
Cloud and Datacenter Networking
Università degli Studi di Napoli Federico II

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione DIETI

Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

SDN controllers

V1.2 – May 2020 – © Roberto Canonico

The Ryu controller

 Ryu is a Python based controller

 More precisely, Ryu is a component-based SDN framework

 It provides software components with well defined API that make it easy for

developers to create new network management and control applications

 Southbound: it supports multiple southbound protocols for managing devices,

such as OpenFlow, NETCONF, OF-Config, and partial support of P4

 As most controller platforms, Ryu natively implements some basic features:

Ability to listen to asynchronous events (e.g., PACKET_IN, FLOW_REMOVED)

Ability to parse incoming packets and fabricate packets to send out into the network

Ability to create and send an OpenFlow/SDN message (e.g., PACKET_OUT,

FLOW_MOD, STATS_REQUEST) to the programmable dataplane

 With RYU you can achieve all of those by invoking set of applications to handle

network events, parse any switch request and react to network changes by

installing new flows, if required

2Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

Ryu: an architectural view

 Southbound interfaces allow communication of SDN switches and controllers

 Ryu core supports basic functionalities (e.g. topology discovery, learning switch)

 External applications can deploy network policies to data planes via well-defined

northbound APIs such as REST

3Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

Starting Ryu

 Ryu is executed by specifying a Python controller script as an argument

 A basic controller functionality is implemented in the simple_switch_13.py

module:

 The module implements the functionality of a learning switch in a set of

OpenFlow 1.3 switches

4

$ ryu-manager --verbose ryu/app/simple_switch_13.py

Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

Starting Ryu with a GUI module

 Ryu provides a minimal web-based GUI that shows a graphical view of the

network topology

 To start the GUI:

 The GUI is accessible

with a browser

on port 8080

of the host running

the controller
http://controller_IP:8080

 The GUI shows flow rules

in each of the switches

5

$ ryu-manager --verbose --observe-links

ryu/app/gui_topology/gui_topology

ryu/app/simple_switch_13.py

Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

http://controller_ip:8080/

Controller logic in Ryu: learning switch (1/3)

6

OF Switch

Ryu

Ryu app

(1)

(2)

(3) (4)

(5)

Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

from ryu.base import app_manager

from ryu.controller import ofp_event

from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER

from ryu.controller.handler import set_ev_cls

from ryu.ofproto import ofproto_v1_3

from ryu.lib.packet import packet

from ryu.lib.packet import ethernet

class ExampleSwitch13(app_manager.RyuApp):

OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

def __init__(self, *args, **kwargs):

super(ExampleSwitch13, self).__init__(*args, **kwargs)

initialize mac address table.

self.mac_to_port = {}

def add_flow(self, datapath, priority, match, actions):

ofproto = datapath.ofproto

parser = datapath.ofproto_parser

construct flow_mod message and send it.

inst=[parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)]

mod = parser.OFPFlowMod(datapath=datapath, priority=priority,

match=match, instructions=inst)

datapath.send_msg(mod)

...

ryu/app/simple_switch_13.py

Controller logic in Ryu: learning switch (2/3)

7

OF Switch

Ryu

Ryu app

(1)

(2)

(3) (4)

(5)

Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

...

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

def _packet_in_handler(self, ev):

msg = ev.msg

datapath = msg.datapath

ofproto = datapath.ofproto

parser = datapath.ofproto_parser

get Datapath ID to identify OpenFlow switches.

dpid = datapath.id

self.mac_to_port.setdefault(dpid, {})

analyse the received packets using the packet library.

pkt = packet.Packet(msg.data)

eth_pkt = pkt.get_protocol(ethernet.ethernet)

dst = eth_pkt.dst

src = eth_pkt.src

get the received port number from packet_in message.

in_port = msg.match['in_port']

self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

learn a mac address to avoid FLOOD next time.

self.mac_to_port[dpid][src] = in_port

if the destination mac address is already learned,

decide which port to output the packet, otherwise FLOOD.

if dst in self.mac_to_port[dpid]:

out_port = self.mac_to_port[dpid][dst]

else:

out_port = ofproto.OFPP_FLOOD

...

ryu/app/simple_switch_13.py

Controller logic in Ryu: learning switch (3/3)

8

OF Switch

Ryu

Ryu app

(1)

(2)

(3) (4)

(5)

Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

...

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

def _packet_in_handler(self, ev):

...

...

...

...

construct action list.

actions = [parser.OFPActionOutput(out_port)]

install a flow to avoid packet_in next time.

if out_port != ofproto.OFPP_FLOOD:

match = parser.OFPMatch(in_port=in_port, eth_dst=dst)

self.add_flow(datapath, 1, match, actions)

construct packet_out message and send it.

out = parser.OFPPacketOut(datapath=datapath,

buffer_id=ofproto.OFP_NO_BUFFER,

in_port=in_port, actions=actions,

data=msg.data)

datapath.send_msg(out)

ryu/app/simple_switch_13.py

Handling of events in Ryu

 The line

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

 before the _packet_in_handler function definition is a Python decorator

 Decorators are sort of wrapper functions (defined elsewhere in the code) that

are executed when a function is invoked

 The set_ev_cls decorator in Ryu is used to register a handler function as

associated to a specific event

 In particular, the decorator shown above is used to associate the function

_packet_in_handler to the reception of OpenFlow PACKET_IN messages

 Each Ryu application has a first-in/first-out queue for handling events by

preserving their order

 A Ryu application is single-threaded

 In Ryu, an OpenFlow message of type <name> is associated to an event that is

instance of the class ryu.controller.opf_event.EventOF<name>

9Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

The Faucet controller

 Faucet is an open-source lightweight SDN Controller built on top of Ryu

 developed by New Zeeland Research and Education (REANNZ), Waikato University

and Victoria University

 Written in Python with Apache 2 License

 Faucet supports:

 OpenFlow v1.3 (multi table) switches (including optional table features),

 Multiple datapaths

 VLANs, mixed tagged/untagged ports

 ACLs matching layer 2 and layer 3 fields

 IPv4 and IPv6 routing, static and via BGP

 Port statistics

 Coexisting with other OpenFlow controllers

10Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

Faucet features

 Southbound

 It supports OpenFlow v1.3 as a southbound protocol and has a support for feature

such as VLANs, IPv4, IPv6, static and BGP routing, port mirroring, policy-based

forwarding and ACLs matching

 Northbound

 YAML configuration files track the intended system state instead of instantaneous

API calls, requiring external tools for dynamically applying configuration

 It opens SDN administration to well-understood CI/CD pipelines

 Faucet can export telemetry into Influxdb, Prometheus or flat text log files

 No inbuilt clustering mechanism, instead relying on external tools to maintain

availability

 High availability is achieved by running multiple, identically configured instances,

or a single instance controlled by an external framework that detects and restarts

failed nodes

11Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

The Faucet controller: architectural view

 Faucet has two Ryu running instances: one for control and configuration

updates, the other (Gauge) is a read-only connection specifically for gathering,

collating and transmitting state information to be processed elsewhere

12Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

Faucet scalability

 Faucet is designed to be deployed at scale such that each instance is close to

the subset of switches under its control

 Each instance of Faucet is self-contained and can be deployed directly to

server hardware or through containers

 Faucet contains no intrinsic clustering capability and requires external tools

such as Zookeeper to distribute state if this is desired

 Extra instances of the controller can be started independently as long as the

backing configuration remains identical

 PCE functionality for these controllers could be pushed down to the instance in

the form of modules, or implemented in a similar manner to OpenKilda

13Cloud and Datacenter Networking Course – Prof. Roberto Canonico – Università degli Studi di Napoli Federico II

