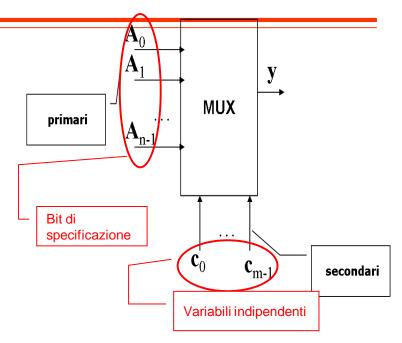
Corso di Calcolatori Elettronici I

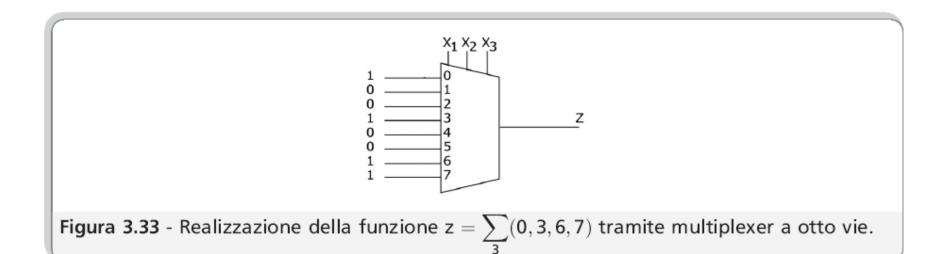
Reti Universali

Prof. Roberto Canonico


Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Reti universali: multiplexer

Reti con multiplexer

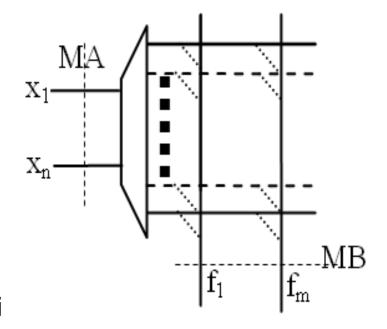

 Un multiplexer convoglia sulla uscita y quello fra gli m=2ⁿ "ingressi primari" A_i selezionato dagli n "ingressi secondari" C_i

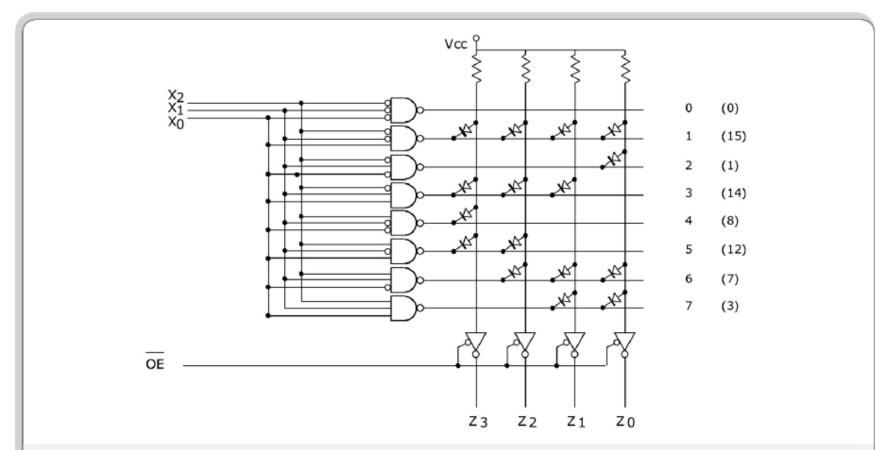
$$y = \sum_{i=0}^{m-1} A_i \cdot P_i$$

- Ma questa è la forma normale di una funzione delle C_i con P_i mintermini e A_i bit che specificano la funzione. Si ottiene allora una rete universale per funzioni di n variabili ponendo:
 - Ingressi primari = bit di specificazione
 - Ingressi secondari = variabili indipendenti

Multiplexer come generatore di funzioni

Reti universali: multiplexer con logica folded


Logica "folded"

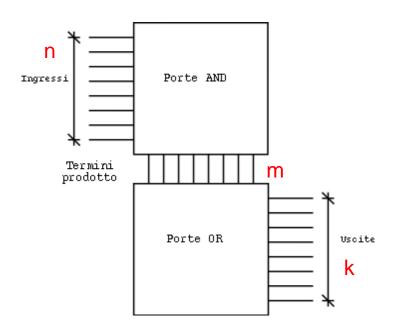

- Nella forma normale della funzione, mettendo in evidenza i mintermini nelle C₀.C₁....C_{n-2}, ciascuno di questi risulta moltiplicato per:
 - $-\overline{C_{n-1}}$ se non esiste il mintermine in tutte le variabili con C_{n-1}
 - C_{n-1} se non esiste il mintermine con $\overline{C_{n-1}}$
 - 1, se esistono entrambi
 - 0, se non esistono né l'uno né l'altro
- È allora possibile usare un multiplexer con n-1 ingressi secondari per generare funzioni di n variabili
 - I bit di specificazione sono uno dei valori (0,1,C_{n-1}, C_{n-1})

Reti universali: ROM

Logica ROM-Read Only Memory

- Una ROM implementa la funzione MB=M(MA)
- Se MA è di n bit
- e la memoria ha parallelismo di m bit
- Si realizzano m funzioni di n variabili
- I contenuti della memoria (colonne di tabelle di verità) sono
 - specificati dall'utente
 - realizzati dal costruttore "bruciando" i collegamenti fra linee orizzontali e verticali

Figura 3.38 - Schema di una ROM di otto posizioni di 4 bit. A destra viene riportato l'indirizzo di ciascuna cella e, tra parentesi, il suo contenuto. Per capirne il funzionamento si consideri, per esempio, il caso in cui l'indirizzo $x_2x_1x_0$ sia 2. In tal caso solo la riga 2 della matrice è asserita bassa, per cui la tensione sull'anodo del diodo a essa collegato (colonna z_0) risulta bassa (il diodo ha una caduta di tensione trascurabile). Gli altri diodi sulla colonna z_0 risultano interdetti. I diodi sulle restanti colonne sono in conduzione, ma la tensione sui loro anodi è alta essendo alta la tensione su tutte le righe diverse dalla 2. Si noti che la memoria ha un segnale di abilitazione delle uscite.


Reti universali: PLA

PLA – Programmable Logic Array

- Fanno parte della più ampia classe dei "Dispositivi Logici Programmabili"
- Realizzare k funzioni di n variabili in forma and-or a 2 livelli

$$f_{j} = \sum_{i=1}^{m} a_{ij} \bullet \gamma_{i} \quad a_{ij} = 0,1; i \in [1,m], j \in [1,k]$$

- 2 sezioni
 - AND: realizza le m clausole
 - OR: realizza le k sommatorie
 - Le specifiche (χ_i e a_{ii})
 - fornite da utente
 - realizzate dal costruttore attivando i collegamenti per le AND e le OR

PLA

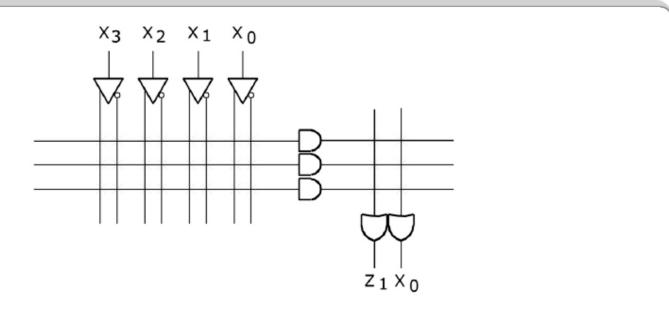
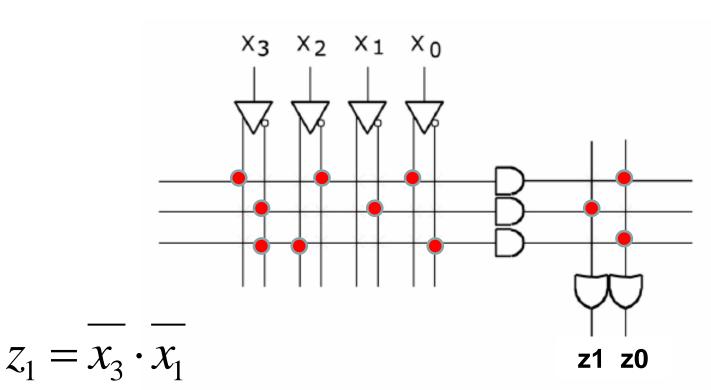



Figura 3.41 - Schema di un dispositivo PLA a quattro ingressi e due uscite. Il dispositivo prevede una matrice di AND e una matrice di OR, ambedue programmabili in campo.

PLA: esempio di programmazione

$$z_0 = x_3 \cdot \overline{x_2} \cdot x_0 + \overline{x_3} \cdot x_2 \cdot \overline{x_0}$$