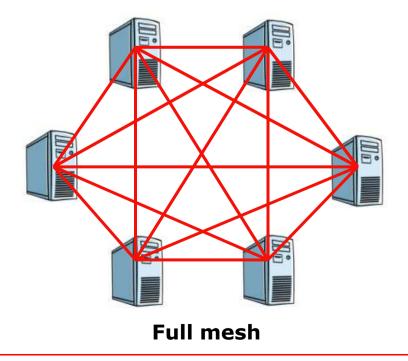
Cloud e Datacenter Networking

Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione DIETI Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

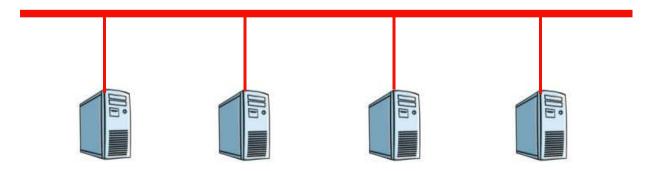
Datacenter: l'infrastruttura di networking Parte I



Argomenti della lezione

- Richiami sul funzionamento delle reti Ethernet commutate
- Evoluzione di Gigabit Ethernet: gli standard per 10 GbE
- L'infrastruttura di networking di un datacenter
- Organizzazione e topologia della rete di un datacenter
- Link aggregation
- VLAN

Connecting N hosts: full mesh


- Advantage
 - ▶ In case of full-duplex NICs, N·(N-1) simultaneous transmissions are possible
- Disadvantages
 - # NICs = N(N-1) proportional to N^2
 - # bidirectional links = (N·(N-1)/2) proportional to N²
 - Cabling is expensive
 - Costly and not scalable

Connecting N hosts: bus

A CONTRACTOR OF THE OWNER

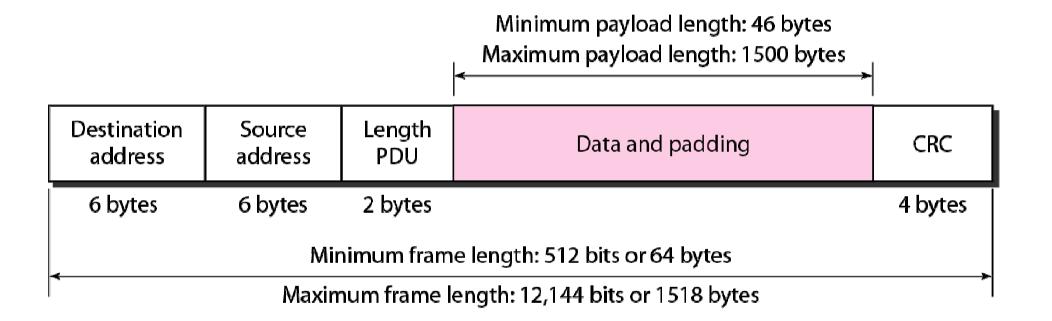
- Advantage over full mesh
 - Cheaper: 1 NIC per host
 - Simpler and cheaper cabling
- Disadvantages
 - Transmission capacity is shared among N hosts
 - Medium Access Control (CSMA/CD) is needed to regulate access to the shared bus
 - Cabling a star topology would be simpler in a building

CSMA/CD

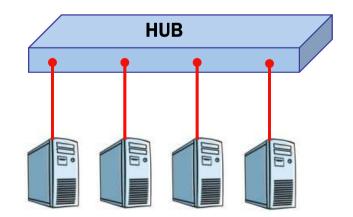
- **CSMA Carrier Sense Multiple Access**
- CS: Listen before transmitting
 - If a device detects a signal from another device, it waits for a specified amount of time before attempting to transmit
 - When there is no traffic detected, a device transmits its message
 - While this transmission is occurring, the device continues to listen for traffic or collisions on the LAN
 - After the message is sent, the device returns to its default listening mode
- CD Collision Detection
 - When a device is in listening mode, it can detect when a collision occurs on the shared media, because all devices can detect an increase in the amplitude of the signal above the normal level
 - When a collision occurs, the other devices in listening mode, as well as all the transmitting devices, detect the increase in the signal amplitude

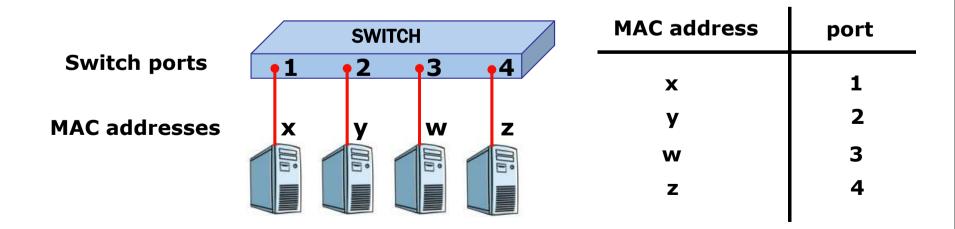
CSMA/CD: Carrier Sense Multiple Access

- **CS:** Listen before transmitting
 - If a device detects a signal from another device, it waits for a specified amount of time before attempting to transmit
 - When there is no traffic detected, a device transmits its frame
 - After the frame is sent, the device returns to its default listening mode
- CD Collision Detection
 - During a frame transmission, the device continues to listen for collisions
 - When a device is in listening mode, it can detect when a collision occurs on the shared media, because all devices can detect an increase in the amplitude of the signal above the normal level
- Jam Signal
 - When a collision is detected, the transmitting devices send out a jamming signal
 - The jamming signal notifies the other devices of a collision, so that they invoke an exponential backoff algorithm
 - This backoff algorithm causes transmitting devices to stop transmitting for a random amount of time, so that the devices that were involved in the collision have a chance that they do not try to send traffic again at the same time

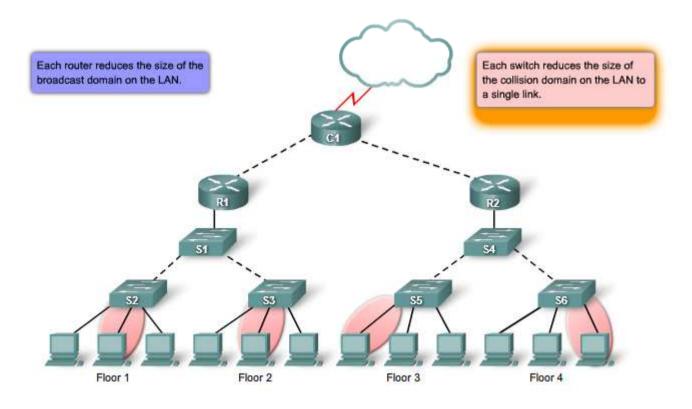

Ethernet frame format

EEE 802.	. 3					
7	1	6	6	2	46 to 1500	4
Preamble	Start of Frame Delimiter	Destination Address	Source Address	Length/ Type	802.2 Header and Data	Frame Check Sequence

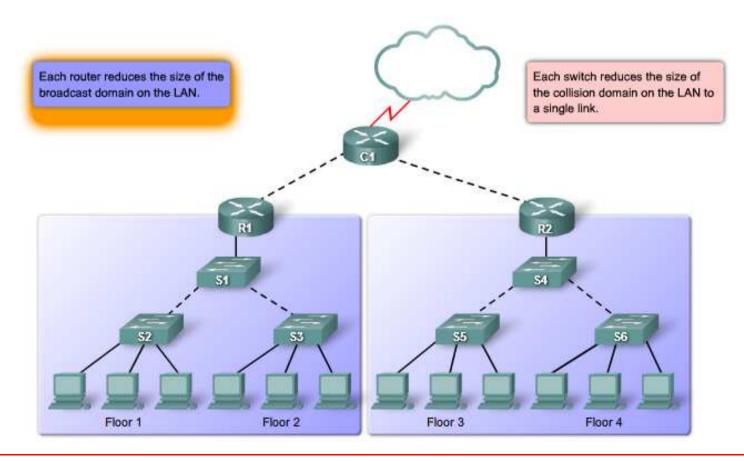

- Destination MAC Address (6 bytes) is the identifier for the intended recipient
 - The address in the frame is compared to the MAC address in the device
 - If there is a match, the device accepts the frame
 - Special destination address FF:FF:FF:FF:FF:FF for broadcast
 - Special destination addresses for LAN multicast
- Source MAC Address Field (6 bytes) identifies the frame's originating NIC
- Length/Type Field (2 bytes)
 - If this field's value ≥ 0x0600=1536₁₀, the contents of the Data Field are decoded according to the protocol indicated (works as Type field)
 - If this field's value < 0x0600 then the value represents the length of the data in the frame (works as Length field)


Connecting N hosts: hub

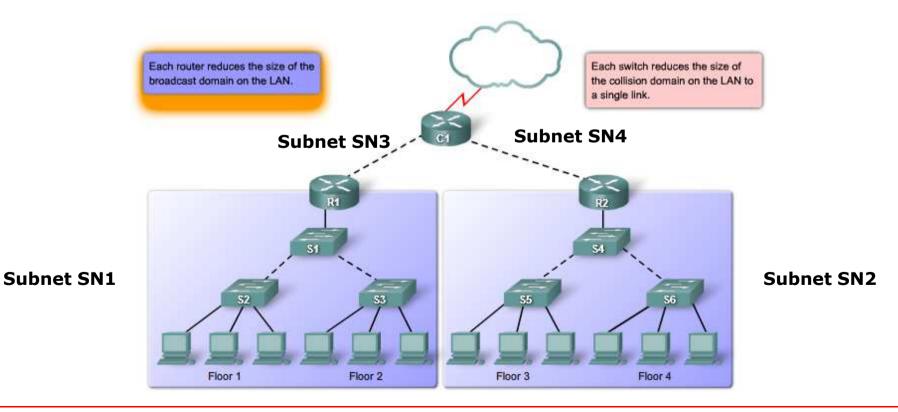
- An Ethernet hub retransmits a frame to all the ports but the one on which the frame entered the hub
- Each host compete for the shared capacity with the other N-1 hosts attached to the hub, as for the bus topology
- Advantage over bus
 - Simpler and cheaper cabling w.r.t. the bus topology (UTP cables)


Connecting N hosts: switch

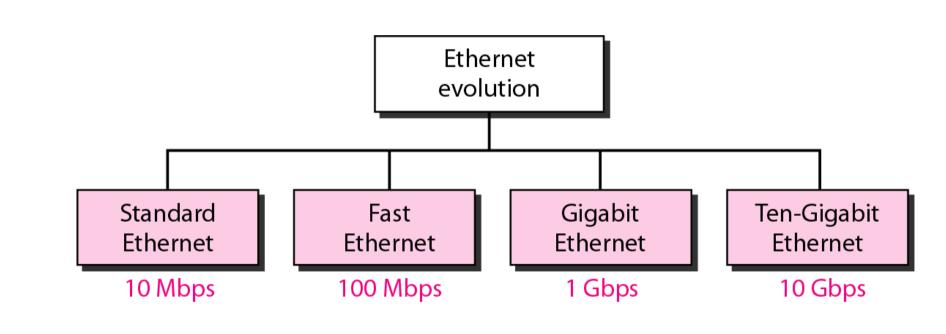
- A switch determines how to handle incoming frames by using its MAC address table
- A switch builds its MAC address table by recording the source MAC addresses of the nodes connected to each of its ports (*learning*)
- Once a specific node's MAC address is associated to a specific switch port in the MAC address table, the switch knows where (i.e. on which port) to send subsequent frames destined for that specific MAC address
- Before a switch learns the port on which a given MAC address is reachable, the switch transmits a frame destined for that unknown MAC address to all the ports but the one on which the frame entered the switch


Switches and collision domains

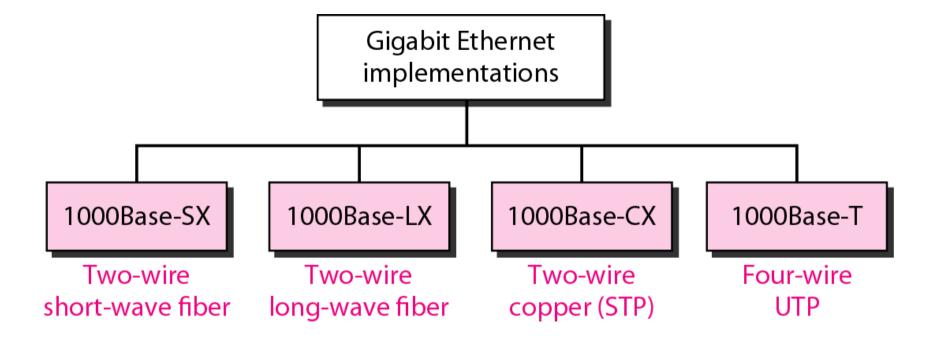
- In store-and-forward switching, when the switch receives the frame, it stores the data in buffers until the complete frame has been received
- If the links between switches and hosts are full-duplex, no collisions may occur
- In a switched network, collision domains shrink to single links
- During the storage process, the switch also performs an error check using the Cyclic Redundancy Check (CRC) trailer portion of the frame



Switches and broadcast domains


- Although switches filter most frames based on MAC addresses, they do not filter broadcast frames
- A collection of interconnected switches forms <u>a single broadcast domain</u>

- To partition a large network in multiple isolated broadcast domains, routers are needed
 - Routers split a network in multiple IP subnets
 - A broadcast transmission does not cross the IP subnet boundary
 - > Approach possible only if IP subnets are physically separated as in the picture below
 - Subnet SN1 on the left, SN2 on the right



Ethernet technology evolution

Gigabit Ethernet implementations and media

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	8B/10B	8B/10B	8B/10B	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

10-Gigabit Ethernet implementations and media

- IEEE 802.3ae standard for fiber optic cables
- IEEE 802.3ak for twinaxial copper cables
- IEEE 802.3an for UTP cat 6A and cat7 cables
- How does 10GbE compare to other varieties of Ethernet?
 - Frame format is the same, allowing interoperability between all varieties of legacy, fast, gigabit, and 10 Gigabit, with no reframing or protocol conversions
 - Bit time is now 0.1 ns all other time variables scale accordingly
 - Only full-duplex fiber connections are used, CSMA/CD is not necessary

10 Gigabit Ethernet over Fiber: IEEE802.3ae

- Ratified in June 2002, the IEEE802.3ae LAN standard was developed to update the preexisting IEEE802.3 standard for 10GbE fiber transmission
- With the new standard, new media types were defined for LAN, metropolitan area network (MAN) and wide area network (WAN) connectivity
 - 10GBASE-SR (Short Reach) uses the lowest cost optics (850nm) to support 10GbE transmission over standard multimode fiber for distances up to 300 meters 10GBASE-SR is often the standard of choice to use inside the datacenters where fiber is already deployed and widely used
 - 10GBASE-LR (Long Reach) uses higher cost optics (1310nm) and requires more complex alignment of the optics to support single-mode fiber up to 10 km
 - 10GBASE-LRM (Long Reach Multimode) operating at 1310 nm, can span up to 220 meters with a multimode fiber using a technology called EDC (Electronic Dispersion Compensation)
 10GBase-LRM is targeted for those customers who have older fiber already in place but need extra reach for their network
 - 10GBASE-ER (Extended reach) uses the most expensive optics (1550nm) and single-mode fiber for a link length up to 40 km
 - IOGBASE-SW, IOGBASE-LW, IOGBASE-EW defined for use with a WAN PHY, these standards were defined to operate at the same baud rate as OC-192/STM-64 SONET/SDH equipment
 - 10GBASE-LX4 supports traditional FDDI grade multimode fiber for distances up to 300 meters using Coarse Wavelength Division Multiplexing (CWDM), which lowers the transmission rate of each wavelength to 3.125Gbaud; the LX4 standard also supports single-mode fiber for up to 10 Km

10 Gigabit Ethernet over Copper: IEEE 802.3ak & 802.3an

- IEEE802.3ak is a low-cost 10GbE solution intended for <u>copper cabling</u> with short distance connectivity that makes it ideal for wiring closet and data center connectivity
 - Approved in 2004
 - Also known as 10GBASE-CX4
 - The CX4 standard transmits 10GbE over four channels using twin-axial cables derived from Infiniband connectors and cable
- IEEE802.3an is the latest proposed 10GbE standard for use with unshielded twisted-pair (UTP) style cabling
 - Approved in 2006
 - Also known as 10GBASE-T
 - At least Category 6A (Cat 6A) or Category 7 (Cat 7) UTP cables are required

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico

Transceivers

- Transceivers are hot-swappable devices used to connect a variety of physical media to Ethernet switches and NICs
- Transceivers are also referred to as *Medium Attachment Units* (MAUs)
- Gigabit Ethernet has two types of transceivers:
 - Gigabit Interface Connector (GBIC)
 - Small Form Factor Pluggable (SFP) or "mini-GBIC"
- **10Gb** Ethernet (**10 GbE**) has several defined transceiver types:
 - XENPAK mainly used in LAN switches; the first 10GbE pluggable transceivers on the market to support the 802.3ae standard transmission optics; these transceivers also support the 802.3ak copper standard to connect CX4 cables
 - XPAK used primarily in Network Interface Cards (NIC) and Host Bus Adapter (HBA)
 - X2 smaller form factor (about 2/3 the size of the XENPAK)
 - XFP the closest in size to SFP
 - SFP+ an enhanced version of SFP that supports data rates up to 16 Gbit/s and can be used for both 8 Gbit/s Fibre Channel and 10Gb Ethernet for both copper and optical cables
- 40Gb Ethernet (40 GbE) uses the following transceiver types:
 - QSFP/QSFP+ allows data rates of 4x10 Gbit/s for Ethernet, Fibre Channel, InfiniBand and SONET/SDH links providing four channels of data in one pluggable interface

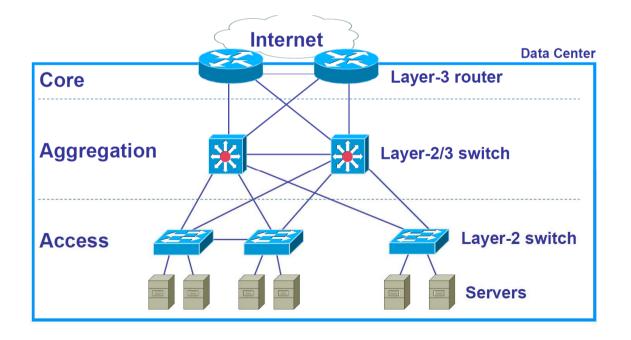
XFP transceiver

Direct-Attach Active Optical Cable with SFP+ Connectors

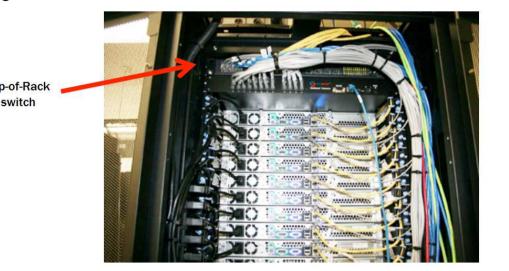
OSFP to 4 SFP+ Breakout Cable

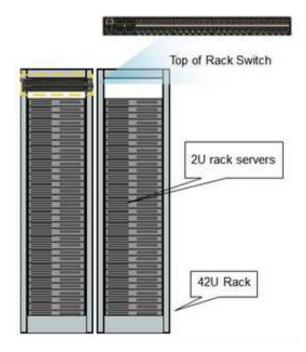
Twinaxial cabling or "Twinax"

- A STATE OF S
- A type of cable similar to coaxial cable, but with two inner conductors instead of one
- Applied in SFP+ Direct-Attach Copper (10GSFP+Cu), a popular choice for 10G Ethernet
- On SFP+ it is possible transmit at 10 Gigabits/second full duplex over 5 m distances
- Twinax with SFP+ offers 15 to 25 times lower transceiver latency than current 10GBASE-T Cat 6/Cat 6a/Cat 7 cabling systems: 0.1 µs versus 1.5 to 2.5 µs
- The power draw of Twinax with SFP+ is around 0.1 watts, which is also much less than 4–8 watts for 10GBASE-T
- 40GBASE-CR4 and 100GBASE-CR10 physical layers using 7 m twin-axial cable are being developed as part of 100 Gbit Ethernet specifications by IEEE 802.3bj workgroup


Datacenter netwoking: infrastrutture ed apparati

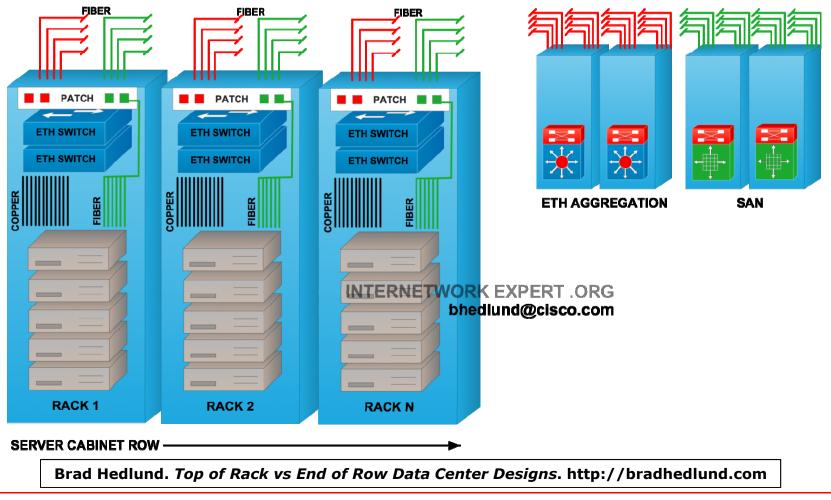
- L'infrastruttura di networking di un datacenter collega in rete i server e ne consente l'accesso tramite Internet
- Come tutti gli impianti di networking, comprende
 - Apparati attivi
 - Impianto di cablaggio (cavi, canaline, patch panel, ecc.)
- Gli apparati attivi sono:
 - L2 switch
 - Router ed L3 switch
 - Firewall ed altri device di uso speciale
- Tipicamente, un datacenter possiede anche un sistema di storage SAN ed una infrastruttura di rete dedicata al collegamento dei server con i device di storage
 - Fibre Channel
- I datacenter per High Performance Computing HPC sono anche dotati di reti a bassa latenza a supporto delle applicazioni di calcolo parallelo
 - InfiniBand


Architettura di networking di un DC: modello 3-tier


- And the second second
- I computer di un datacenter sono organizzati in rack per semplicità di gestione e cablaggio e per un utilizzo efficiente dello spazio
- L'infrastruttura di rete del datacenter è tipicamente organizzata in maniera gerarchica
- Le schede di rete dei server (2/4 per server) sono collegate ad una infrastruttura detta access layer
- Gli switch dell'access layer sono, a loro volta, collegati tra loro da una infrastruttura detta aggregation layer
- L'intero datacenter è collegato ad Internet attraverso una infrastruttura detta core layer che opera tipicamente a livello 3 (*routing IP*)

Access layer: Top of Rack switch

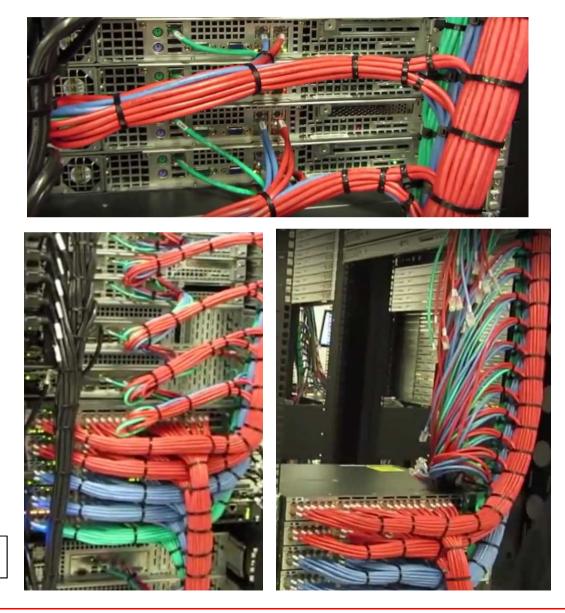
- La configurazione tipica di un DC prevede un primo livello di connettività (access layer) realizzato attraverso uno o più Top-of-Rack (ToR) switch Ethernet collocati in ciascun rack
 - N server / rack
 - N≈20 (≈40) se server da 2U (o 1U) e rack da 42U
 - > 2 NIC Ethernet / server
 - 1 o 2 switch da 48 porte + uplink per rack
 - Fino al 2015:
 - connettività 1 GbE per i server, 10 GbE uplink
 - Trend recente:
 - connettività 10 GbE per i server, 40 GbE uplink
- Occorre anche considerare che ciascun server è tipicamente configurato con un controller per remote management
 - HP iLO, Dell DRAC, ecc.
 - 1 NIC di remote management / server
 - > 1 switch dedicato alla connettività di management



Top of Rack (or In-Rack) design

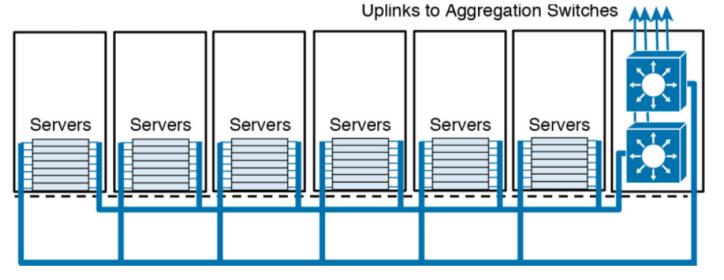
- Switches do not need to be necessarily in top part of the rack
 - Sometimes a convenient location is in the middle of the rack
- Copper (e.g. UTP) cabling for in-rack connections
- Fibers to connect racks to aggregation layer switches and to SAN

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico


In-Rack switches: cabling

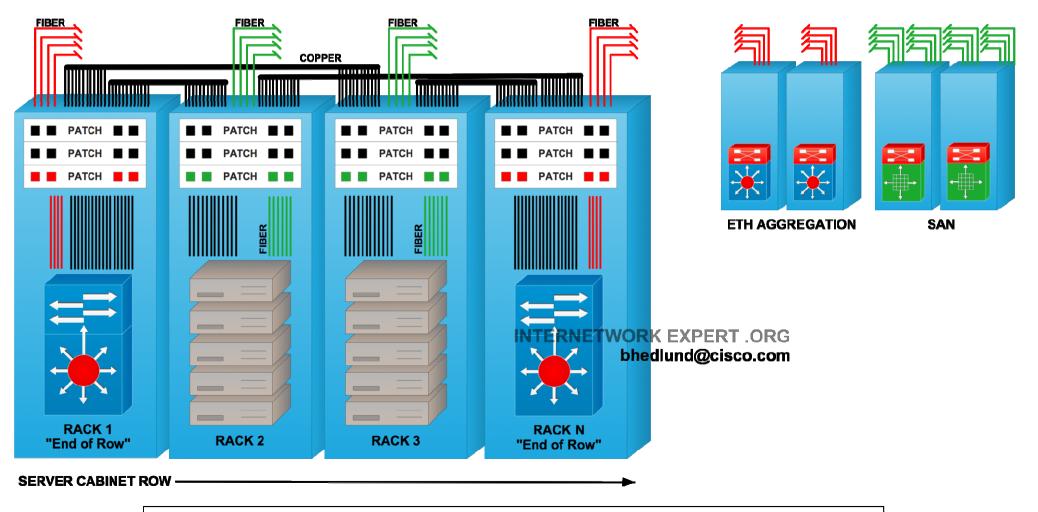
A few pictures showing racks with in-rack switches and servers connections (unstructured cabling)

Each server has several connections:


- Dual data connections
- Dual connections to storage SAN
- Remote management
- Switches are mounted in the middle of the rack
- Cables are bundled and tied together

Source: Softlayer Amsterdam DC video tour

Access layer: End-of-Row or Middle-of-Row

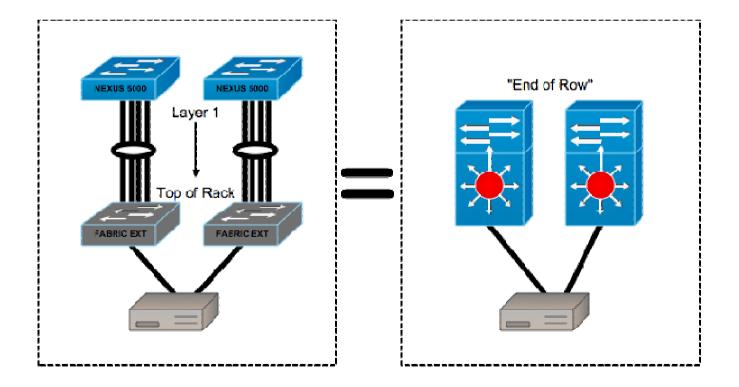

- L'access layer, in alternativa al cablaggio con due ToR switch per rack, può essere realizzato con due switch, comuni ad una intera fila di rack, e disposti ad una estremità della fila di rack (*End-of-Row*, EoR) o al centro (*Middle-of-Row*, MoR)
- Vantaggi:
 - gli apparati di rete sono collocati in rack separati \rightarrow più facile manutenzione
 - Apparati di alimentazione e controllo sono messi a fattor comune \rightarrow minori consumi
- Svantaggi:
 - collegamenti più lunghi
 - necessità di switch con elevato numero di porte

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico

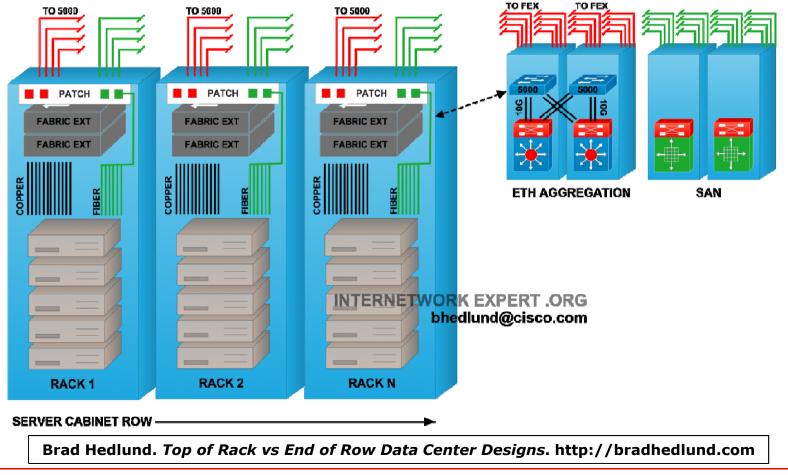
End-of-Row design

- When an End-of-Row design is used, structured cabling is preferred
- Both copper and fibers used for inter-rack cabling

Brad Hedlund. Top of Rack vs End of Row Data Center Designs. http://bradhedlund.com


Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico

Access layer: soluzioni miste con Fabric Extender (1)

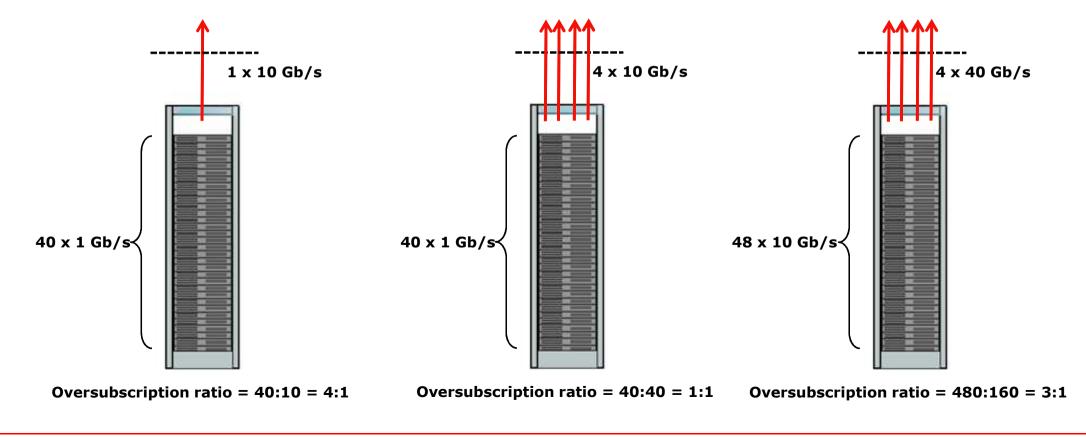


Alcuni costruttori suggeriscono soluzioni in cui l'access layer è costruito combinando switch in-rack (Fabric Extender) con switch collocati in un rack End-of-Row

Access layer: soluzioni miste con Fabric Extender (2)

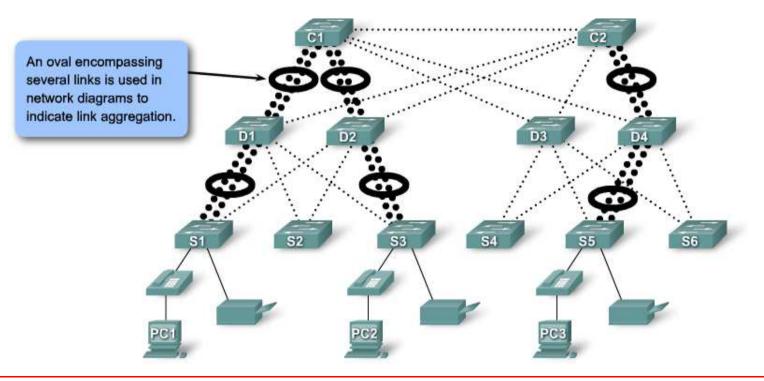
- Di fatto, gli switch in-rack sono gestiti come "estensioni" (*line-card*) dello switch EoR
 - \blacktriangleright Vantaggi in termini di velocità di configurazione \rightarrow solo nello EoR switch

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico


Organizzazione dell'access layer e cabling

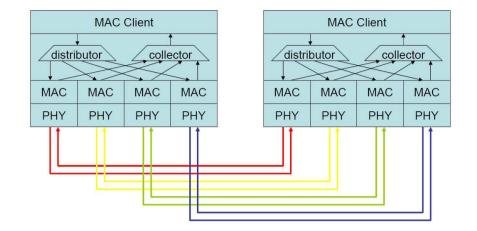
- La scelta della organizzazione dell'access layer condiziona le modalità di cablaggio nei rack e tra i rack
- Nella configurazione Top-of-Rack, i collegamenti tra i server e l'access switch sono di solito effettuati mediante collegamenti diretti, senza patch panel
- Nelle configurazioni End-of-Row e Middle-of-Row si preferiscono soluzioni di cablaggio strutturato con l'uso di patch panel per disaccoppiare il cablaggio tra i rack con le connessioni verso i server

Access-aggregation uplink: oversubscription


- Gli switch dell'access layer sono collegati al resto del DC (aggregation layer) mediante un certo numero di collegamenti in uplink (tipicamente in fibra ottica)
- Il rapporto tra la capacità aggregata dei collegamenti ai server e la capacità dei collegamenti in uplink è detto oversubscription ratio
- Esempi con access layer in configurazione ToR:

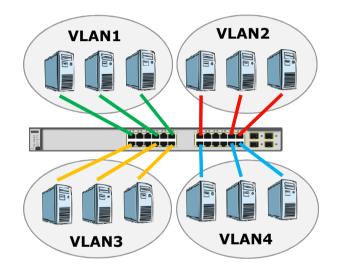
Bandwidth aggregation

- In order to reduce the oversubscription ratio, it is common to connect two switches with bunches of parallel links
- Beware: multiple parallel links form loops !
- **L**oop-avoidance techniques, such as STP, disable all links but one in a bundle
- To effectively use the aggregated bandwidth, special techniques are needed
 - E.g. Cisco's EtherChannel or the IEEE 802.3ad standard


Bandwidth aggregation is normally implemented by combining several parallel links between two switches into one logical link.

IEEE 802.3ad Link Aggregation

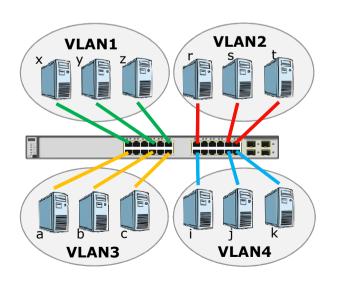
- LAG is performed above the MAC
- LAG assumes all links are:
 - full duplex
 - point to point
 - same data rate
- Traffic is distributed packet by packet
- All packets associated with a given "conversation" are transmitted on the same link to prevent mis-ordering
- Does not change packet format
- Does not add significant latency
- Does not increase the bandwidth for a single conversation
- Achieves high utilization only when carrying multiple simultaneous conversations


IEEE 802.1ax: Link Aggregation Control Protocol LACP

- A CONTRACTOR
- LACP provides a method to control the bundling of several physical ports together to form a single logical channel
- LACP allows a network device to negotiate an automatic bundling of links by sending LACP packets to the peer (directly connected device that also implements LACP)
- Maximum number of bundled ports allowed in the port channel: 1 to 8
- LACP packets are sent with multicast group MAC address 01:80:c2:00:00:02
- During LACP detection period LACP packets are transmitted every second
- Keep alive mechanism for link member: (default: slow = 30s, fast=1s)
- Advantages deriving from LACP over static configuration
 - ► Failover occurs automatically
 - Dynamic configuration: the device can confirm that the configuration at the other end can handle link aggregation
- CISCO's switches support both LACP and the proprietary Port Aggregation Protocol (PAgP)

VLANs

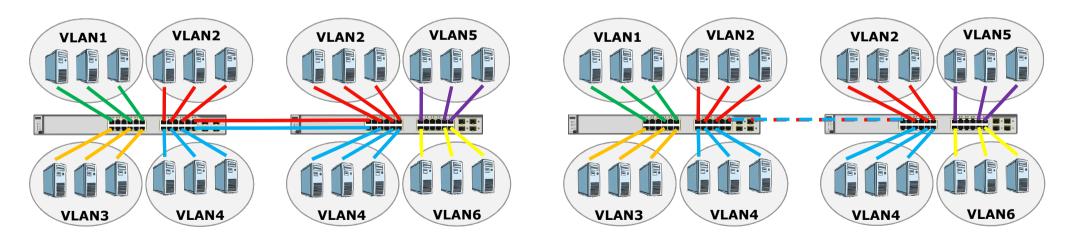
- VLANs create separate broadcast domains within the same switch
 - Needed if multiple IP subnets need to coexist in the same switch
 - A router is needed to route traffic between VLANs
- In a single switch network, VLANs are typically assigned to ports by the admin



- Each switch port could be assigned to a different VLAN
- Ports assigned to the same VLAN share broadcasts
- Ports that do not belong to the same VLAN do not share broadcasts
- The default VLAN for every port in the switch is the "native VLAN"
 - > The native VLAN is always VLAN 1 and may not be deleted
- All other ports on the switch may be reassigned to alternate VLANs

VLAN bridging tables

- Implementing VLANs on a switch causes the following to occur
 - > The switch maintains a separate *bridging table* for each VLAN
 - ▶ If a frame comes in on a port in VLAN x, the switch searches the bridging table for VLAN x
 - When a frame is received, the switch adds the source address to the bridging table if it is currently unknown
 - > The destination is checked so a forwarding decision can be made
 - For learning and forwarding the search is made against the address table for that VLAN only



VLAN1 bridging table		VLAN2 bridging table		
MAC address	port	MAC address	port	
х	1	r	13	
У	7	S	21	
z	11	t	23	
VLAN3 bridging table		VLAN4 bridging table		
MAC address	port	MAC address	port	
а	2	i	14	
b	8	j	22	
с	12	k	24	

VLANs spanning multiple switches

- Problem: how to extend multiple VLANs over two distinct switches ?
- Solution #1
 - one link connecting the two switches for each VLAN that needs to be extended
 - costly and inefficient
- Solution #2 port trunking
 - a single link (*trunk*) connects the two switches and carries traffic for all the VLANs that live in both switches
 - To associate each frame to the corresponding VLAN, a special tag is required in the frame header (VLAN tagging)
- In general, a *trunk* is a link carrying traffic for several VLANs and a switch may have several trunking ports

Two pairs of ports dedicated to extend VLANs, one for VLAN2 and another for VLAN4 VLANs extended by means of port trunking

VLAN tagging

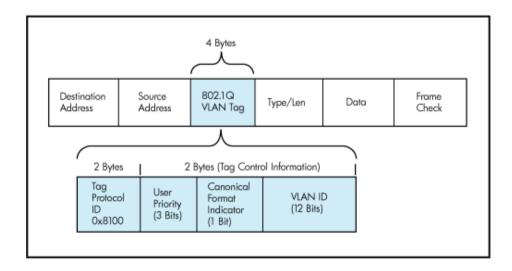
- And the second
- VLAN Tagging is used when a link connecting two different switches needs to carry traffic for more than one VLAN
- A unique packet identifier is added within each header to designate the VLAN membership of each packet
- When a packet enters a trunk port with a given VLAN ID:
 - VLAN ID is removed from the packet

Port 01 is configured as a trunk port for VLAN 10

(T stands for Tagged)

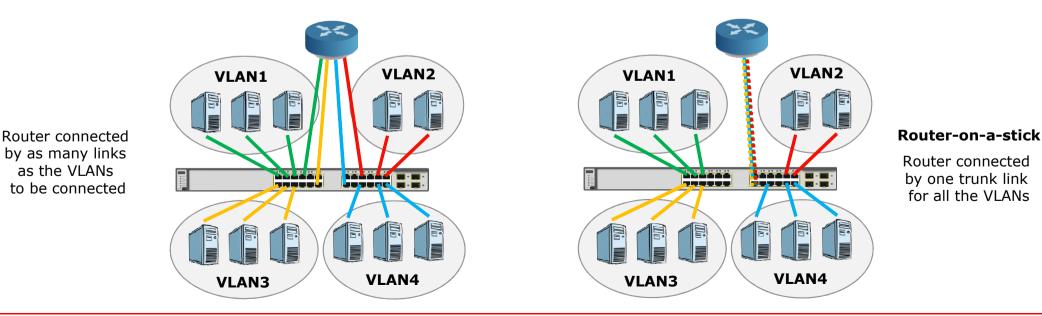
Ports 03, 04 and 05 are statically associated to VLAN 10

without any tagging (U stands for Untagged)

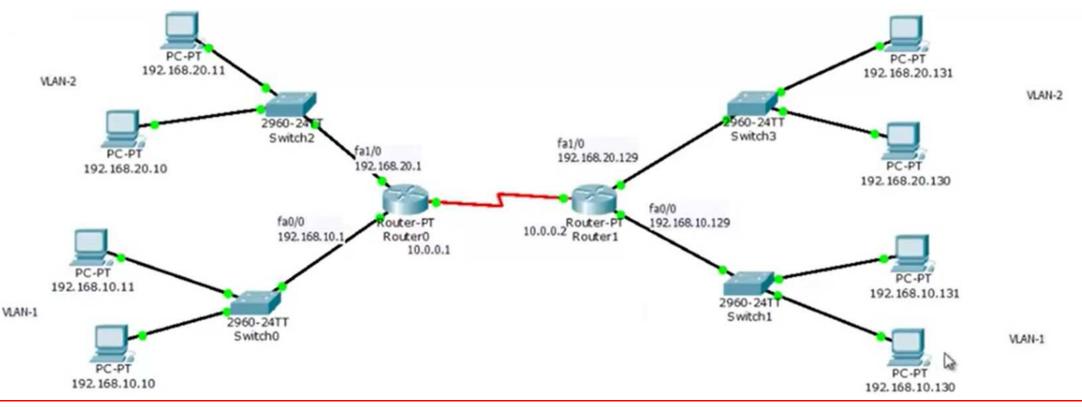

- Packet is forwarded to the appropriate port based on the VLAN ID and destination MAC address
- If the destination MAC address is FF:FF:FF:FF:FF;FF, the packet is forwarded to all the VLAN ports
- 2 major methods of VLAN tagging: Cisco proprietary Inter-Switch Link (ISL) and IEEE 802.1Q
- IEEE 802.1Q inserts VLAN ID (12 bits) in a new header field

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico

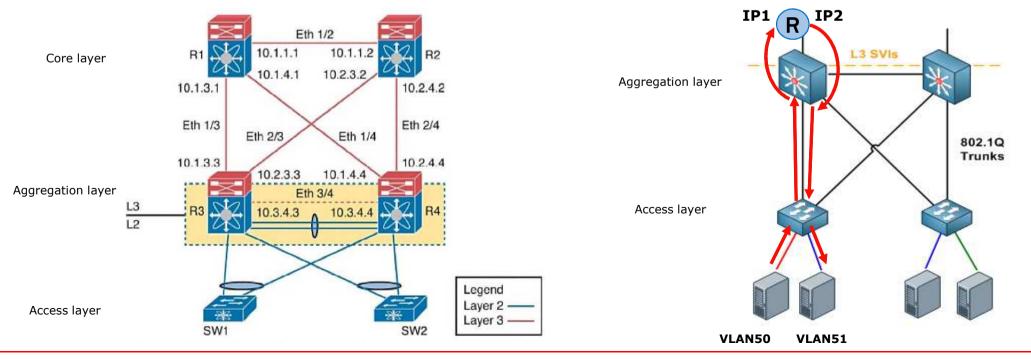
IEEE 802.1Q header


- IEEE 802.1Q adds a 4-byte header field:
- > 2-byte tag protocol identifier (TPID) with a fixed value of 0x8100
- > 2-byte tag control information (TCI) containing the following elements:
 - Three-bit user priority (8 priority levels, 0 thru 7)
 - One-bit canonical format (CFI indicator), 0 = canonical, 1 = noncanonical, to signal bit order in the encapsulated frame (see IETF RFC2469)
 - **•** Twelve-bit VLAN identifier (VID) Uniquely identifies the VLAN to which the frame belongs
 - defining 4,096 VLANs, with 0 and 4095 reserved values

Inter-VLAN routing


- When a node in one VLAN needs to communicate with a node in another VLAN, a router is necessary to route the traffic between VLANs
 - Without the routing device, inter-VLAN traffic would not be possible
- The routing function may be external or internal to the switch
 - In the latter case, the switch itself acts as a router (so called *multilayer switches* or L3 switches)
- External router
 - Approach #1: the router is connected to the switch by one link per VLAN
 - Approach #2: the router is connected to the switch by one trunk link for all the VLANs
 - Also known as "router on a stick"
 - Possible only if the router supports sub-interfaces to divide a single physical interface into multiple logical interfaces

Inter-VLAN routing across different switches


- This scenario is an enteprise network, does not fit a datacenter
- Two VLANs, spread across two distinct switches connected by routers
- In fact, these are four VLANs, each associated to a /25 subnet
- Communication between host 192.168.20.10 (on the left) and 192.168.10.10 (on the left) is routed by Router0
- Communication between host 192.168.10.11 (on the left) and 192.168.10.130 (on the right) is routed by RouterO and Router1

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico

Multilayer switches in a datacenter

- And the second s
- A multilayer switch is able to perform both kinds of packet forwarding: *bridging* at Layer 2 and *routing* at Layer 3
- Layer 3 routing in an aggregation switch can be used to route traffic among different VLANs without the need for an external router by means of so-called "Virtual Switch Interfaces" (SVIs)
 - An SVI should be configured with the VLAN's default gateway IP address
- In a typical datacenter networks, aggregation layer switches are multilayer switches
- If one needs to exchange traffic among 2 servers (or 2 VMs) associated to 2 different VLANs, this machine-to-machine traffic would traverse the network hierarchy up to the aggregation switch even though the communicating hosts (or VMs) are physically located in the same rack

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico