Corso di Calcolatori Elettronici I

Macchine sequenziali: minimizzazione degli stati

Prof. Roberto Canonico

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica
e delle Tecnologie dell'Informazione
Corso di Laurea in Ingegneria Informatica
Corso di Laurea in Ingegneria dell'Automazione

Funzioni uscita e stato prossimo

 L'uscita e lo stato prossimo sono funzioni della sequenza di ingressi applicata a partire da uno "stato iniziale":

$$u_k = \lambda(q_0, J_k)$$

$$q_{k+1} = \delta(q_0, J_k)$$

• con $J_k = i_0, i_1, i_2, ..., i_k$

Macchine complete e incomplete

Applicabilità di una sequenza

- Una sequenza di ingressi J è applicabile a M in q si dice a M(q) - se è definita u=λ(q, J), la funzione che fornisce l'uscita u che si ottiene applicando alla macchina la sequenza di ingressi J a partire da uno "stato iniziale" q.
- Se la funzione di uscita λ è definita ovunque, la macchina si dice completa, incompleta altrimenti
- Per le macchine incomplete esistono sequenze non applicabili
 - Sequenza J_i non applicabile in q_0 : λ non definita
 - Potrebbe essere applicabile una sequenza più lunga

Equivalenza

- Occorre formalizzare il fatto che due macchine possano avere lo stesso funzionamento
 - → reagire nello stesso modo (con le stesse uscite) alle stesse sequenze di ingressi
- Definizione di stati equivalenti in macchine complete:
 - Producono la stessa sequenza di uscite per qualsiasi sequenza di ingressi

Equivalenza

 Un modo per riconoscere stati equivalenti (fondamentale negli algoritmi che vedremo) è usare la proprietà ricorsiva degli stati equivalenti:

Due stati sono equivalenti se lo sono tutte le possibili coppie di <u>stati</u> <u>successivi</u>, e sono uguali tutte le possibili <u>uscite successive</u>.

Equivalenza: riassumendo

- Concetto di equivalenza: <u>avere lo stesso</u> funzionamento "esterno"
 - Reagire nello stesso modo (con le stesse uscite) alle stesse sequenze di ingressi
 - Due stati sono equivalenti se, per ciascun ingresso:
 - · sono eguali le uscite
 - · sono equivalenti gli stati successivi
 - Definizione di stati equivalenti in macchine complete:
 - Producono la stessa sequenza di uscite per qualsiasi sequenza di ingressi

Equivalenza

- I due stati possono appartenere anche alla stessa macchina
- Due macchine complete M e M' sono equivalenti se per ciascuno stato q di M esiste almeno uno stato q' di M' ad esso equivalente e, viceversa

Equivalenza e macchine incompete

- La definizione precedente non può essere applicata così com'è
 - → non tutte le possibili sequenze sono applicabili a tutti gli stati
- Si introducono i concetti di:
 - Compatibilità tra stati
 - *Inclusione* tra macchine

Equivalenza: ricapitolando

Stati equivalenti (macchine complete)

- Due stati (della stessa macchina o di macchine diverse) sono equivalenti se producono la stessa sequenza di uscite per qualsiasi sequenza di ingressi
- · Definizione ricorsiva
 - Due stati sono equivalenti se, per ciascun ingresso sono eguali le uscite e sono equivalenti gli stati successivi

Macchine equivalenti (complete)

 Due macchine complete M e M' sono equivalenti se per ciascuno stato q di M esiste almeno uno stato q' di M' ad esso equivalente e viceversa

Macchine equivalenti (incomplete): non tutte le sequenze di ingresso sono applicabili

 il concetto è sostituito da quelli di Compatibilità tra stati ed Inclusione tra macchine

Stati compatibili

- Due stati sono compatibili se <u>per ogni</u> sequenza di ingressi applicabili ad <u>entrambi</u>, le uscite prodotte sono identiche
- A differenza della relazione vista prima per macchine complete, la compatibilità NON è una relazione di equivalenza:

Gode delle proprietà

- Riflessiva
- Simmetrica
- Ma NON di quella transitiva
 - p.e.: q1~q2, q2~q3, λ (q1,J)=a, , λ (q2,J)=-, λ (q3,J)=b
- Ciò complica la ricerca di macchine equivalenti minime

Compatibilità

- Così come l'equivalenza, anche la compatibilità può essere definita ricorsivamente
- Due stati sono compatibili se tutti i possibili stati prossimi sono compatibili, e tutte le possibili uscite prossime sono uquali
- Non essendo una relazione di equivalenza, non è possibile utilizzare le proprietà delle classi di equivalenza.
- Si generalizza con il concetto di famiglia di insiemi di stati compatibili massimi

Compatibilità

- Per le macchine incomplete, non si parla quindi di equivalenza, ma di inclusione:
 - Una macchina M' ne include una M, in una coppia di stati q e q', se tutte le sequenze di ingressi applicabili ad M a partire da q lo sono anche per M' a partire da q' producendo la stessa uscita
 - Se è possibile trovare per ciascuno stato di M uno q che soddisfa la precedente definizione, allora M' include M
 - → è possibile usare M' in luogo della M
 - M ed M' possono includersi l'un l'altra
 - → diremo in questo caso che le due macchine sono equivalenti

Compatibilità: formalmente

Inclusione fra macchine

- Concettualmente: una macchina include un'altra se "fa qualcosa in più"
- Formalmente:
 - M'(q') include M(q):

$$M'(q') \supseteq M(q) \Leftrightarrow \forall (J \text{ applicabile a } M(q)) : \lambda(q',J) = \lambda(q,J)$$

■ M' include M

$$M' \supseteq M \Leftrightarrow \forall (q \in M) \exists (q' \in M') : \dot{M}(q') \supseteq M(q)$$

Compatibilità ed equivalenza

- Nel caso di macchine complete le due definizioni coincidono.
- Tra due macchine equivalenti, conviene scegliere quella con meno stati
- → problema di minimizzazione individuare la macchina con il minor numero di stati tra tutte le possibili macchine equivalenti

Minimizzazione degli stati

Minimizzazione e classi di equivalenza

- Data una macchina M se ne vuole trovare una equivalente, M', con un numero minimo di stati.
- <u>La famiglia delle classi di equivalenza degli stati di M è la soluzione</u>: M' ha uno stato per ogni elemento C della famiglia con:
 - uscita: pari alla uscita degli elementi di C, tutti eguali per essere questi equivalenti fra loro,
 - stato seguente: quello determinato da C stesso; essendo infatti gli stati di C_i equivalenti fra loro, devono avere tutti per seguenti stati equivalenti e quindi appartenere ad un unico elemento C' della famiglia delle classi di equivalenza.
 - M' ha un numero di stati minimo, per le proprietà delle classi di equivalenza.

Minimizzazione degli stati

Minimizzazione e classi di compatibilità massime

- Per le macchine incomplete, proprietà analoghe a quelle delle classi di equivalenza, ma più complesse, hanno le classi di compatibilità massime
- Si procede analogamente, con le seguenti peculiarità:
 - M' include M (non è equivalente)
 - La soluzione potrebbe non essere minima, ma in generale presenta una macchina a "stati ridotti"
 - Si possono avere più soluzioni, potendo uno "stato seguente" essere incluso in più elementi distinti della famiglia di compatibilità massima

Problema della Minimizzazione

- Partendo da una macchina M(Q,I,U,τ,ω), ne vogliamo trovare a macchina M'(Q',I,U,τ',ω') equivalente ad M e con il minor numero di stati
- Partiamo dalla famiglia di insiemi di stati compatibili massimi F=(S₁,S₂,...,S_n)

Problema della Minimizzazione

- La F gode delle seguenti proprietà, essenziali nei metodi di minimizzazione:
 - Gli elementi S di F sono disgiunti
 - Gli elementi S di F coprono l'insieme degli stati Q
 - Tutti gli stati di un elemento S di F portano alla stessa uscita (eventualmente non definita)
 - F è chiusa: da due stati di uno stesso elemento S di F si arriva a due stati che appartengono ad una stessa S'
- Ricerchiamo la M'(F,I,U,τ',ω')
 - → M' ha un numero di stati non superiore a M

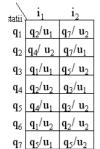
Ricerca della famiglia F

- Algoritmo del partizionamento
- Metodo tabellare di Paull-Unger
- Procedono per "eliminazione"
 Partono da una presunta F (inizialmente coincidente con Q) e cercano di individuare incompatibilità fin quando è possibile

Algoritmo del partizionamento

- Si individuano gli stati incompatibili rispetto alle uscite per ciascun ingresso
- Le partizioni individuate si esaminano rispetto allo stato prossimo
- Si itera fintantoché tutte le partizioni non verificano la definizione di compatibilità

Algoritmo del partizionamento

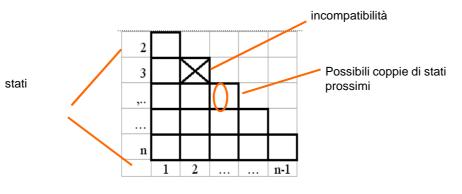


i	Elemento in esame	Analisi uscite	Partizione elementi	Famiglia
				(1,2,3,4,5,6,7)
1	(1,2,3,4,5,6,7)	u ₁ : (1,3,5,7); u ₂ :(2,4,6)	(1,3,5,7) (2,4,6)	(1,3,5,7) (2,4,6)
2	(1,3,5,7)	u ₂ : (1,3,5,7)		
2	(2,4,6)	u ₁ :(2,4); u ₂ : (6)	(2,4) (6)	(1,3,5,7) (2,4,)(6)

	Stati seguenti	Analisi Partizione		Famiglia
L	Stati seguenti	stati seguenti	elemento	ranngna
F	Passo 3	-		(1,3,5,7) (2,4) (6)
1	$(1,3,5,7) \rightarrow (2,1,4,5)$	$(2,4) (1,5) \rightarrow (1,5) (3,7)$	(1,5) (3,7)	(1,5) (3,7) (2,4) (6)
1	$(2,4) \rightarrow (4,2)$			
2	$(2.4) \rightarrow (7.3)$			

Metodo di Paull-Unger

 Riorganizza il procedimento visto prima in forma di matrice diagonale

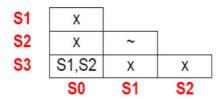


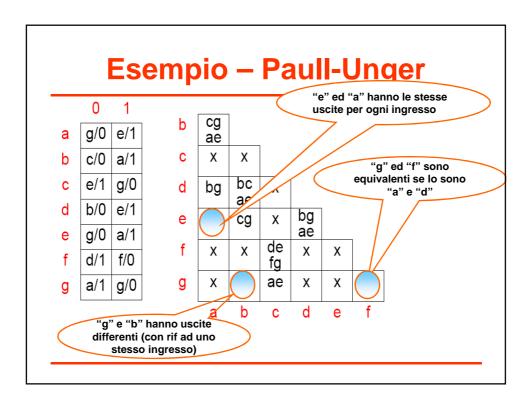
Metodo di Paull-Unger

- Si marcano come incompatibili le coppie di stati che portano ad uscite differenti per almeno un ingresso
- Si indicano le coppie di possibili stati prossimi in ogni casella
- Si continua iterativamente il procedimento partizionando rispetto agli stati

Metodo di Paull-Unger

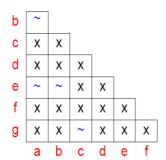
- Ogni elemento della Tabella delle Implicazioni contiene:
 - Il simbolo di non equivalenza (X)
 - Il simbolo di equivalenza (~)
 - La coppia di stati condizionanti se non è possible stabilire immediatamente l'equivalenza (o non equivalenza)





Esempio - cont

Procedendo iterativamente si giunge a determinare le classi di equivalenza

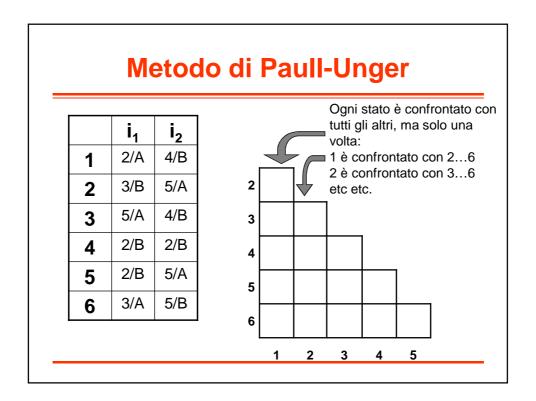


$$\alpha = \{a,b,e\}$$

$$\beta = \{c,g\}$$

$$\gamma = \{d\}$$

$$\delta = \{f\}$$



Esempio: Riconoscitore di codice 8-4-2-1

 Costruire una rete nella quale entrano serialmente i bit di un codice decimale 8-4-2-1 a partire dal bit meno significativo e dalla quale esce un segnale impulsivo che individua se i quattro bit costituiscono o meno una delle 10 parole-codice previste

Riferimento: "Reti logiche-Complementi ed Esercizi" CAP 5, es n.6

Esempio: Riconoscitore di codice 8-4-2-1

- Procediamo per elencazione di tutti le possibili sequenze
 - Individuiamo tutti i possibili stati
 - Partizioniamo rispetto alle uscite

cifra	
cura	8-4-2-1
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

	1	0
0	1/0	2/0
1	3/0	4/0
2	5/0	6/0
3	7/0	8/0
4	9/0	10/0
5	11/0	12/0
6	13/0	14/0
7	0/0	0/1
8	0/0	0/1
9	0/0	0/1
10	0/1	0/1
11	0/0	0/1
12	0/0	0/1
13	0/0	0/1
14	0/1	0/1

	1	. 0
0	1/0	2/0
1	3/0	4/0
2	5/0	6/0
3	7/0	8/0
4	9/0	10/0
5	11/0	12/0
6	13/0	14/0
7	0/0	0/1
8	0/0	0/1
9	0/0	0/1
11	0/0	0/1
12	0/0	0/1
13	0/0	0/1
10	0/1	0/1
14	0/1	0/1

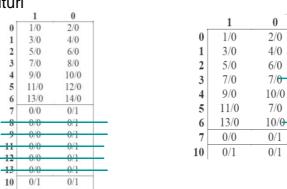
Non 8*

Non 14

Lo stesso vale per 9, 11, 12 e 13

Esempio: Riconoscitore di codice 8-4-2-1

- Eliminiamo le righe uguali
 - ne resta soltanto una e lo stato non eliminato (ad es. 7) viene sostituito a tutti quelli eliminati nella colonna degli stati futuri



Esempio: Riconoscitore di codice 8-4-2-1

□ Tracciamo la tabella delle implicazioni

1	13:2-4							
2	1-3,2-6	3-5;4-6						
3	1-7/2-7	3-7:4-7	5-7:8-7					
4	1-7;2-10	3-7,4-10	5-7:810	X				
5	1-7,2-7	3-7:4-7	5-76-7	~	7/0			
6	1,2-10	3-7:340	5-36-10	740	~	7.18		
7	Х	χ	X	X	Х	Х	X	
10	X	X	X	Х	Х	X	Χ	X
	0	1	2	3	4	5	6	7

Esempio: Riconoscitore di codice 8-4-2-1

- Classi di equivalenza
 - Ricordando anche gli stati "fusi" in precedenza

S0=(0), S1=(1,2), S2=(3,5), S3=(4,6), S4= (7,8,9,11,12,13), S5= (10,14).

	1	0
S0	S1/0	S1/0
S1	S2/0	S3/0
S2	S4/0	S4/0
S3	S4/0	S5/0
S4	S0/0	S0/1
S5	S0/1	S0/1

Tabella degli stati ridotti