
Reti P2P per file distribution: 

BitTorrent
Corso di Applicazioni TelematicheCorso di Applicazioni Telematiche

A.A. 2008-09– Lezione n.22

Prof. Roberto Canonico

Università degli Studi di Napoli Federico II 

Facoltà di Ingegneria



P2p file-sharing

� Quickly grown in popularity

� Dozens or hundreds of file sharing applications

� 35 million American use P2P networks -- 29% of all 

Internet users in US!

� Audio/Video transfer now dominates traffic on the Internet� Audio/Video transfer now dominates traffic on the Internet



The p2p challenge

� C1:  Search(human’s goals) -> file

� Given keywords / human description, find a 
specific file

� C2:  Fetch(file) -> bits



What’s out there?

Central Flood Super-
node flood

Route

Whole Napster Gnutella FreenetWhole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA 
(bytes, not 
chunks)

DHTs

eDonkey2
000

New BT



Searching

N1

N2 N3

Internet

N6N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?



Searching 2

� Needles vs. Haystacks

� Searching for top 40, or an obscure punk track from 

1981 that nobody’s heard of?

� Search expressiveness

Whole word?  Regular expressions? File names?  � Whole word?  Regular expressions? File names?  

Attributes?  Whole-text search?

� (e.g., p2p gnutella or p2p google?)



Framework

� Common Primitives:

� Join: how to I begin participating?

� Publish: how do I advertise my file?

� Search: how to I find a file?� Search: how to I find a file?

� Fetch: how to I retrieve a file?



Centralized Database: Napster

� Join: on startup, client contacts central 
server

� Publish: reports list of files to central server

� Search: query the server => return 
someone that stores the requested filesomeone that stores the requested file

� Fetch: get the file directly from peer



Napster: Publish

insert(X,

123.2.21.23)

...

I have X, Y, and Z!

Publish

...

123.2.21.23



Napster: Search

search(A)

-->

123.2.0.18Fetch

123.2.0.18

Where is file A?

Query Reply

123.2.0.18Fetch



Napster: discussion

� Pros:

� Simple

� Search scope is O(1)

� Controllable (pro or con?)� Controllable (pro or con?)

� Cons:

� Server maintains O(N) State

� Server does all processing

� Single point of failure



Query Flooding

� Join: on startup, client contacts a few other 
nodes; these become its “neighbors”

� Publish: no need

� Search: ask neighbors, who ask their 
neighbors, and so on... when/if found, reply to neighbors, and so on... when/if found, reply to 
sender.
� TTL limits propagation�

� Fetch: get the file directly from peer



I have file A.

I have file A.

Search in Query Flooding

Reply

Where is file A?

Query

Reply



Flooding Discussion

� Pros:
� Fully de-centralized

� Search cost distributed

� Processing @ each node permits powerful search 
semantics

� Cons:
� Search scope is O(N)

� Search time is O(???)

� Nodes leave often, network unstable

� TTL-limited search works well for haystacks.
� For scalability, does NOT search every node.  May have to 

re-issue query later



Query Floding: Gnutella

� In 2000, J. Frankel and T. Pepper from 

Nullsoft released Gnutella

� Soon many other clients: Bearshare, 

Morpheus, LimeWire, etc.Morpheus, LimeWire, etc.

� In 2001, many protocol enhancements 

including “ultrapeers”



Flooding with Supernodes

� “Smart” Query Flooding:
� Join: on startup, client contacts a “supernode” ... may at 

some point become one itself

� Publish: send list of files to supernode

� Search: send query to supernode, supernodes flood query 
amongst themselves.amongst themselves.

� Fetch: get the file directly from peer(s); can fetch 
simultaneously from multiple peers



Supernodes Network Design

“Super Nodes”



Supernodes: File Insert

insert(X,

123.2.21.23)

...

I have X!

Publish

...

123.2.21.23



Supernodes: File Search

search(A)

search(A)

-->

123.2.22.50

Where is file A?

Query

search(A)

-->

123.2.0.18Replies

123.2.0.18

123.2.22.50



Supernodes: Fetching

(And use of hashes…)
� More than one node may have the requested file...

� How to tell?

� Must be able to distinguish identical files

� Not necessarily same filename

� Same filename not necessarily same file...

� Use Hash of file� Use Hash of file

� KaZaA uses UUHash: fast, but not secure

� Alternatives: MD5, SHA-1

� How to fetch?

� Get bytes [0..1000] from A, [1001...2000] from B

� Alternative: Erasure Codes



Supernode Flooding Discussion

� Pros:

� Tries to take into account node heterogeneity:

� Bandwidth

� Host Computational Resources

� Host Availability (?)

� Rumored to take into account network locality� Rumored to take into account network locality

� Scales better

� Cons:

� Mechanisms easy to circumvent

� Still no real guarantees on search scope or search time

� Similar behavior to plain flooding, but better.



Stability and Superpeers

� Why superpeers?

� Query consolidation

� Many connected nodes may have only a few files

� Propagating a query to a sub-node would take more b/w than 
answering it yourselfanswering it yourself

� Caching effect

� Requires network stability

� Superpeer selection is time-based

� How long you’ve been on is a good predictor of how long 

you’ll be around.



Superpeers: KaZaA

� In 2001, KaZaA created by Dutch company Kazaa BV

� Single network called FastTrack used by other clients as well: 

Morpheus, giFT, etc.

� Eventually protocol changed so other clients could no longer talk 

to it

� Most popular file sharing network in 2005 with >10 million users 

(number varies)



Searching & Fetching

� Query flooding finds:
� An object

� Filename?

� Hash?

� A host that serves that object� A host that serves that object

� In QF systems, d/l from the host that 
answered your query

� Generally uses only one source…



Fetching

� When you have an object ID,

� Get a list of peers serving that ID
� Easier than the keyword lookup

� Queries are structured

� Download in parallel from multiple peers

� “Swarming”
� Download from others downloading same object 

at same time



Swarming: BitTorrent

� In 2002, B. Cohen debuted BitTorrent

� Key Motivation:

� Popularity exhibits temporal locality (Flash Crowds)

� E.g., Slashdot effect, CNN on 9/11, new movie/game release

� Focused on Efficient Fetching, not Searching:� Focused on Efficient Fetching, not Searching:

� Distribute the same file to all peers

� Single publisher, multiple downloaders

� Has some “real” publishers:

� Blizzard Entertainment using it to distribute the beta of their new 
game



BitTorrent: Overview

� Swarming:
� Join: contact centralized “tracker” server, get a list of 

peers.

� Publish: Run a tracker server.

� Search: Out-of-band. E.g., use Google to find a tracker for 
the file you want.the file you want.

� Fetch: Download chunks of the file from your peers. 
Upload chunks you have to them.

� Big differences from Napster:
� Chunk based downloading (sound familiar? :)

� “few large files” focus

� Anti-freeloading mechanisms



BitTorrent: Sharing Strategy

� Employ “Tit-for-tat” sharing strategy
� A is downloading from some other people

� A will let the fastest N of those download from him

� Be optimistic: occasionally let freeloaders download

� Otherwise no one would ever start!

� Also allows you to discover better peers to download from 
when they reciprocate

� Let N peop

� Goal: Pareto Efficiency
� Game Theory: “No change can make anyone better off 

without making others worse off”

� Does it get there?  No, but it’s reasonable



BitTorrent: Summary

� Pros:
� Works reasonably well in practice

� Gives peers incentive to share resources; avoids 
freeloaders

� Cons:� Cons:
� Pareto Efficiency relative weak condition

� Central tracker server needed to bootstrap swarm 

� Tracker is a design choice, not a requirement.  Newer BT 
variants use a “distributed tracker” - a Distributed Hash 
Table



Distributed Hash Tables

� Academic answer to p2p

� Goals

� Guatanteed lookup success

� Provable bounds on search time

� Provable scalability

� Makes some things harder

� Fuzzy queries / full-text search / etc.

� Read-write, not read-only

� Hot Topic in networking since introduction in ~2000/2001



DHT: Overview

� Abstraction: a distributed “hash-table” (DHT) data 
structure:

� put(id, item);

� item = get(id);� item = get(id);

� Implementation: nodes in system form a distributed 
data structure

� Can be Ring, Tree, Hypercube, Skip List, Butterfly 

Network, ...



DHT: Overview (2)

� Structured Overlay Routing:

� Join: On startup, contact a “bootstrap” node and integrate 
yourself into the distributed data structure; get a node id

� Publish: Route publication for file id toward a close node id
along the data structure

Search: Route a query for file id toward a close node id. Data � Search: Route a query for file id toward a close node id. Data 
structure guarantees that query will meet the publication.

� Fetch: Two options:

� Publication contains actual file => fetch from where query stops

� Publication says “I have file X” => query tells you 128.2.1.3 has X, 

use IP routing to get X from 128.2.1.3 



DHT: Example - Chord

� Associate to each node and file a unique id in an 
uni-dimensional space (a Ring)

� E.g., pick from the range [0...2m]

� Usually the hash of the file or  IP address

Properties:� Properties:

� Routing table size is O(log N) , where N is the total number 

of nodes

� Guarantees that a file is found in O(log N) hops

from MIT in 2001



DHT: Consistent Hashing

N105 K20

K5Key 5
Node 105

N32

N90

K80

Circular ID space

A key is stored at its successor: node with next higher ID



DHT: Chord Basic Lookup

N105

N10
N120

“Where is key 80?”

N32

N90

N60

K80

“N90 has K80”



DHT: Chord “Finger Table”

1/21/4

1/8

N80

1/16
1/32
1/64
1/128

� Entry i in the finger table of node n is the first node that succeeds or 

equals n + 2i

� In other words, the ith finger points 1/2n-i way around the ring



DHT: Chord Join

� Assume an identifier space [0..8]

� Node n1 joins

0

17

i  id+2
i  
succ

0    2      1
1    3      1

Succ. Table

1

2

3
4

5

6

7
1    3      1
2    5      1 



DHT: Chord Join

� Node n2 joins
0

17

i  id+2
i  
succ

0    2      2
1    3      1

Succ. Table

1

2

3
4

5

6

7
1    3      1
2    5      1 

i  id+2
i  
succ

0    3      1
1    4      1
2    6      1 

Succ. Table



DHT: Chord Join

� Nodes n0, n6 join 
0

17

i  id+2
i  
succ

0    2      2
1    3      6

Succ. Table

i  id+2
i  
succ

0    1      1
1    2      2
2    4      0 

Succ. Table

1

2

3
4

5

6

7
1    3      6
2    5      6 

i  id+2
i  
succ

0    3      6
1    4      6
2    6      6 

Succ. Table

i  id+2
i  
succ

0    7      0
1    0      0
2    2      2 

Succ. Table



DHT: Chord Join

� Nodes: 
n1, n2, n0, n6

� Items: 
f7, f2

0

17 i  id+2
i  
succ

Succ. Table

i  id+2
i  
succ

0    1      1
1    2      2
2    4      0 

Succ. Table

7

Items 

1

Items 

f7, f2 1

2

3
4

5

6

7 i  id+2 succ
0    2      2
1    3      6
2    5      6 

i  id+2
i  
succ

0    3      6
1    4      6
2    6      6 

Succ. Table

1

i  id+2
i  
succ

0    7      0
1    0      0
2    2      2 

Succ. Table



DHT: Chord Routing

� Upon receiving a query for 
item id, a node:

� Checks whether stores the 
item locally

� If not, forwards the query to 
the largest node in its 
successor table that does 

0

17 i  id+2
i  
succ

Succ. Table

i  id+2
i  
succ

0    1      1
1    2      2
2    4      0 

Succ. Table

7

Items 

1

Items 

successor table that does 
not exceed id

1

2

3
4

5

6

7 i  id+2 succ
0    2      2
1    3      6
2    5      6 

i  id+2
i  
succ

0    3      6
1    4      6
2    6      6 

Succ. Table

1

i  id+2
i  
succ

0    7      0
1    0      0
2    2      2 

Succ. Table

query(7)



DHT: Chord Summary

� Routing table size?

� Log N fingers

� Routing time?

� Each hop expects to 1/2 the distance to the 
desired id => expect O(log N) hops.



DHT: Discussion

� Pros:

� Guaranteed Lookup

� O(log N) per node state and search scope

� Cons:� Cons:

� No one uses them? (only one file sharing app)

� Supporting non-exact match search is hard



BitTorrent

� Written by Bram Cohen (in Python) in 2001

� “Pull-based” “swarming” approach

� Each file split into smaller pieces

� Nodes request desired pieces from neighbors

As opposed to parents pushing data that they receive� As opposed to parents pushing data that they receive

� Pieces not downloaded in sequential order

� Previous multicast schemes aimed to support “streaming”; 

BitTorrent does not

� Encourages contribution by all nodes



Why is (studying) BitTorrent important?

� BitTorrent consumes significant amount of 
internet traffic today
� In 2004, BitTorrent accounted for 30% of all 

internet traffic (Total P2P was 60%), according to 
CacheLogicCacheLogic

� Slightly lower share in 2005 (possibly because of 
legal action), but still significant

� BT always used for legal software (linux iso) 
distribution too

� Recently: legal media downloads (Fox)



Why is (studying) BitTorrent important?

(From CacheLogic, 2004)



BitTorrent: scenario

� Millions want to download the same popular 

huge files (for free)

� ISO’s

� Media (the real example!)� Media (the real example!)

� Client-server model fails

� Single server fails

� Can’t afford to deploy enough servers



Basic Idea

� Chop file into many pieces

� Replicate different pieces on different peers as soon as possible

� As soon as a peer has a complete piece, it can trade it with other 

peers

� Hopefully, we will be able to assemble the entire file at the endHopefully, we will be able to assemble the entire file at the end



Pieces and Sub-Pieces

� A piece is broken into sub-pieces ... typically 

16KB in size

� Policy: Until a piece is assembled, only 

download sub-pieces for that piecedownload sub-pieces for that piece

� This policy lets complete pieces assemble 

quickly



Pipelining

� When transferring data over TCP, it is critical to always have 
several requests pending at once, to avoid a delay between 
pieces being sent.

� At any point in time, some number, typically 5, are requested 
simultaneously.simultaneously.

� Every time a sub-piece arrives, a new request is sent



Terminology

� Seed: peer with the entire file

� Original Seed: The first seed

� Leech: peer that’s downloading the file

� Fairer term might have been “downloader”� Fairer term might have been “downloader”

� Sub-piece: Further subdivision of a piece

� The “unit for requests” is a subpiece

� But a peer uploads only after assembling 
complete piece



BitTorrent Swarm

� Swarm

� Set of peers all downloading the same file

� Organized as a random mesh

� Each node knows list of pieces downloaded � Each node knows list of pieces downloaded 

by neighbors

� Node requests pieces it does not own from 

neighbors

� Exact method explained later



.torrent file

To share a file or group of files, a peer first 

creates a .torrent file, a small file that contains 

(1) metadata about the files to be shared, and 

(2) Information about the tracker, the computer 

that coordinates the file distribution. 

Peers first obtain a .torrent file for it, and connect 

to the specified tracker which tells them from which 

other peers to download the pieces of the file.



Contents of .torrent file

� URL of tracker

� Piece length – Usually 256 KB

� SHA-1 hashes of each piece in file

� For reliability� For reliability

� “files” – allows download of multiple files



Bittorrent: interactions

Web Server Tracker

Leecher

Leecher

Seeder



How a node enters a swarm

for file “popeye.mp4”

� File popeye.mp4.torrent 

hosted at a (well-known) 

webserver

� The .torrent has address of � The .torrent has address of 

tracker for file

� The tracker, which runs on 

a webserver as well, keeps 

track of all peers 

downloading file



How a node enters a swarm

for file “popeye.mp4”
www.bittorrent.com

Peer

1

� File popeye.mp4.torrent 

hosted at a (well-known) 

webserver

� The .torrent has address of 
Peer

� The .torrent has address of 

tracker for file

� The tracker, which runs on 

a webserver as well, keeps 

track of all peers 

downloading file



How a node enters a swarm

for file “popeye.mp4”

Peer
2

www.bittorrent.com

� File popeye.mp4.torrent 

hosted at a (well-known) 

webserver

� The .torrent has address of 
Peer

Tracker

2 � The .torrent has address of 

tracker for file

� The tracker, which runs on 

a webserver as well, keeps 

track of all peers 

downloading file



How a node enters a swarm

for file “popeye.mp4”

Peer

www.bittorrent.com

� File popeye.mp4.torrent 

hosted at a (well-known) 

webserver

� The .torrent has address of 
Peer

Tracker3

Swarm

� The .torrent has address of 

tracker for file

� The tracker, which runs on 

a webserver as well, keeps 

track of all peers 

downloading file



Piece Selection

� The order in which pieces are selected by different peers is 

critical for good performance

� If a bad algorithm is used, we could end up in a situation where 

every peer has all the pieces that are currently available and 

none of the missing onesnone of the missing ones

� If the original seed is prematurely taken down, then the file 

cannot be completely downloaded!



Choosing pieces to request

� Random First Piece:

� When peer starts to download, request random 
piece

� Initially, a peer has nothing to trade

� Important to get a complete piece ASAP

� Then participate in uploads

� When first complete piece assembled, switch to 
rarest-first



Choosing pieces to request

� Rarest-first: Look at all pieces at all peers, 
and request piece that’s owned by fewest 
peers
� Increases diversity in the pieces downloaded

avoids case where a node and each of its peers have � avoids case where a node and each of its peers have 
exactly the same pieces; increases throughput

� Increases likelihood all pieces still available even 
if original seed leaves before any one node has 
downloaded entire file



Choosing pieces to request

� End-game mode:

� When requests sent for all sub-pieces, (re)send 
requests to all peers.

� To speed up completion of downloadTo speed up completion of download

� Cancel request for downloaded sub-pieces



Endgame Mode

� When all the sub-pieces that a peer doesn’t have are actively 
being requested, these are requested from EVERY peer. When 
the sub-piece arrives, the replicated requests are cancelled.

� This ensures that a download doesn’t get prevented from 
completion due to a single peer with a slow transfer rate.completion due to a single peer with a slow transfer rate.

� Some bandwidth is wasted, but in practice, this is not too much



Tit-for-tat as incentive to upload

� Want to encourage all peers to contribute

� Peer A said to choke peer B if it (A) decides not to 
upload to B

� Each peer (say A) unchokes at most 4 interested
peers at any timepeers at any time

� The three with the largest upload rates to A

� Where the tit-for-tat comes in

� Another randomly chosen (Optimistic Unchoke)

� To periodically look for better choices



Choking

� Choking is a temporary refusal to upload. Downloading 
occurs as normal

� It is one of BitTorrent’s most powerful idea to deal with free 
riders

� Cooperation involves uploading pieces (that you have) to 
your peer (Connection is kept open to avoid setup costs)

� Based on game-theoretic concepts.

(Tit-for-tat strategy)



Choking Algorithm

� A good choking algorithm should cap the number of 

simultaneous uploads for good TCP performance. 

� It should avoid choking and unchoking quickly, (known as 

fibrillation). It should reciprocate to peers who let it download.

� Finally, it should try out unused connections once in a while to � Finally, it should try out unused connections once in a while to 

find out if they might be better than the currently used ones, 

known as optimistic unchoking.



Anti-Snubbing

When over a minute goes by without getting a single 
piece from a particular peer, BitTorrent  assumes it 
is "snubbed" by that peer and doesn't upload to it 
except as an optimistic unchoke. This frequently 
results in more than one concurrent optimistic results in more than one concurrent optimistic 
unchoke, which causes download rates to recover 
much more quickly when they falter.



Anti-snubbing

� A peer is said to be snubbed if each of its 

peers chokes it

� To handle this, snubbed peer stops uploading 

to its peersto its peers

� Optimistic unchoking done more often

� Hope is that will discover a new peer that will 
upload to us



Upload-Only mode

� Once download is complete, a peer has no 
download rates to use for comparison nor has any 
need to use them. The question is, which nodes to 
upload to?

� Policy: Upload to those with the best upload rate.

� This ensures that pieces get replicated faster



Why BitTorrent took off

� Practical Reasons (perhaps more important!)

� Working implementation (Bram Cohen) with simple well-

defined interfaces for plugging in new content

� Many recent competitors got sued / shut down

� Napster, Kazaa� Napster, Kazaa

� Doesn’t do “search” per se. Users use well-known, trusted 

sources to locate content

� Avoids the pollution problem, where garbage is passed off as 
authentic content



Pros and cons of BitTorrent

� Pros

� Proficient in utilizing partially downloaded files

� Discourages “freeloading”

� By rewarding fastest uploaders� By rewarding fastest uploaders

� Encourages diversity through “rarest-first”

� Extends lifetime of swarm

� Works well for “hot content”



Pros and cons of BitTorrent

� Cons

� Assumes all interested peers active at same time; 
performance deteriorates if swarm “cools off”

� Even worse: no trackers for obscure contentEven worse: no trackers for obscure content



Pros and cons of BitTorrent

� Dependence on centralized tracker: pro/con?

� � Single point of failure: New nodes can’t enter 
swarm if tracker goes down

� Lack of a search featureLack of a search feature

� ☺ Prevents pollution attacks

� � Users need to resort to out-of-band search: well 

known torrent-hosting sites / plain old web-search



Free-Riding Problem in P2P Networks

� Vast majority of users are free-riders

� Most share no files and answer no queries

� Others limit # of connections or upload speed

� A few “peers” essentially act as servers

� A few individuals contributing to the public � A few individuals contributing to the public 
good

� Making them hubs that basically act as a 
server

� BitTorrent prevent free riding

� Allow the fastest peers to download from you

� Occasionally let some free loaders download



“Trackerless” BitTorrent

� BitTorrent also supports "trackerless" torrents, 
featuring a DHT implementation that allows the 
client to download torrents that have been created 
without using a BitTorrent tracker.

� To be more precise, “BitTorrent without a 
centralized-tracker”centralized-tracker”
� E.g.: Azureus

� Uses a Distributed Hash Table (Kademlia DHT)
� Tracker run by a normal end-host (not a web-server 

anymore)
� The original seeder could itself be the tracker 

� Or have a node in the DHT randomly picked to act as the 
tracker


