Cloud and Datacenter Networking

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione DIETI
Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

Datacenter networking infrastructure Part I

Lesson outline

- Switched Ethernet basic concepts
- Gigabit Ethernet standard evolution
- A datacenter's networking infrastructure
- Organization and topology of a datacenter network
- Link aggregation
- VLANs
- Advantages
- In case of full-duplex NICs, $\mathrm{N} \cdot(\mathrm{N}-1)$ simultaneous transmissions are possible
- Disadvantages
- \# NICs = N•(N-1) proportional to \mathbf{N}^{2}
- \# bidirectional links = (N•(N-1)/2) proportional to N^{2}
- Cabling is expensive
- Costly and not scalable

Full mesh

Connecting N hosts: bus

- Advantage over full mesh
- Cheaper: 1 NIC per host
- Simpler and cheaper cabling
- Disadvantages
- Transmission capacity is shared among N hosts
- Medium Access Control (CSMA/CD) is needed to regulate access to the shared bus
- Cabling a star topology would be simpler in a building

- CSMA - Carrier Sense Multiple Access
- CS: Listen before transmitting
- If a device detects a signal from another device, it waits for a specified amount of time before attempting to transmit
- When there is no traffic detected, a device transmits its message
- While this transmission is occurring, the device continues to listen for traffic or collisions on the LAN
- After the message is sent, the device returns to its default listening mode
- CD - Collision Detection
- When a device is in listening mode, it can detect when a collision occurs on the shared media, because all devices can detect an increase in the amplitude of the signal above the normal level
- When a collision occurs, the other devices in listening mode, as well as all the transmitting devices, detect the increase in the signal amplitude
- CS: Listen before transmitting
- If a device detects a signal from another device, it waits for a specified amount of time before attempting to transmit
- When there is no traffic detected, a device transmits its frame
- After the frame is sent, the device returns to its default listening mode
- CD - Collision Detection
- During a frame transmission, the device continues to listen for collisions
- When a device is in listening mode, it can detect when a collision occurs on the shared media, because all devices can detect an increase in the amplitude of the signal above the normal level

- Jam Signal

- When a collision is detected, the transmitting devices send out a jamming signal
- The jamming signal notifies the other devices of a collision, so that they invoke an exponential backoff algorithm
- This backoff algorithm causes transmitting devices to stop transmitting for a random amount of time, so that the devices that were involved in the collision have a chance that they do not try to send traffic again at the same time

Ethernet frame format

IEEE 802.3	1	6	6	2	46 to 1500

- Destination MAC Address (6 bytes) is the identifier for the intended recipient
- The address in the frame is compared to the MAC address in the device
- If there is a match, the device accepts the frame
, Special destination address FF:FF:FF:FF:FF:FF for broadcast
- Special destination addresses for LAN multicast
- Source MAC Address Field (6 bytes) identifies the frame's originating NIC
- Length/Type Field (2 bytes)
- If this field's value $\geq 0 x 0600=1536_{10}$, the contents of the Data Field are decoded according to the protocol indicated (works as Type field)
- If this field's value < 0x0600 then the value represents the length of the data in the frame (works as Length field)

- An Ethernet hub retransmits a frame to all the ports but the one on which the frame entered the hub
- Each host compete for the shared capacity with the other N-1 hosts attached to the hub, as for the bus topology
- Advantage over bus
- Simpler and cheaper cabling w.r.t. the bus topology (UTP cables)

Connecting N hosts: switch

- A switch determines how to handle incoming frames by using its MAC address table
- A switch builds its MAC address table by recording the source MAC addresses of the nodes connected to each of its ports (learning)
- Once a specific node's MAC address is associated to a specific switch port in the MAC address table, the switch knows where (i.e. on which port) to send subsequent frames destined for that specific MAC address
- Before a switch learns the port on which a given MAC address is reachable, the switch transmits a frame destined for that unknown MAC address to all the ports but the one on which the frame entered the switch

Switches and collision domains

- In store-and-forward switching, when the switch receives the frame, it stores the data in buffers until the complete frame has been received
- In a switched network, collision domains shrink to single links
- If the links between switches and hosts are full-duplex, no collisions may occur
- During the storage process, the switch also performs an error check using the Cyclic Redundancy Check (CRC) trailer portion of the frame

Switches and broadcast domains

- Although switches filter most frames based on MAC addresses, they do not filter broadcast frames
- A collection of interconnected switches forms a single broadcast domain

Routers and IP subnets

- To partition a large network in multiple isolated broadcast domains, routers are needed
- Routers split a network in multiple IP subnets
- A broadcast transmission does not cross the IP subnet boundary
- Approach possible only if IP subnets are physically separated as in the picture below
- Subnet SN1 on the left, SN2 on the right

- IEEE 802.3 is actually a collection of many different standards
- common MAC protocol and frame format
- different speeds: 2 Mbps, $10 \mathrm{Mbps}, 100 \mathrm{Mbps}, 1 \mathrm{Gbps}, 10 \mathrm{Gbps}, 40 \mathrm{Gbps}, 100 \mathrm{Gbps}$
- different physical layer media: fiber, cable

Ethernet transmission media: copper wires

- UTP (Unshielded Twisted Pair)

UTP cable with RJ-45 connector

- FTP (Foiled Twisted Pair)

FTP cable with RJ-45 connector

Ethernet transmission media: optical fibers

Multimode

- Multi-Mode Optical Fiber
- Single Mode Optical Fiber

Single-Mode

Multimode
Singlemode

Gigabit Ethernet implementations and media

Gigabit Ethernet implementations

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	$8 \mathrm{~B} / 10 \mathrm{~B}$	$8 \mathrm{~B} / 10 \mathrm{~B}$	$8 \mathrm{~B} / 10 \mathrm{~B}$	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

10-Gigabit Ethernet implementations and media

- IEEE 802.3ae standard for fiber optic cables
- IEEE 802.3ak for twinaxial copper cables
- IEEE 802.3an for UTP cat 6A and cat7 cables
- How does 10GbE compare to other varieties of Ethernet?
- Frame format is the same, allowing interoperability between all varieties of legacy, fast, gigabit, and 10 Gigabit, with no reframing or protocol conversions
- Bit time is now 0.1 ns - all other time variables scale accordingly
- Only full-duplex fiber connections are used, CSMA/CD is not necessary

10 Gigabit Ethernet over Fiber: IEEE802.3ae

- Ratified in June 2002, the IEEE802.3ae LAN standard was developed to update the preexisting IEEE802.3 standard for 10GbE fiber transmission
- With the new standard, new media types were defined for LAN, metropolitan area network (MAN) and wide area network (WAN) connectivity
- 10GBASE-SR (Short Reach) - uses the lowest cost optics (850nm) to support 10GbE transmission over standard multimode fiber for distances up to 300 meters
10GBASE-SR is often the standard of choice to use inside the datacenters where fiber is already deployed and widely used
- 10GBASE-LR (Long Reach) - uses higher cost optics (1310nm) and requires more complex alignment of the optics to support single-mode fiber up to 10 km
- 10GBASE-LRM (Long Reach Multimode) - operating at 1310 nm , can span up to 220 meters with a multimode fiber using a technology called EDC (Electronic Dispersion Compensation)
10GBase-LRM is targeted for those customers who have older fiber already in place but need extra reach for their network
- 10GBASE-ER (Extended reach) - uses the most expensive optics (1550nm) and single-mode fiber for a link length up to 40 km
- 10GBASE-SW, 10GBASE-LW, 10GBASE-EW - defined for use with a WAN PHY, these standards were defined to operate at the same baud rate as OC-192/STM-64 SONET/SDH equipment
- 10GBASE-LX4 - supports traditional FDDI grade multimode fiber for distances up to 300 meters using Coarse Wavelength Division Multiplexing (CWDM), which lowers the transmission rate of each wavelength to 3.125 Gb aud; the LX4 standard also supports single-mode fiber for up to 10 Km
- IEEE802.3ak is a low-cost 10GbE solution intended for copper cabling with short distance connectivity that makes it ideal for wiring closet and data center connectivity
- Approved in 2004
- Also known as 10GBASE-CX4
- The CX4 standard transmits 10 GbE over four channels using twin-axial cables derived from Infiniband connectors and cable
- IEEE802.3an is the latest proposed 10GbE standard for use with unshielded twisted-pair (UTP) style cabling
- Approved in 2006
- Also known as 10GBASE-T
- At least Category 6A (Cat 6A) or Category 7 (Cat 7) UTP cables are required

Transceivers

- Transceivers are hot-swappable devices used to connect a variety of physical media to Ethernet switches and NICs
- Transceivers are also referred to as Medium Attachment Units (MAUs)
- Gigabit Ethernet has two types of transceivers:
- Gigabit Interface Connector (GBIC)
- Small Form Factor Pluggable (SFP) or "mini-GBIC"

10Gb Ethernet (10 GbE) has several defined transceiver types:

- XENPAK - mainly used in LAN switches; the first 10GbE pluggable transceivers on the market to support the 802.3ae standard transmission optics; these transceivers also support the 802.3 ak copper standard to connect CX4 cables
- XPAK - used primarily in Network Interface Cards (NIC) and Host Bus Adapter (HBA)
- X2 - smaller form factor (about $2 / 3$ the size of the XENPAK)
- XFP -the closest in size to SFP
- SFP+ - an enhanced version of SFP that supports data rates up to $16 \mathrm{Gbit} / \mathrm{s}$ and can be used for both $8 \mathrm{Gbit} / \mathrm{s}$ Fibre Channel and 10Gb Ethernet for both copper and optical cables
- 40Gb Ethernet (40 GbE) uses the following transceiver types:
- QSFP/QSFP+ - allows data rates of $4 \times 10 \mathrm{Gbit} / \mathrm{s}$ for Ethernet, Fibre Channel, InfiniBand and SONET/SDH links providing four channels of data in one pluggable interface

XFP transceiver

Twinaxial cabling or "Twinax"

- A type of cable similar to coaxial cable, but with two inner conductors instead of one
- Applied in SFP+ Direct-Attach Copper (10GSFP+Cu), a popular choice for 10G Ethernet
- On SFP+ it is possible transmit at 10 Gigabits/second full duplex over 5 m distances
- Twinax with SFP+ offers 15 to 25 times lower transceiver latency than current 10GBASE-T Cat 6/Cat 6a/Cat 7 cabling systems: $0.1 \mu \mathrm{~s}$ versus 1.5 to $2.5 \mu \mathrm{~s}$
- The power draw of Twinax with SFP+ is around 0.1 watts, which is also much less than 4-8 watts for 10GBASE-T
- 40GBASE-CR4 and 100GBASE-CR10 physical layers using 7 m twin-axial cable are being developed as part of 100 Gbit Ethernet specifications by IEEE 802.3bj workgroup

Direct Attach Twinax Copper (DAC) with SFP+ Connectors

Datacenter netwoking: infrastructures and equipments

- A datacenter's networking infratructure allows servers to communicate among them, access shared storage resources as well as to communicate to the rest of the world through the Internet
- As for any networking infrastructure, it comprises:
- Active equipments
- A cabling infrastructure (cables, pathways, patch panels, etc.)
- Active equipments include:
- L2 switches
- Routers and L3 switches
- Firewalls and other special-purpose devices (load balancers, IDS, etc.)
- Moreover, a DC usually comprises storage devices and a specialize networking infrastructure (SAN) used to connect servers with storage equipments
- Fibre Channel
- High Performance Computing HPC datacenters usually include a low-latency communications infrastructure to better support parallel computing
- InfiniBand

DC networking architecture: 3-tier model

- In a DC, servers are physically organized in racks for a more efficient space utilization and for ease of management
- The datacenter networking infrastructure is designed according to a hierarchical architecture
- Servers' NICs (network interface cards) (2/4 NICs per server) are connected to a first layer infrastructure called access layer
- Access layer's switches, in turn, are connected to a second layer infrastructure, called aggregation layer
- The whole DC is connected to the Internet through a third layer infrastructure, called core layer, typically operating at layer 3 (IP routing)

Access layer: Top of Rack switch

- The DC's access layer is typically formed by one or two Top-of-Rack (ToR) Ethernet switches located in each rack
- N server / rack
- $\mathrm{N} \approx 20$ (≈ 40) for 2 U servers (or 1 U) and 42U racks
- 2 NIC Ethernet / server
- 1 or 2 48-ports switch + uplink in each rack
- Until 2015:

- 1 GbE server connectivity, 10 GbE uplink
- Recent tren:
- 10 GbE server connectivity, 40 GbE uplink
- Remote management NICs are also to be taken into account
- HP iLO, Dell DRAC, etc.
- 1 remote management NIC per server
- 1 switch dedicated to management connections

Top of Rack (or In-Rack) design

- Switches do not need to be necessarily in top part of the rack
- Sometimes a convenient location is in the middle of the rack
- Copper (e.g. UTP) cabling for in-rack connections
- Fibers to connect racks to aggregation layer switches and to SAN

Brad Hedlund. Top of Rack vs End of Row Data Center Designs. http://bradhedlund.com

In-Rack switches: cabling

A few pictures showing racks with in-rack switches and servers connections (unstructured cabling)

Each server has several connections:

- Dual data connections
- Dual connections to storage SAN
- Remote management

> Switches are mounted in the middle of the rack
> Cables are bundled and tied together

Source: Softlayer Amsterdam DC video tour

Access layer: End-of-Row or Middle-of-Row

- The access layer, alternatively to a ToR arrangement, may be organized by sharing two bigger switches between all the servers of a row of racks
- These two shared access switches are usually mounted in a rack of their own, physically located either at one end of a row of racks (End-of-Row, EoR) or at the center of a row of racks (Middle-of-Row, MoR)
- Advantages:
- Network devices located in a separate rack \rightarrow easier management and maintenance
- Power and control subsystems are shared \rightarrow greater energy efficiency
- Disadvantages:
- Longer links
- Access switches with a greater number of port \rightarrow more expensive

End-of-Row design

- When an End-of-Row design is used, structured cabling is preferred

- Both copper and fibers used for inter-rack cabling

Brad Hedlund. Top of Rack vs End of Row Data Center Designs. http://bradhedlund.com

Access layer: mixed solutions with Fabric Extender (1)

- Some network device vendors recommend solutions in which the access layer is built by combining in-rack switches (Fabric Extenders) with End-of-Row switches

Access layer: mixed solutions with Fabric Extender (2)

- In such arrangement, in-rack switches are managed as "extensions" (line-cards) of the EoR switch
- Configuration only needed in EoR switches \rightarrow faster and easier to manage

Access layer organization and cabling

- The way access layer is organized has an impact on rack and DC cabling
- In a Top-of-Rack arrangement, servers are usually directly connected to access switches, without intermediate patch panels (unstructured cabling)
- In End-of-Row and Middle-of-Row arrangement, structured cabling solutions are typically preferred, with patch panels decoupling servers from inter-rack connections to access layer switches

Access-aggregation uplink: oversubscription

- Access layer switches connected to the rest of DC (aggregation layer) through a number of uplink connections (typically based on optical fibers)
- The ratio between the aggregated capacity of server links and the capacity of uplink links is usually referred to as oversubscription ratio
- Some examples for a ToR-based access layer:

Oversubscription ratio $=\mathbf{4 0}: 10=4: 1$

Oversubscription ratio $=40: 40=1: 1$

Oversubscription ratio $=\mathbf{4 8 0}: 160=3: 1$

Bandwidth aggregation

- In order to reduce the oversubscription ratio, it is common to connect two switches with bunches of parallel links
- Beware: multiple parallel links form loops !
- Loop-avoidance techniques, such as STP, disable all links but one in a bundle
- To effectively use the aggregated bandwidth, special techniques are needed
- E.g. Cisco's EtherChannel or the IEEE 802.3ad standard

Bandwidth aggregation is normally implemented by combining several parallel links between two switches into one logical link.

IEEE 802.3ad Link Aggregation

- LAG is performed above the MAC
- LAG assumes all links are:
- full duplex
- point to point
- same data rate
- Traffic is distributed packet by packet

- All packets associated with a given "conversation" are transmitted on the same link to prevent mis-ordering
- Does not change packet format
- Does not add significant latency
- Does not increase the bandwidth for a single conversation
- Achieves high utilization only when carrying multiple simultaneous conversations

IEEE 802.1ax: Link Aggregation Control Protocol LACP

- LACP provides a method to control the bundling of several physical ports together to form a single logical channel
- LACP allows a network device to negotiate an automatic bundling of links by sending LACP packets to the peer (directly connected device that also implements LACP)
- Maximum number of bundled ports allowed in the port channel: 1 to 8
- LACP packets are sent with multicast group MAC address 01:80:c2:00:00:02
- During LACP detection period LACP packets are transmitted every second
- Keep alive mechanism for link member: (default: slow = 30s, fast=1s)
- Advantages deriving from LACP over static configuration
- Failover occurs automatically
- Dynamic configuration: the device can confirm that the configuration at the other end can handle link aggregation
- CISCO's switches support both LACP and the proprietary Port Aggregation Protocol (PAgP)
- VLANs create separate broadcast domains within the same switch
- Needed if multiple IP subnets need to coexist in the same switch
- A router is needed to route traffic between VLANs
- In a single switch network, VLANs are typically assigned to ports by the admin

- Each switch port could be assigned to a different VLAN
- Ports assigned to the same VLAN share broadcasts
- Ports that do not belong to the same VLAN do not share broadcasts
- The default VLAN for every port in the switch is the "native VLAN"
- The native VLAN is always VLAN 1 and may not be deleted
- All other ports on the switch may be reassigned to alternate VLANs

VLAN bridging tables

- Implementing VLANs on a switch causes the following to occur
- The switch maintains a separate bridging table for each VLAN
- If a frame comes in on a port in VLAN x, the switch searches the bridging table for VLAN x
- When a frame is received, the switch adds the source address to the bridging table if it is currently unknown
- The destination is checked so a forwarding decision can be made
- For learning and forwarding the search is made against the address table for that VLAN only

VLAN1 bridging table	
MAC address	port
x	1
y	7
z	11

VLAN3 bridging table	
MAC address	port
a	2
b	8
c	12

VLAN2 bridging table	
MAC address	
port	
r	
s	
t	

VLAN4 bridging table	
MAC address	
i port	
j	
k	

VLANs spanning multiple switches

- Problem: how to extend multiple VLANs over two distinct switches ?
- Solution \#1
- one link connecting the two switches for each VLAN that needs to be extended
- costly and inefficient
- Solution \#2 - port trunking
- a single link (trunk) connects the two switches and carries traffic for all the VLANs that live in both switches
- To associate each frame to the corresponding VLAN, a special tag is required in the frame header (VLAN tagging)
- In general, a trunk is a link carrying traffic for several VLANs and a switch may have several trunking ports

Two pairs of ports dedicated to extend VLANs, one for VLAN2 and another for VLAN4

VLANs extended by means of port trunking

VLAN tagging

- VLAN Tagging is used when a link connecting two different switches needs to carry traffic for more than one VLAN
- A unique packet identifier is added within each header to designate the VLAN membership of each packet
- When a packet enters a trunk port with a given VLAN ID:
- VLAN ID is removed from the packet
- Packet is forwarded to the appropriate port based on the VLAN ID and destination MAC address
- If the destination MAC address is FF:FF:FF:FF:FF:FF, the packet is forwarded to all the VLAN ports
- 2 major methods of VLAN tagging: Cisco proprietary Inter-Switch Link (ISL) and IEEE 802.1Q
- IEEE 802.1Q inserts VLAN ID (12 bits) in a new header field

Port 01 is configured as a trunk port for VLAN 10 (T stands for Tagged)

Ports 03, 04 and 05 are statically associated to VLAN 10
without any tagging (U stands for Untagged)

- IEEE 802.1Q adds a 4-byte header field:
- 2-byte tag protocol identifier (TPID) with a fixed value of 0×8100
- 2-byte tag control information (TCI) containing the following elements:
- Three-bit user priority (8 priority levels, 0 thru 7)
- One-bit canonical format (CFI indicator), $0=$ canonical, $1=$ noncanonical, to signal bit order in the encapsulated frame (see IETF RFC2469)
- Twelve-bit VLAN identifier (VID) - Uniquely identifies the VLAN to which the frame belongs
- defining 4,096 VLANs, with 0 and 4095 reserved values

- When a node in one VLAN needs to communicate with a node in another VLAN, a router is necessary to route the traffic between VLANs
- Without the routing device, inter-VLAN traffic would not be possible
- The routing function may be external or internal to the switch
- In the latter case, the switch itself acts as a router (so called multilayer switches or L3 switches)
- External router
- Approach \#1: the router is connected to the switch by one link per VLAN
- Approach \#2: the router is connected to the switch by one trunk link for all the VLANs
- Also known as "router on a stick"
- Possible only if the router supports sub-interfaces
to divide a single physical interface into multiple logical interfaces

Router connected by as many links as the VLANs to be connected

Router-on-a-stick
Router connected by one trunk link for all the VLANs

Inter-VLAN routing across different switches

- This scenario is an enteprise network, does not fit a datacenter
- Two VLANs, spread across two distinct switches connected by routers
- In fact, these are four VLANs, each associated to a / 25 subnet
- Communication between host 192.168.20.10 (on the left) and 192.168.10.10 (on the left) is routed by Router0
- Communication between host 192.168.10.11 (on the left) and 192.168.10.130 (on the right) is routed by Router0 and Router1

Multilayer switches in a datacenter

- A multilayer switch is able to perform both kinds of packet forwarding: bridging at Layer 2 and routing at Layer 3
- Layer 3 routing in an aggregation switch can be used to route traffic among different VLANs without the need for an external router by means of so-called "Virtual Switch Interfaces" (SVIs)
- An SVI should be configured with the VLAN's default gateway IP address
- In a typical datacenter networks, aggregation layer switches are multilayer switches
- If one needs to exchange traffic among 2 servers (or 2 VMs) associated to 2 different VLANs, this machine-to-machine traffic would traverse the network hierarchy up to the aggregation switch even though the communicating hosts (or VMs) are physically located in the same rack

