Despite the various obstacles preventing multicast distribution of ICP, we feelthat it still holds great promise for alleviating con�guration and scaling problems.9.1 Is it all worth it?We will be �rst to admit that con�guring hierarchical Web caches is time-consuming and sometimesdi�cult to coordinate. So what is the bene�t from all this trouble? In addition to the 30-50% localhit rates typically seen by most caches [53, 54, 1], we �nd that approximately another 10% ofrequests will be cache hits in neighbor caches.13 Does this extra margin justify joining a cachehierarchy? We believe the answer to this depends on where you are and on the quality of yourInternet service. In the U.S. we are lucky to enjoy relatively high amounts of bandwidth and overallgood connectivity. In other countries, the situation is quite di�erent.In interacting on a daily basis with people from all over the world, the feedback we receive indicatesthat cache administrators are generally pleased that software such as Harvest and Squid allowsthem to unite in cooperative meshes of caches. An additional 10% may not seem like much to thebandwidth-blessed, but when you have to wait often over ten minutes to view a single Web page,every little bit helps.Can we expect to build a global caching hierarchy without ICP? For the foreseeable future, we donot see another viable alternative. In the decentralized, untamed, global Internet, ICP providesexible, powerful, necessary glue among non-autonomous Web caches.
13http://ircache.nlanr.net/Cache/Statistics/Hierarchy/21



References[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox, \Caching proxies: Lim-itations and potentials," in Proceedings of the Fourth Interntional Conference on the WWW,(Boston, MA), December 1995.[2] N. Smith, \What can archives o�er the world wide web," September 1994. http://www.hensa.ac.uk/www94/.[3] D. Neal, \The harvest object cache in new zealand," in Proccedings of the World Wide WebConference, May 1995.[4] D. Povey and J. Harrison, \A distributed internet cache," in Proceedings of the 20th Aus-tralasian Computer Science Conference (to appear), February 1997. http://www.psy.uq.edu.au:8080/~dean/project/.[5] A. Cormack, \Caching on janet: Acn report," September 1996. http://www.psy.uq.edu.au:8080/~dean/project/.[6] A. J. Flavell, \Brie�ng at glasgow university ppe group," July 1996. http://d1.ph.gla.ac.uk/~flavell/cache.html.[7] D. Marwood, \Squid proxy analysis, presented at NLANR cache workshop 1997," April 1997.http://www.cs.ubc.ca/spider/marwood/Projects/SPA/Report/Report.html.[8] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, \Characterizing Reference Localityin the WWW," in Proceedings of PDIS'96: The IEEE Conference on Parallel and DistributedInformation Systems, (Miami Beach, Florida), December 1996.[9] T. Berners-Lee, R. Fielding, and H. Frystyk, \Hypertext transport protocol { HTTP/1.0,"Network Working Group RFC 1945, May 1996. http://ds.internic.net/rfc/rfc1945.txt.[10] R. Fielding et al., \Hypertext transport protocol { HTTP/1.1," Network Working Group RFC2068, January 1997. http://ds.internic.net/rfc/rfc2068.txt.[11] T. Berners-Lee et al., \Uniform resource locators (URL)," Network Working Group RFC 1738,December 1994. http://ds.internic.net/rfc/rfc1738.txt.[12] P. Mockapetris, \Domain names - concepts and facilities," Network Working Group RFC 1034,November 1987. http://ds.internic.net/rfc/rfc1034.txt.[13] P. Mockapetris, \Domain names - implementation and speci�cation," Network Working GroupRFC 1035, November 1987. http://ds.internic.net/rfc/rfc1035.txt.[14] V. Fuller, T. Li, J. Yu, and K. Varadhan, \Classless inter-domain routing (CIDR): an addressassignment and aggregation strategy," Network Working Group RFC 1519, September 1993.http://ds.internic.net/rfc/rfc1519.txt.[15] M. A. Blaze, Caching in Large Scale Distributed File Systems. PhD thesis, PrincetonUniversity, 1993. http://ncstrl.cs.princeton.edu/Dienst/UI/2.0/Describe/ncstrl.princeton%2fTR-397-92. 22



[16] M. D. Dahlin, C. J. Mather, R. Y. Wang, T. E. Anderson, and D. A. Patterson, \A quantitativeanalysis of cache policies for scalable network �le systems," Performance Evaluation Review,vol. 32, p. 150, May 1994. ftp://ftp.cs.berkeley.edu/ucb/people/tea/xfs.ps.[17] D. Muntz and P. Honeyman, \Multilevel caching in distributed �le systems - or - your cacheain't nuthin' but trash," in Proceedings of the USENIX Winter Conference, pp. 305{313,January 1992.[18] P. B. Austin, K. A. Murray, and A. J. Wellings, \File system caching in large point-to-pointnetworks," Software Engineering Journal, vol. 7, pp. 65{80, January 1992.[19] M. N. Nelson, B. B. Welch, and J. K. Ousterhout, \Caching in the sprite network �le system,"AMC Transactions on computer Systems, vol. 6, pp. 135{154, February 1988.[20] A. Lutonen, H. F. Nielsen, and T. Berners-Lee, \Cern httpd," July 1996. http://www.w3.org/pub/WWW/Daemon/Status.html.[21] Bowman, Danzig, Hardy, Manber, Schwartz, and Wessels, \Harvest: A scalable, customizablediscovery and access system.," Tech. Rep. CU-CS-732-94, Department of Computer Science,University of Colorado, August 1994. ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest.Jour.ps.Z.[22] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell, \A hier-archical internet object cache," Tech. Rep. 95-611, University of Southern California, March1995. http://catarina.usc.edu/danzig/cache.ps.[23] N. Appliance, \Netcache proxy." http://www.netapp.com/products/level3/netcache/datasheet.html.[24] D. Wessels, K. Cla�y, and H.-W. Braun, \NLANR prototype web caching system." Researchproject funded by the National Science Foundation. http://ircache.nlanr.net/.[25] D. Wessels, \Squid internet object cache." http://squid.nlanr.net/.[26] N. Communications, \Netscape proxy." http://home.netscape.com/comprod/server_central/product/proxy/index.html.[27] Microsoft, \Microsoft proxy." http://www.microsoft.com/proxy/.[28] S. Glassman, \A caching relay for the world wide web," in Proceedings of the First Interna-tional WWW Conference, pp. 69{76, May 1994. http://www.research.digital.com/SRC/personal/Steve_Glassman/CachingTheWeb.html.[29] R. Jones, \Digital's world-wide web server: A case study," in Proceedings of the First Inter-national WWW Conference, May 1994. http://info.cern.ch/PapersWWW94/rjones.ps.[30] B. Nowicki, \NFS: Network �le system protocol speci�cation," Network Working Group RFC1094, March 1989. ftp://ftp.internic.net/rfc/rfc1094.txt.[31] J. Gwertzman, \Autonomous replication in wide-area distributed systems." Senior Thesis,April 1995. http://www.eecs.harvard.edu/~vino/web/push.cache/.[32] A. L�opez-Ortiz and D. M. Germ�an, \A multicollaborative push-caching HTTP protocol forthe WWW." http://daisy.uwaterloo.ca/~alopez-o/cspap/cache/Overview.html.23



[33] J. Gwertzman and M. Seltzer, \The case for geographical push-caching," in Fifth AnnualWorkshop on Hot Operating Systems, pp. 51{55, May 1995. http://www.eecs.harvard.edu/~vino/web/hotos.ps.[34] D. L. Cohen, \AFS: NFS on steroids," LAN Technology, vol. 9, pp. 51{62, March 1993.[35] M. Baentsch, G. Miller, and P. Sturm, \Introducing application-level replication and naminginto today's web," in Proceedings of the Fifth International World-Wide Web Conference,Paris, France, May 1996. http://www5conf.inria.fr/fich_html/papers/P3/Overview.html.[36] V. N. Padmanabhan and J. C. Mogul, \Using predictive prefetching to improve world wide weblatency," ACM SIGCOMM Computer Communication Review, July 1996. http://daedalus.cs.berkeley.edu/publications/ccr-july96.ps.gz.[37] H. Inoue and K. Chinen, \Catalyst mode of Wcol." http://shika.aist-nara.ac.jp/products/wcol/cuckoo.html.[38] K. ichi Chinen and S. Yamaguchi, \An interactive prefetching proxy server for improvementsof WWW latency," in INET 97, Kuala Lumpur, Malaysia, June 1997. http://www.isoc.org/inet97/proceedings/A1/A1_3.HTM.[39] C. Davis, P. Vixie, T. Goodwin, and I. Dickinson, \A means for expression location informationin the domain name system," Network Working Group RFC 1876, January 1996. http://ds.internic.net/rfc/rfc1876.txt.[40] K. Moore, J. Cox, and S. Green, \Sonar - a network proximity service." http://www.netlib.org/utk/projects/sonar/.[41] P. Francis, \Host proximity service (hops)." http://www.ingrid.org/hops/wp.html.[42] R. L. Carter and M. E. Crovella, \Dynamic server selection using bandwidth probing in wide-area networks," Tech. Rep. TR-96-007, Boston University Computer Science Department,March 1996. ftp://cs-ftp.bu.edu/techreports/96-007-dss-using-bandwidth.ps.Z.[43] A. J. D. Guyton and M. F. Schwartz, \Locating nearby copies of replicated internet servers,"in Proceedings of ACM SIGCOMM '95, Cambridge, MA, pp. 288{298, August 1995. ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/ReplSvrLoc.ps.Z.[44] S. Floyd, L. Zhang, and V. Jacobson, \Adaptive web caching." DARPA-funded ResearchProject, May 1997. http://irl.cs.ucla.edu/awc.html.[45] S. Gadde, M. Rabinovich, and J. Chase, \Reduce, reuse, recycle: An approach to buildinglarge internet caches," in Workshop on Hot Topics in Operating Systems (HotOS), April 1997.http://www.cs.duke.edu/ari/cisi/crisp-recycle/.[46] Various, \Icp working group [sic] mailing list archive," 1997. http://squid.nlanr.net/Mail-Archive/icp-wg/archive/.[47] D. Wessels and K. Cla�y, \Internet cache protocol (ICP), version 2," draft-wessels-icp-v2-03.txt, July 1997. http://ds.internic.net/internet-drafts/draft-wessels-icp-v2-03.txt. 24



[48] D. Wessels and K. Cla�y, \Application of internet cache protocol (ICP), version 2," draft-wessels-icp-v2-appl-02.txt, July 1997. http://ds.internic.net/internet-drafts/draft-wessels-icp-v2-appl-03.txt.[49] CERT, \UDP port denial-of-service attack." ftp://info.cert.org/pub/cert_advisories/CA-96.01.UDP_service_denial.[50] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, \World-wide web caching {the application level view of the internet," IEEE Communications Magazine, vol. 35, June1997. http://www.uni-kl.de/AG-Nehmer/baentsch/Publications.html.[51] R. L. Rivest, \The MD5 message-digest algorithm," Network Working Group RFC 1321, April1992. ftp://ftp.internic.net/rfc/rfc1321.txt.[52] Various, \Squid-users mailing list archives," 1996-7. http://squid.nlanr.net/Squid/Mail-Archive/squid-users/.[53] D. Wessels and K. Cla�y, \NLANR cache statistics." Daily statistics for the NLANR caches.http://ircache.nlanr.net/Cache/Statistics/.[54] Various, \Links to publicly available proxy cache statistics." http://ircache.nlanr.net/Cache/cache-stats-links.html/.[55] V. N. Padmanabhan and J. C. Mogul, \Improving HTTP latency," in Proceedings of theSecond International WWW Conference, 1994. http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html.[56] R. P. Wooster and M. Abrams, \Proxy caching that estimates page load delays," in Proceedingsof the Sixth International WWW Conference, April 1997. http://www6.nttlabs.com/index_by_topic.html#server.

25


