## "Cloud \& Datacenter Networking" course

- 3 CFU
- Laurea Magistrale Ingegneria Informatica @ Università degli Studi di Napoli Federico II

- $2^{\circ}$ year $2^{\circ}$ semester
- Course topics:
- Datacenter architecture
- Datacenter networking technologies
- Cloud Computing networking aspects
- In Amazon AWS, OpenStack, etc...
- Network Virtualization
- Emerging networking paradigms (Software Defined Networking, Network Function Virtualization, ...)



## Datacenter engineering

- In a datacenter multiple infrastructures coexist:
- IT: Computers, storage systems, switches, routers
- Cabling
- Servers cooling and air conditioning
- Power supply systems
- Physical security systems

- Design (and building) of a datacenter requires a number of engineering professionals
with diverse competencies and expertise



## Datacenters: highly complex infrastructures

- A datacenter simply cannot be badly engineered
- Service continuity requirements
- High availability: 99,999\% (five nines) $\rightarrow$ at most 5.26 minutes of outage in a whole year
- Elasticity
- It must be possible to reconfigure the infrastructure to adapt to a higher demand of resurces
- Energy Efficiency
- Power Usage Effectiveness (PUE)
- In traditional datacenters non-IT plants (including air conditioning, uninterruptible power supply, emergency power systems, etc.) may consume as much energy as (or even more than) the IT equipments (servers, switches, ...)



## Datacenter networking challenges (1)

- Highly interactive and data-intensive applications
- A single user interaction produce as a consequence a high number of interactions among server-side components (eg. many db queries)
- Max response time for each server component estimated 10ms
- The majority of the traffic remains within the datacenter
- Traditional networking protocols exhibit problems in a DC environment
- multipath, TCP incast, ...



## Datacenter networking challenges (2)

- How is it possible to make a LAN network of $10000+$ servers?
- A single big switch is unfeasible ...
- Traditional WAN solutions are not adequate

- A switch hierarchy!
- Main goal: make "non-blocking" the interconnection system
- Agility, i.e. the possibility of moving (migrating) the computational load (eg. a VM) from one server to any other server in the DC with no performance penalties for the application
- Other goals:
- avoid bottlenecks,
- avoid loops,
- exploit the existence of multiple paths between servers


