Corso di Calcolatori Elettronici I

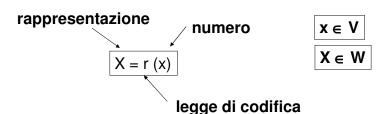
Rappresentazione dei numeri interi in un calcolatore

Prof. Roberto Canonico

Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione Corso di Laurea in Ingegneria Informatica Corso di Laurea in Ingegneria dell'Automazione

Rappresentazione dei numeri

- Così come per qualsiasi altro tipo di dato, anche i numeri, per essere immagazzinati nella memoria di un calcolatore, devono essere codificati, cioè tradotti in sequenze di simboli
- Nei calcolatori si usano strategie di codifica binaria (k=2)
- L'alfabeto sorgente è costituito dall'insieme dei numeri che si vogliono rappresentare



Rappresentazione

- Bisogna tener conto dei seguenti fattori:
 - L'insieme V dei numeri da rappresentare
 - L'insieme W dei *numeri rappresentanti*
 - Tra i due insiemi si stabilisce una corrispondenza che trasforma un elemento x di V in uno X di W
 - Si dice allora che X è la rappresentazione di x
 - La decomposizione in cifre del numero X
 - La codifica in bit delle cifre

Strategie di codifica in macchina

- Codifica binaria a lunghezza fissa
- Il numero di bit varia a seconda della cardinalità dell'insieme dei numeri che si desidera rappresentare
 - Nella pratica, resta comunque pari ad un multiplo di 8 bit (tipicamente 8, 16, 32, 64 bit)
- L'associazione di un numero alla parola codice viene
 - Realizzata differentemente a seconda della tipologia di numeri che si desidera rappresentare
 - naturali, relativi, razionali, ecc ...
 - Influenzata da aspetti che mirano a preservare la facile manipolazione delle rappresentazioni da parte del calcolatore
 - operazioni aritmetiche, confronti logici, ecc ...
- Le operazioni aritmetiche vengono eseguite sulle rappresentazioni binarie dei numeri

Somme e Sottrazioni in aritmetica binaria

- Si effettuano secondo le regole del sistema decimale, ossia sommando (sottraendo) le cifre di pari peso
- Come nelle usuali operazioni su numeri decimali, si può avere un riporto sul bit di peso immediatamente superiore (carry), o un prestito dal bit di peso immediatamente superiore (borrow)
- Le somme (differenze) bit a bit sono definite come segue:

```
0+0=0 0-0=0

0+1=1 1-0=1

1+0=1 1-1=0

1+1=0 (carry=1) 0-1=1 (borrow=1)
```

• Ulteriore caso elementare:

$$1 + 1 + 1 = 1$$
 (carry=1)

Moltiplicazione in aritmetica binaria

 La moltiplicazione bit a bit può essere definita come segue:

0x0=0 0x1=0 1x0=0 1x1=1

Rappresentazione di insiemi numerici infiniti

- Sia la dimensione che il numero dei registri in un calcolatore sono finiti
- La cardinalità degli insiemi numerici che occorre rappresentare è, invece, infinita
 - N = insieme dei numeri Naturali
 - Z = insieme dei numeri Relativi
 - Q = insieme dei numeri Razionali
 - R = insieme dei numeri Reali
- È inevitabile dunque che di un insieme di cardinalità infinita solo un sotto-insieme finito di elementi possa essere rappresentato

Overflow

- Gli operatori aritmetici, pur essendo talvolta chiusi rispetto all'intero insieme numerico su cui sono definiti, non lo sono rispetto ad un suo sottoinsieme di cardinalità finita
- Quando accade che, per effetto di operazioni, si tenta di rappresentare un numero non contenuto nel sottoinsieme si parla di overflow
- Es. sottoinsieme dei numeri naturali compresi tra 0 e 127 (rappresentabili con 7 bit):
 - La somma 100 +100 genera un overflow, essendo il numero 200 non rappresentabile nel sottoinsieme

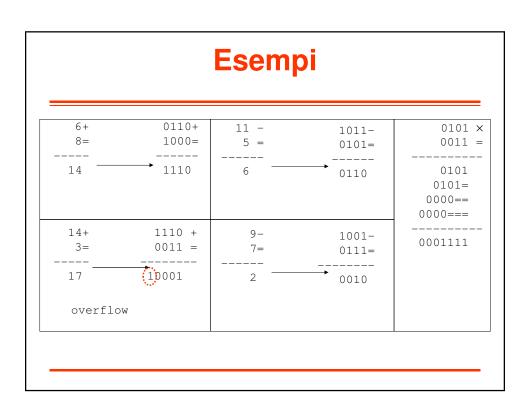
Rappresentazione dei numeri naturali

- Rappresentare di un sottoinsieme dei numeri naturali attraverso stringhe di bit di lunghezza costante n
 - Il numero degli elementi rappresentabili è pari a 2ⁿ
 - Tipicamente, volendo rappresentare sempre anche lo zero, si rappresentano i numeri compresi tra 0 e $2^n 1$
- L'associazione tra ogni numero e la propria rappresentazione avviene, nei casi pratici, nella maniera più intuitiva
 - Ad ogni numero si associa la stringa di bit che lo rappresenta nel sistema di numerazione binario posizionale
- L'overflow avviene quando si tenta di rappresentare un numero esterno all'intervallo [0, 2ⁿ -1]

	X	\mathbf{X}_2
Esempio	15	1111
Lacilibio	14	1110
	13	1101
	12	1100
Rappresentazione dei	11	1011
- -	10	1010
numeri naturali su 4 bit	9	1001
	8	1000
n=4	7	0111
•••	6	0110
$V = [0,15] \cap N$	5	0101
Codifica: X=x	4	0100
Oddilica. X=X	3	0011
	2	0010
	1	0001
	0	0000

Operazioni sui numeri naturali

- •Per realizzare le operazioni, il calcolatore può lavorare direttamente sulle rappresentazioni
- •La correttezza dei calcoli è garantita dalle leggi dell'aritmetica binaria posizionale (analoghe a quelle della classica aritmetica decimale)
- •L'overflow può essere facilmente rilevato attraverso la valutazione del riporto (o del prestito) sull'ultima cifra
 - In tale aritmetica, overflow = riporto uscente



Rappresentazione dei numeri relativi

- · Esistono diverse tecniche
- Segno e modulo
 - Corrispondente a quella comunemente utilizzata per i calcoli "a mano"
 - Poco utilizzata in macchina per le difficoltà di implementazione degli algoritmi, basati sul confronto dei valori assoluti degli operandi e gestione separata del segno
- Complementi
 - Complementi alla base
 - Complementi diminuiti
- Per eccessi

Rappresentazione in segno e modulo

- un singolo bit di X codifica il segno
 - Es. il più significativo, 0 se positivo, 1 se negativo
- i restanti n-1 bit di X rappresentano il modulo (numero naturale)
- La legge di codifica X=r(x) è: $X=|x|+2^{n-1}*sign(x)$
 - $sign(x) = 0 per x \ge 0, 1 per x < 0$
- Si possono rappresentare i numeri relativi compresi nell'intervallo $[-(2^{n-1}-1), 2^{n-1}-1]$
- I numeri relativi rappresentati sono 2ⁿ-1
- Lo zero ha 2 rappresentazioni Opositivo e Onegativo

Esem	ni	
	יץ	V

Rappresentazione in segno e modulo su 4 bit

n=4

$$V = [-7,7] \cap Z$$

Codifica:
 $X=|x|+8 * sign(x)$

X	\mathbf{X}_2	X ₁₀
7	0111	7
6	0110	6
5	0101	5
4	0100	4
3	0011	3
2	0010	2
1	0001	1
0	0000;1000	0;8
-1	1001	9
-2	1010	10
-3	1011	11
-4	1100	12
-5	1101	13
-6	1110	14
-7	1111	15

Operazioni in segno e modulo

- •Diversamente dalla rappresentazione dei numeri naturali, questa volta non è possibile lavorare direttamente sulle rappresentazioni dei numeri per realizzare le operazioni aritmetiche
- È necessario lavorare separatamente sul segno e sul modulo
- •Quando, ad esempio, si sommano due numeri di segno discorde, bisogna determinare quello con modulo maggiore e sottrarre ad esso il modulo dell'altro. Il segno del risultato sarà quello dell'addendo maggiore in modulo.
- •Tale caratteristica, insieme con il problema della doppia rappresentazione dello zero, rende i calcoli particolarmente laboriosi e, per questo motivo, non è molto utilizzata nella pratica.

Rappresentazione in complementi alla base

 Una seconda tecnica per la rappresentazione dei numeri relativi consiste nell'associare a ciascun numero il suo resto modulo M=2ⁿ, definito come:

$$|x|_M = x - [x/M]^*M$$

- Questo tipo di codifica, su n bit, è equivalente ad associare:
 - il numero stesso (cioè X=x), ai numeri positivi compresi tra 0 e 2^{n-1} 1;
 - il numero $X = 2^n |x|$, ai numeri negativi compresi tra $-2^{n-1} e 1$;
- I numeri rappresentati sono quelli compresi nell'intervallo

$$[-2^{n-1}; 2^{n-1} - 1]$$

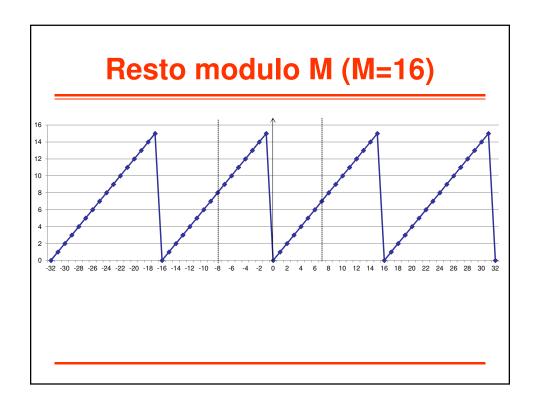
Funzione intero

 Detto r un numero reale, si definisce intero di r il massimo intero y ≤ r

$$y = [r]$$

– confronto tra funzione intero [] e ceiling □

r	7.9	7	-7	-7.9
[r]	7	7	-7	-8
$\lceil r \rceil$	8	7	-7	-7



Esempio	X	X ₂	X ₁₀
	7	0111	7
	6	0110	6
Rappresentazione in	5	0101	5
complementi alla base	4	0100	4
su 4 bit	3	0011	3
	2	0010	2
	1	0001	1
₌₄	0	0000	0
$V = [-8,7] \cap Z$	-1	1111	15
Codifica:	-2	1110	14
	-3	1101	13
Per $0 \le x \le 7$: $X = x$	-4	1100	12
Per $-8 \le x \le -1$: $X = 2^n - x $	-5	1011	11
	-6	1010	10
	-7	1001	9
	-8	1000	8

Complementi alla base: proprietà

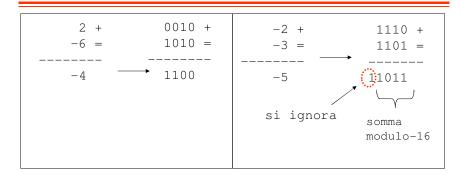
- Questa rappresentazione ha il fondamentale vantaggio di permettere, nell'ambito di operazioni aritmetiche, di lavorare direttamente sulle rappresentazioni.
- La regola sulla quale questa affermazione si basa è la seguente:

la rappresentazione della somma (algebrica) di x ed y si ottiene come somma (modulo-M) delle rappresentazioni di x e y; analoghe sono le proprietà della differenza e del prodotto.

$$\left| x + y \right|_{M} = \left\| x \right|_{M} + \left| y \right|_{M} \right|_{M}$$

 Questo tipo di codifica conserva, inoltre, la proprietà delle rappresentazioni di avere il primo bit 1 se (e solo se) il corrispondente numero è negativo (bit di segno)

Esempi di addizioni in complementi alla base



È possibile effettuare la somma direttamente tra le rappresentazioni modulo-M: il risultato ottenuto in questo modo, è proprio la rappresentazione (modulo-M) del risultato corretto

Complementi alla base: la complementazione

- In complementi alla base, a partire dalla rappresentazione di un numero, è anche particolarmente semplice ottenere la rappresentazione del suo opposto
- È infatti sufficiente complementare tutti i bit a partire da sinistra, tranne l'uno più a destra ed eventuali zero successivi
- Questa ulteriore caratteristica consente di realizzare le sottrazioni attraverso la composizione di una complementazione (nel senso sopra detto) ed un'addizione
- Nell'aritmetica in complementi alla base, di conseguenza, l'addizionatore e il complementatore rappresentano i componenti fondamentali per la realizzazione di tutte le operazioni

Esempi di complementazione su 4 bit

- La rappresentazione di 6₁₀ su 4 bit è 0110₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1010₂.
- 1010₂ è la rappresentazione di –6 in complementi alla base.
- La rappresentazione di 5₁₀ su 4 bit è 0101₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1011₂.
- 1011₂ è la rappresentazione di –5 in complementi alla base.
- La rappresentazione di 1₁₀ su 4 bit è 0001₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1111₂.
- 1111₂ è la rappresentazione di –1 in complementi alla base.

Complementi alla base: esempio di moltiplicazione

Estensione del segno

- · Problema:
 - Sia dato un intero N, rappresentato in complemento mediante n bit
 - Rappresentare N usando n+q bit (q>0)
- Soluzione:
 - Fare q copie di MSB
- Dimostrazione (banale per N positivo)
 - Sia N<0 (N=1bb...b, dove b è una cifra binaria)
 - Per induzione: Sia N_q la stringa con estensione di q bit
 - q=1: Poiché $-2^{n-1} = -2^n + 2^{n-1}$, allora $V(N) = V(N_1)$.
 - q>1: estendere di un bit la stringa ottenuta da N con estensione di q-1 bit \rightarrow V(N_q)=V(N_{q-1})
- Esempio
 - $-2 = (110)_2$ con 3 bit diventa $(1111110)_2$ su 6 bit
- Nota: questa operazione viene eseguita quando si fa in C un typecast da tipo short int ad int

Complementi diminuiti

- La rappresentazione in complementi diminuiti costituisce un'ulteriore alternativa per la codifica dei numeri relativi
- Concettualmente è analoga alla rappresentazione in complementi alla base
- La differenza rispetto ad essa è che la legge di codifica dei numeri negativi è leggermente differente:

 $ightharpoonup X=2^n-|x|;$ (complementi alla base) $ightharpoonup X=2^n-1-|x|;$ (complementi diminuiti)

- I numeri rappresentabili, se si utilizzano n bit, sono quelli compresi nell'intervallo $[-(2^{n-1}-1), 2^{n-1}-1]$.
- I numeri rappresentabili sono 2ⁿ 1
- · lo zero ha una doppia rappresentazione

Esempio

Rappresentazione in complementi diminuiti su 4 bit

n=4 $V = [-7,7] \cap Z$ Codifica:

Per $0 \le x \le 7$: X = xper $-7 \le x \le -1$: $X = 2^n - 1 - |x|$

7	0111	7
6	0110	6
5	0101	5
4	0100	4
3	0011	3
2	0010	2
1	0001	1
0	0000;1111	0;15
-1	1110	14
-2	1101	13
-3	1100	12
-4	1011	11
-5	1010	10
-6	1001	9
-7	1000	8

 X_2

 X_{10}

Complementi diminuiti: perché?

- Maggiore semplicità con cui è possibile calcolare la rappresentazione dell'opposto di un numero, a partire dalla rappresentazione del numero stesso: basta semplicemente complementare tutti i bit della rappresentazione indistintamente
- · Esempi:
 - la rappresentazione in complementi diminuiti su 4 bit di 4 è 0100;
 - · complementando tutti i bit si ottiene 1011;
 - 1011 è la rappresentazione in complementi diminuiti su 4 bit di -4
 - − la rappresentazione in complementi diminuiti su 4 bit di − 6 è 1001;
 - · complementando tutti i bit si ottiene 0110;
 - 0110 è la rappresentazione in complementi diminuiti su 4 bit di 6

Aritmetica in complementi diminuiti

- Componenti:
 - Ancora l'addizionatore modulo-2ⁿ (e non 2ⁿ-1)
 - L'addizionatore modulo-2ⁿ è più semplice da realizzare
 - Un complementatore
- Il risultato però deve essere opportunamente "corretto" per renderlo compatibile con l'aritmetica in modulo 2ⁿ⁻¹
- In particolare deve essere aggiunta un'unità al risultato nei seguenti casi:
 - se entrambi gli addendi sono negativi
 - se un addendo è positivo, l'altro negativo e la somma è positiva
- Nei casi suddetti l'aritmetica degli interi positivi (quella sulle rappresentazioni) da overflow
 - L'overflow (carry) quindi può essere interpretato come la necessità di effettuare la correzione

The second			•		The second second	Address Section 5.1
Esemi	oi di	somme	ın	comp	lementi	diminuiti
	J		•••	OULLE		WILLIAM C

- 2 + - 3 = - 5	1101 + 1100 = 11001 + 1 =	Somma di due numeri negativi. Si è generato overflow tra le rappresentazioni. Necessita correzione.
	1010	
5 + - 2 =	0101 + 1101 = 10010 + 1 =	Somma di un numero positivo e un numero negativo Il risultato è positivo. Si è generato overflow tra le rappresentazioni. Necessita correzione.
	0011	
3 + - 4 = _ 	0011 + 1011 = 1110	Somma di un numero positivo e un numero negativo Il risultato è negativo. Non si è generato overflow tra le rappresentazioni. Non necessita alcuna correzione.

Rappresentazione eccesso-k

- La rappresentazione in eccesso-k costituisce un metodo diverso da quello dei resti in modulo per ricondurre i numeri negativi a positivi
- In particolare, tutti i numeri sono traslati "verso l'alto" di k, che viene scelto maggiore o uguale al numero più piccolo da rappresentare

$$X = x + k$$

Rappresentazione eccesso-k: proprietà

- Analogamente al caso dei complementi diminuiti, la somma va corretta aggiungendo o sottraendo la costante k, e quindi in maniera sufficientemente semplice
- Moltiplicazioni e divisioni risultano invece più complesse
- Il vantaggio di tale codifica è che viene conservata la proprietà della disuguaglianza sulle rappresentazioni:

$$X_1 > X_2 \Leftrightarrow X_1 > X_2$$

- Questa rappresentazione, perciò, è utilizzata soltanto laddove siano richieste fondamentalmente somme algebriche e confronti logici fra gli operandi
- Tipicamente si utilizza per rappresentare gli esponenti nella rappresentazione in virgola mobile (prossima lezione)

Faamaia			
Esempio	7	X_2	X ₁₀
<u> </u>		1111	15
_	6	1110	14
Rappresentazione in	5	1101	13
eccesso-8 su 4 bit	4	1100	12
eccesso-o su 4 bit	3	1011	11
	2	1010	10
	1	1001	9
n=4	0	1000	8
$V = [-8,7] \cap Z$	-1	0111	7
	-2	0110	6
Codifica:	-3	0101	5
X = x + k	-4	0100	4
7 7 1 11	-5	0011	3
	-6	0010	2
	-7	0001	1
	-8	0000	0