Cloud and Datacenter Networking

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione DIETI Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

Switching theory basic concepts

Switching system

- A switching system connects N terminals $\left(A_{0}, A_{1}, \ldots, A_{n-1}\right)$ so that a (unidirectional) transmission is possible from the transmitting side of any given terminal A_{i} to the receiving side of any other terminal $A_{j}(i \neq j)$

- The public telephone system is a switching system in which connections are established on a per-call basis by means of signalling (circuit switching)
- In the early telephone networks, human operators closed circuits manually, while today this is done automatically by digital switches
- A switched computer LAN is also a switching system in which transmission is segmented in packets bringing in the header the address of destination

Switching system: crossbar matrix

- \# Bidirectional connections: N
- \# switching elements in the matrix: N^{2}
- Non blocking

Switching matrix and queues (1)

- Let's consider a crossbar switch operating synchronously:
- Packets enter the switch through input ports at the beginning of each time slot T
- At each time slot, one packet is transmitted through each output ports
- Queues at input and output lines are necessary to manage the circumstance in which more packets (arriving from different input ports) are to be forwarded through the same output port
- In a switch with output queues only, the switching matrix needs to operate at a rate N times higher than the line transmission rate

Crossbar switch with output queues

Switching matrix and queues (2)

- If the switching matrix operates at the same rate than the line transmission rate
- The matrix may accept at most one packet per output line at each time slot T
- In such a case, an input queue is necessary to hold packets that find their output port busy

Crossbar switch with input queues

Head-of-Line blocking in input-queued switches

- Let's consider an input-queued switch
- Head-of-Line blocking problem
- Example: the 1st and 3rd input flows are competing to send packets to the same output interface
- The switching fabric decides to transfer the packet from the 3rd input flow
- The 1st input flow cannot be processed in the
 same clock cycle and blocks a packet for output interface 3 , which is available for processing
- HOL blocking may cause severe performance degradation (58,6\% throughput)
- Only switches with input buffering can suffer HOL blocking
- With sufficient internal bandwidth, input buffering is unnecessary; all buffering is handled at outputs and HOL blocking is avoided
- No-input-buffering is common in small to medium-sized Ethernet switches

Ethernet switch: Virtual output queueing

- To prevent the Head-of-Line blocking problem in input-queued switches
- Rather than keeping all traffic in a single queue per input port, separate queues are maintained for each possible output port
- N^{2} queues
- With proper scheduling, 100\% throughput may be achieved

Input 1

N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand. "Achieving 100\% throughput in an input-queued switch". IEEE Transactions on Communications, vol.47, no.8, pp.1260-1267, Aug 1999

Elementary 2x2 switching matrix

2 inputs, 2 outputs

2 configurations: straight or crossover

Multi-stage switching networks

- $\mathrm{N} \times \mathrm{N}$ multistage network made of smaller switching matrices organized in multiple layers or stages
- Let us consider a 3 stage network
- Let us decompose $\mathrm{N}=\mathrm{m} \cdot \mathrm{n}$
- Input stage: m ($\mathrm{n} \times \mathrm{k}$) switches
- Output stage: $m(k \times n)$ switches
- Intermediate stage: k(m×m) switches
- If the number of intermediate switches k is not sufficiently high, a blocking condition may occur

Example:

3-stage network made of 12 (4×4) switches replacing a single (16×16) switch
k different paths from each input i to any output j

For a given intermediate switch v, only one path exists that connects a given input ito an output \mathbf{j}
through switch v

3-stage switching networks: Clos theorem

- If the number k of intermediate switches is not sufficiently high, a blocking condition may occur
- Non-blocking condition (re-routing may be nessary):
- $k \geq n$
- Non-blocking condition without re-routing:
- $k \geq 2 n-1 \quad$ (Clos theorem)

F cannot transmit to E: block

F may transmit to E if $E \rightarrow A$ transmission is re-routed

Clos networks

- 3-stage switching networks
- Non-blocking if $k \geq 2 n-1$
- Block may be removed through re-rerouting if $k \geq n$

- Example: $\mathrm{N}=1000, \mathrm{n}=10 \rightarrow \mathrm{~m}=100$ switches into the first and third stage
- Second stage with $k \geq 19$ (100x100) switches
- Number of connection points: 1000x1000=1000000 for a single crossbar, 100x(10x19)+19x(100x100)+100x(19x10) = 228000 for a Clos network

Multi-stage switching networks

- Increasing the number of elementary crossbars and the number of stages, it is possible to implement arbitrarily large switching networks

