yervice Orchestration

A look at WSCI and BPEL4WS

eb services are rapidly emerging

as the most practical approach

for integrating a wide array of

customer, vendor, and business-partner

applications. While many companies have

begun to deploy individual Web services, the

real value will come when enterprises can

connect services together, providing higher
value to an organization.

Early experience shows that to make the

most of new Web services investments there

must be a standard approach to Web servic-
es composition.

AUTHOR BIO:

Chris Peliz is a senior software consulfant in
HP's Developer Resources Organization (devre-
source.hp.com), providing technical consulting
on J2EE and Web services architectures. He
brings over 10 years of software development
experience in helping customers select technologies, tools, and
platforms for building enterprise applications.

CHRIS. PELTZ@HP.COM

1 July 2003

IT organizations need the agility to adapt to
customer requirements and changing market
conditions. But existing business process lan-
guages do not directly support Web services
standards and, as a result, IT organizations
may be tempted to take a short-term approach
and create their own proprietary protocols for
composing services together. Web services
orchestration and choreography standards are
efforts that can be long-term solutions for
business connectivity. By connecting services
through open, standards-based methods,
organizations spare themselves the burden of
maintaining these proprietary interfaces.

The two standards discussed here — the
Web Service Choreography Interface (WSCI)
and Business Process Execution Language for
Web Services (BPELAWS) — are designed to re-
duce the inherent complexity of connecting
Web services together. Without them, an
organization is left to build proprietary busi-
ness protocols that shortchange true Web serv-
ices collaboration. Recently, the terms orches-
tration and choreography have been em-
ployed to describe this collaboration:

* Orchestration: Refers to an executable
business process that may interact with

both internal and external Web services.
Orchestration describes how Web services
can interact at the message level, including
the business logic and execution order of the
interactions. These interactions may span
applications and/or organizations, and
result in a long-lived, transactional process.
With orchestration, the process is always
controlled from the perspective of one of the
business parties.

¢ Choreography: More collaborative in nature,
where each party involved in the process
describes the part they play in the interac-
tion. Choreography tracks the sequence of
messages that may involve multiple parties
and multiple sources. It is associated with
the public message exchanges that occur
between multiple Web services.

Orchestration differs from choreography in
that it describes a process flow between servic-
es, controlled by a single party. More collabora-
tive in nature (see Figure 1), choreography
tracks the sequence of messages involving
multiple parties, where no one party truly
“owns” the conversation.

In this article, T'll highlight key technical

www.wsj2.com

requirements for Web services orchestration
and choreography, and point out key stan-
dards used to meet these needs.

Technical Requirements for
Orchestration and Choreography

Before introducing the standards, it’s
important to define the technical require-
ments for orchestrating Web services. The
following requirements are important for
both the language and the underlying infra-
structure that supports it:

* Flexibility: One of the most important con-
siderations is the flexibility offered by the
language. Flexibility can be achieved by
providing a clear separation between the
process logic and the Web services invoked.
This separation can usually be achieved
through an orchestration engine that han-
dles the overall process flow. With this flex-
ibility, an organization can easily swap out
services as business needs change.

* Basic and structured activities: An orches-
tration language must support activities
for both communicating with other Web
services and handling workflow seman-
tics. One can think of a basic activity as a
component that interacts with something
external to the process itself. In contrast,
structured activities manage the overall
process flow, specifying what activities
should run and in what order.

* Recursive composition: A single busi-
ness process can interact with multiple
Web services. However, a business
process can itself be exposed as a Web
service, enabling business processes to
be aggregated to form higher-level
processes.

In addition, both Web services orchestra-

tion and choreography must support some

basic requirements for managing the overall

integrity and consistency of the interactions.

These requirements include:

e Persistence and correlation: The ability to
maintain state across Web services requests
is an important requirement, especially
when dealing with asynchronous Web serv-
ices. The language and infrastructure should
provide a mechanism to manage data per-
sistence and correlate requests in order to
build higher-level conversations.

e Exception handling and transactions:
Orchestrated Web services that are long-
running must also manage exceptions and
transactional integrity. For example,
resources cannot be locked in a transaction
that runs over a long period of time.

wsd

WSCI defines an extension to WSDL for
Web services collaboration. Initially authored
by Sun, SAP, BEA, and Intalio, it was recently
published as a W3C note. WSCI is a choreog-
raphy language that describes the messages
exchanged between Web services that partic-
ipate in a collaborative exchange. A key
aspect of WSCI is that it describes only the
observable behavior between Web services. It
does not address the definition of an exe-
cutable business process.

A single WSCI interface describes only one
partner’s participation in a message exchange.
As Figure 2 illustrates, a WSCI choreography
would include a set of WSCI interfaces, one for
each partner in the interaction. In WSCI, there
is no single controlling process managing the
interaction.

WSCI can be viewed as a layer on top of the
existing Web services stack. Each action in

WSClI represents a unit of work, which typical-
ly would map to a specific WSDL operation.
WSCI can be thought of as an extension to
WSDL, describing how the operations can be
choreographed. In other words, WSDL des-
cribes the entry points for each service, while
WSCI would describe the interactions among
these WSDL operations.

WSCI defines an <action> tag for specifying
a basic request or response message. Each
activity specifies the WSDL operation involved
and the role being played by the participant.
External services can then be invoked through
the <call> tag. A wide variety of structured
activities are supported, including sequential
and parallel processing and condition looping.
WSCI also introduces an <all> activity, used to
indicate that the specific actions have to be
performed, but not in any particular order.

Listing 1 is a simple example of WSCI. In
this example, a purchasing interface is created
containing two activities, “Receive Order” and
“Confirm”. Note that this is the WSCI docu-
ment from the perspective of the agent. There
would also be a WSCI interface for the buyer
and the supplier in the interaction.

BPEL4WS

The BPEL4WS standard represents a
convergence of ideas originally proposed
by two early workflow languages, XLANG
and WSFL. Microsoft, IBM, Siebel Systems,
BEA, and SAP authored the 1.1 release of
the specification in May 2003. It provides
an XML-based grammar for describing the
control logic required to coordinate Web
services participating in a process flow
and is layered on top of WSDL, with
BPEL4WS defining how the WSDL opera-
tions should be sequenced.

process flow

web
service

web services
orchestration

web services choreography

&

Collaboration

FIGURE 1 | Orchestration and choreography

www.wsj2.com

FIGURE 2

Web Services Choreography Interface (WSCI)

July 2003 2

@ s Feature

BPEL4WS provides support for both
abstract business protocols and executable
business processes. A BPEL4AWS business
protocol specifies the public message ex-
changes between parties. Business proto-
cols are not executable and do not convey
the internal details of a process flow, similar
to WSCI. An executable process models the
behavior of participants in a specific busi-
ness interaction, essentially modeling a pri-
vate workflow. Executable processes provide
the orchestration support described earlier,
while the business protocols focus more on
Web services choreography.

The BPEL4WS specification supports
basic activities for communicating with Web
services. The typical scenario is that there is
a message received into a BPEL4WS exe-
cutable process. The process may then
invoke a series of external services to gather
additional data, and then respond back to

the requestor. In Figure 3, the <receive>,

<reply>, and <invoke> messages all repre-

sent basic activities for connecting the
services together.

BPEL4WS also supports structured
activities for constructing the business
logic for a process. These activities include
sequential and parallel activities, as well
support for conditional looping and dy-
namic branching. Listing 2 is a simple
illustration of how a sequential activity
would be described.

Variables and partners are two other
important elements within BPEL4WS that
satisfy the requirements for persistence
and correlation.

o Variable: 1dentifies the specific data ex-
changed in a message flow, which typical-
ly maps to a WSDL message type or XML
schema type. When a BPEL4WS process
receives a message, the appropriate vari-

Exception
Handling and
Transactions

BPEL4WS Process Flow

Sequential Flow

Parallel Flow

¥,
Step 3B @
Roles
and and
Parners Contalners

Persistance

FIGURE 3 BPEL4WS Process Flow

Buyer Agent

I |
| |
| 1irequest |

o
ST 11 part_request

Supplier1 Supplier2 Supplierd

1.2 par_raquest

fo=--
| 1.1.1: part_response J

LH‘I 3 part_reguest

|
1.2.1.pan_respnn§e i |

it rartoresponde

i —
y___; 4 proposal il"

———————]]

f
|
|
f i3
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I

FIGURE 4| Case study sequence diagram

3 July 2003

able is populated so that subsequent re-
quests can access the data.

¢ Partner: Defines the various parties that
interact with the process.

Comparing WSCI and BPELAWS

Each standard takes a somewhat different
approach to orchestration and choreography.
While BPEL4WS supports the notion of
“abstract processes,” most of its focus is aimed
at BPELAWS executable processes. BPELAWS
takes more of an “inside-out” perspective, de-
scribing an executable process from the per-
spective of one of the partners. WSCI takes
more of a collaborative and choreographed
approach, requiring each participant in the
message exchange to define a WSCI interface.

At the same time, WSCI and BPEL4WS both
meet many of the technical requirements out-
lined earlier. They both provide strong support
for persistence and correlation to manage con-
versations. WSCI and BPEL4WS also describe
how exceptions and transactions should be
managed. From a usability standpoint, WSCI
does have a somewhat “cleaner” interface than
BPEL4AWS. Some of the difficulties in using
BPEL4WS are attributed to the fact that the
language includes artifacts from both XLANG
and WSFL, each of which took a different ap-
proach to workflow.

It’s also important to look at overall industry
acceptance for each standard. BPELAWS has a
number of major supporters behind it, includ-
ing IBM, Microsoft, and BEA. Moreover, the
companies submitted BPELAWS to OASIS in
April 2003, further broadening its support. Sun,
Intalio, and SAP initially submitted the WSCI
specification to the W3C, which recently creat-
ed a WS-Choreography working group to stan-
dardize on Web services choreography. While
the OASIS BPEL technical committee focuses
on standardizing the BPELAWS specification,
WS-Choreography will be defining a choreogra-
phy language.

The vendor specifications have quickly
moved into a number of product implemen-
tations. Vendors such as Intalio and Vergil
Technologies have products that implement
BPML (Business Process Markup Language),
which incorporates WSCI. Sun also provides
the Sun ONE WSCI editor, which supports
the WSCI extensions to WSDL. Vendors sup-
porting or planning to support the BPEL4WS
specification include:
¢ Collaxa: Offers a complete orchestra-

tion platform for BPEL4AWS

www.wsj2.com

* IBM: Provides a BPWS4]J runtime/editor for
BPELAWS from their alphaWorks Web site

* BindSystems: Provides a BPEL4WS mod-
eling/editing tool

* Microsoft, BEA, and other vendors:
Announced they will support BPEL4WS
in their products

While the industry appears to be embracing
the BPELAWS initiative, it is still unclear what
part WSCI and the W3C Web services choreog-
raphy working group will play. Clearly, vendor
backing and tools support will influence the
adoption taken by the software industry.

Case Study

To illustrate some of the capabilities
outlined here, let’s look at how Web servic-
es orchestration and BPEL4WS can solve
a typical use-case scenario. It revolves
around a purchasing system where a PC
manufacturer wishes to build a set of PC
machine configurations using a list of
available suppliers. In the process, a buyer
works through a purchasing agent to fulfill
these inventory requests. The purchasing
agent then communicates with a number
of suppliers, each offering specific com-
ponents required to build the PC configu-
ration. Once a complete configuration can
be built across one or multiple suppliers, a
proposal is constructed and sent back to
the buyer. The buyer then has the oppor-
tunity to place the parts order or cancel
the request. Figure 4 shows a simplified
view of the process. It shows the initial re-
quest from the buyer to the agent, with
subsequent requests to each supplier.

Each partner in the process has a
WSDL describing the specific input and
output interfaces that are being exposed.
This example will demonstrate the work-
flow that is built from the perspective of
the purchasing agent, as well as the public
interfaces exposed by this workflow.

The first step in creating the BPEL4WS
document is to define the process itself.
This starts with a <process> tag at the root
level. This tag provides a name for the
process and lists specific references to
XML namespaces used. This is where any
WSDL references are placed in the
BPEL4WS document. In this example, the
xmlns:po (http://acme-manufacturing.
com/purchaseorder) will be used to refer
to the WSDL definitions.

www.wsj2.com

The next step is to define the specific
parties involved in the process. In this
example, there are three basic roles: (1)
the buyer making the purchase; (2) the
purchasing agent working on behalf of the
buyer; and (3) a set of suppliers offering
computer parts. This is supported in
BPEL4WS through the <partnerLinks> and
<partner Link> tags.

In Listing 3, a “Buyer” partner link is
defined between the buyer (requestor) and
the purchasing agent (purchaser). The
partnerLinkType (po:requestQuote LinkType)
is a reference to a <partner LinkType> tag
defined within the WSDL document (see
Listing 4).

The partnerLinkType defines the de-
pendencies between the services and the
WSDL port types that are used. We will
assume there is a WSDL port type defin-
ing a request_quote operation that is ini-
tiated from the buyer. The purchasing
agent will also have a link to the supplier
for requesting a quote for a single part.

The process must also manage the flow
of information between the partners, mod-
eled as variables within BPEL4WS. In this
scenario, a buyer makes the initial request
with a configuration number and quantity
to purchase, and the agent then constructs
individual quote requests to each supplier
with a part number and quantity. The
requests come back from the supplier with
the pricing information. The purchasing
agent then constructs a proposal back to
the buyer. Here, there are potentially four
variables required to model this interaction,
two for each request/response interaction.
Each variable is declared with a name, fol-
lowed by a reference to a WSDL message type
(see Listing 5).

In this process, there must be a way to
correlate the message requests to each other.
For example, there might be a unique iden-
tifier for the quote that is received back from
a supplier. The WSDL document would first
define a correlation property for this
quotelD, which would then be referenced
within the BPEL4WS process. Listing 6 high-
lights how the correlation property is de-
scribed in the WSDL document.

A key part of the BPEL4WS document is
the definition of the steps required to han-
dle the request. This is where basic and
structured activities are used. The process
flow consists of an initial request from the

buyer, followed by invocations to multiple
suppliers in parallel, followed by a reply
back to the buyer of the completed propos-
al. The <sequence> tag is used for executing
components sequentially; the <flow> tag is
used for parallel execution; and the <re-
ceive>, <reply>, and <invoke> tags handle
the basic activities required to interact with
the services (see Listing 7).

The first step in the process flow is the
initial buyer request. Once this request is
received, a parallel set of activities is execut-
ed using the <flow> tag. Each supplier will
be contacted in order to receive quotes for
specific PC components. Each references a
specific WSDL operation (e.g., request_
quote), using variables for input and output.
Upon receiving the responses back from the
suppliers, the purchasing agent would con-
struct a message back to the buyer. This
would involve use of the <assign> tag in
BPEL4WS and the XPath language to take
the data received from the suppliers and
build a final proposal to the buyer.

The final step in this scenario is the man-
agement of exceptions. For example, if there
is an error in contacting a supplier, the
agent may want to send a message back to
the buyer. Within BPEL4WS, this would be
done with fault handlers (see Listing 8).

You may need to set up compensation
handlers for the process. For example, if one
of the suppliers can’t be contacted while
placing the order, there should be a way to
roll back the order. To set up a transactional
context in BPEL, the <scope> tag is used to
group related activities together. In this sce-
nario, the three parallel invocations to the
suppliers might be a good candidate for a
scope declaration.

In a Nutshell

Orchestration and choreography are
terms related to connecting Web services
in a collaborative fashion. The capabili-
ties offered by the available standards will
be vital for building dynamic, flexible
processes. The goal is to provide a set of
open, standards-based protocols for
designing and executing these interac-
tions involving multiple Web services.

Many vendors have announced sup-
port for BPEL4WS in their products, and
the OASIS technical committee is looking
to move this specification going forward.
WSCI is being considered by the W3C for

July 2003 4

@ s Feature

Web services choreography. While BPEL- dards in their product implementations. are concerned over how reliability and
4WS has defined a notion of choreogra- As these standards take shape, it will security will be addressed. The good news
phy through abstract processes, it is still be important to pay close attention to the is that much progress has been made by
unclear whether this will be accepted direction taken by standards bodies such the major vendors embracing these stan-
over the W3C work. Clearly, market adop- as the W3C and OASIS. There is still some dards, bringing great promise for Web
tion will be driven by the direction taken confusion on how these efforts will come services orchestration and choreography
by vendors and their support of the stan- together, if at all. And many organizations going forward. ©

Listing 1: WSCI Example messageType="po:part_request"/>

<process name="Purchase" instantiation="message"> <variable name="part_ quote" messageType="po:part_ quote"/>
<sequence> <variable name="proposal" messageType="po:proposal"/>
<action name="ReceiveOrder" role="Agent" operation= </variables>

"tns:Order">

</action> Listing 6: Correlation properties defined in WSDL
<action name="Confirm" role="Agent" operation="tns:Confirm"> <definitions name="properties" ..>
<correlate correlation="tns:ordered"/> <bpws : property name="quoteID" type="xsd:string"/>
<call process="tns:Purchase"/> </definitions>
</action> <definitions name="correlatedMessages ..>
</sequence> <bpws :propertyAlias propertyName="cor:quoteID"
</process> messageType="po:part_quote" ..>
</definitions>

Listing 2: lllustration of a sequence in BPEL4WS
<sequence> Listing 7: BPEL4WS process flow for the scenario

<receive partner="buyer" .. operation="sendOrder" <sequence>
cariable="request"/> <receive name="receive" partnerLink="Buyer"
<invoke partner="supplier" .. operation="request" operation="request"
inputVariable="itemreq" outputVariable="itemgt"/> variable="request" initiate="yes">
<reply partner="buyer" .. operation="response" variable=" </receives>
proposal"/> <flow name="supplier flow"s>
</sequence> <invoke name="quote supplierl" partnerLink="Supplierl"

operation="request_ quote"

Listing 3: Define partner roles in BPELAWS inputVariable = "part request"

<partnerLinks> outputVariable="part_ quote">

<partnerLink name="Buyer" </invoke>
partnerLinkType="po:requestQuoteLinkType" <!-- invoke other suppliers as part of the process, done

myRole="Purchaser"/> in parallel -->

<partnerLink name="Supplierl" </flow>
partnerLinkType="po:requestPartQuoteLinkType" <!-- construct a proposal from the part quotes received

myRole="Requestor" partnerRole="Purchaser"/> -->

<!--Set up other suppliers used in this process --> <reply name="reply" partnerLink="Buyer"
</partners> operation="send proposal" variable="proposal'>

</reply>

<!-- partnerLinkType defined in the WSDL document -->

<plnk:partnerLinkType name="requestQuoteLinkType">
.<plnk:role name="Purchaser"> <faultHandlers>

<plnk:portType name="po:request quote"/> <catch faultName="cantFulfillRequest">

</plnk:role> <invoke partner="buyer" operation="sendError"

</plnk:partnerLinkType> inputVariable="fault"/>
</catch>
<variables> DOW“load the COde at
<variable name="request" messageType="po:request"/>
<variable name="part_ request Sys-Con.Com/WEbSEI‘ViCES

(%)

wsj2.com

