Cloud and Datacenter Networking

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione DIETI Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

Datacenter networking infrastructure

Part II

Lesson outline

- Loops management in Ethernet networks: STP
- Limitations of traditional datacenter network topologies
- Datacenter networks and alternate paths exploitation
- TRILL protocol
- ECMP protocol

Traditional DC network architecture

- In a datacenter computers are organized in racks to ease management and cabling and for a more efficient utilization of space
- Datacenter networks are typically organized in hierarchical structure
- Server NICs (2/4 per server) connected to an access layer infrastructure
- Access layer switches, in turn, are connected to an aggregation layer infrastructure
- The whole datacenter is connected to the outside world (e.g. the Internet, or a private WAN) through a core layer infrastructure operating at layer 3 (IP routing)

Datacenter networking and virtualization

- In modern datacenters, servers' computational resources may be efficiently utilized thanks to a pervasive use of host virtualization technologies
- KVM, Xen, Vmware, ...
- A single server may host tens of Virtual Machines (VM) each configured with one or more virtual network interface cards (vNICs) with MAC and IP addresses of their own
- Modern virtualization technologies allow to migrate a VM from one server to another with a negligible downtime (live migration)
- Condition for live migration transparency to running applications:
- a migrating VM must keep its own IP address in the new position
- If the datacenter network partitions the whole network infrastructure into clusters assigned to different IP subnets, a VM cannot migrate outside of its original cluster

Datacenter traffic analysis

- Observation: in large scale datacenters, traffic between hosts located in the DC (East-West traffic or Machine-to-Machine traffic, m2m) exceeds traffic exchanged with the outside world (North-South traffic)
- Facebook: m2m traffic doubles in less than a year
- Reasons: modern cloud applications a single client-generated interaction produces multiple server-side queries and computation
- Eg. Hints in a research textbox, customized ads, service mashups relying on multiple database queries, etc.
- Only a fraction of server-side produced data is returned to the client
- An example observed in FB network (*): a single HTTP request produced 88 cache lookups (648 KB), 35 database lookups (25.6 KB), and 392 remote procedure calls (257 KB)
- Conclusion: the DC aggregation layer MUST NOT BE a bottleneck for communications

> (*) N. Farrington and A. Andreyev. Facebook's data center network architecture. In Proc. IEEE Optical Interconnects, May 2013

North-South traffic

East-West traffic

Aggregation layer: simplest architecture

- To achieve the maximum communications throughput within the datacenter, ideally the aggregation layer could be made a single big non-blocking switch connecting all the access layer switches
- This is an impractical non-scalable solution: the switch crossbar should guarantee a throughput too high to be achievable
- This is the reason why DC network architectures are hierarchical
- If the aggregation layer is not able to guarantee the required throughput, applications performance is affected

- Example: a cluster of 1280 servers organized in 32 racks with 40 servers each, with an uplink from ToR switches formed by $4 \times 10 \mathrm{~Gb} / \mathrm{s}$ links and a single aggregation switch with $128 \times 10 \mathrm{~Gb} / \mathrm{s}$ ports (cost \approx USD 700,000 in 2008)
- If servers are equipped with $1 \mathrm{~Gb} / \mathrm{s}$ NICs, total oversubscription is $1: 1 \rightarrow$ non-blocking network

Multi-layer tree topologies

- To avoid congestion probability, oversubscription must be kept as small as possible
- A solution consists in connecting the various layers by means of multiple parallel links
- The picture shows a tree topology
- Each switch connected to only one upper layer switch
- Switches at the top of the hierarchy must have many ports and a very high aggregate bandwidth

- To effectively use parallel links bandwidth, link aggregation solutions are needed (eg. IEEE 802.3ad)
- In practice, links between layers are subject to oversubscription $\mathrm{N}: 1(\mathrm{~N}>1)$
- For particular traffic matrices, congestion probability is not negligible
- This leads to constraints in applications deployment
- Servers that communicate more intensely must be located "more closely"
- Requirement: elasticity, i.e. no constraints in traffic distribution
- A greater number of layers also leads to greater latency
- Negative impact on TCP throughput

DC network arcitectures evolution

- The approach of creating an aggregation layer formed by a few "big" switches with a huge number of ports is not scalable
- If oversubscription becomes too high, congestions may occur
- Evolution: from tree-like topologies to multi-rooted topologies with multiple alternate paths between end-system, where each switch is connected
- to another upper-layer switch through multiple parallel uplinks
- to multiple upper-layer switches
- In such a way:

1. traffic may be split across multiple uplinks (i.e. oversubscription is kept as small as possible)
2. the whole system is more robust to switch/link failures thanks to the existence of multiple paths

Network topologies and loops

- This network topology has a problem: loops !

- Switches operate at layer 2 (no TTL)
- Mechanisms are needed to avoid that packets entering a loop are forwarded forever
- Traditional loop-management approach in Ethernet networks: STP
- IEEE 802.1D standard protocol invented by Radia PerIman
- To cut loops, network topology is transformed into a tree (loop-free topology) by disabling a subset of links
- Inconvenience: only a fraction of network capacity may be utilized in this way and oversubscription is not reduced
- Alternative solutions: TRILL, FabricPath (Cisco), VCS (Brocade), M-LAG, QFabric, SPB,

Example of a DC network with STP in action

- Switches decide which interfaces should be switched off to prevent loops
- One end of a disabled link is turned off while the other is still on
- This results in a spanning tree connecting all the end systems as well as all the switches without any loop

STP: Spanning Tree Protocol

- Switches periodically exchange Configuration Bridge Protocol Data Units (BPDUs) to build the topology database
- BPDU's are forwarded out all ports every 2 s , to the dedicated MAC multicast address of 01:80:C2:00:00:00
- Configuration BPDUs contain the switch bridge ID
- Each bridge starts out thinking it is the Root bridge
- Eventually, all switches agree that the Root bridge is the switch with smallest bridge ID
- Through BPDU exchanges, tree converges, which means all switches have same view of the spanning tree
- Each port of a switch may be in one of the following states:
- Forwarding, Blocking, Listening, Learning

STP: how it works

STP creates a tree that provides a single unique path to each destination as follows:

- switches elect a root bridge acting as the root of the spanning tree
- each bridge calculates the distance of the shortest path to the root bridge
- each bridge determines a root port, which will be used to send packets to root
- for each segment, a designated port is identified, i.e. the port closest to the root
- root ports and designated ports are set to forwarding state; all other ports are set to blocking state
- Packets will not be received or forwarded on blocked ports

Spanning Tree Protocol in action (1)

Spanning Tree Protocol in action (2)

- Having elected 54 as the Root Bridge, this is the resulting spanning tree
- Red arrows show the path of a broadcast packet from the root to any possible destinations
- Links not marked with an arrow are not traversed by any packets

Spanning Tree Protocol in action (3)

- N7 sends in broadcast (i.e. to FF:FF:FF:FF:FF) an ARP request querying for N3's MAC
- Packet is sent to the root s4 and from the root down the spanning tree towards all destinations
- N3 replies to N7 with its own MAC address
- switches have learned where N7's MAC is located from the previous transmission

Spanning Tree Protocol in action (3)

- N7 sends in broadcast (i.e. to FF:FF:FF:FF:FF) an ARP request querying for N3's MAC
- Packet is sent to the root s4 and from the root down the spanning tree towards all destinations
- N3 replies to N7 with its own MAC address
- switches have learned where N7's MAC is located from the previous transmission

Spanning Tree Protocol in action (4)

- N7 sends in broadcast (i.e. to FF:FF:FF:FF:FF) an ARP request querying for N3's MAC
- Packet is sent to the root s4 and from the root down the spanning tree towards all destinations
- N3 replies to N7 with its own MAC address
- switches have learned where N7's MAC is located from the previous transmission

Access-Aggregation connection options

Looped Triangle topology

- STP blocks 2 uplinks out of 4

Looped Square

- STP blocks 1 horizontal link
- In case of failure of an uplink, traffic is routed to the adjacent access switch \rightarrow oversubscription doubles

Loop-Free U

- Communication between aggregation switches is L3
- No loops \rightarrow no links blocked by STP

Loop-Free Inverted U

Looped Triangle

Loop-Free U

Looped Square


```
Loop-Free Inverted U
```


Source: Cloud Computing: automating the virtualized data center. Gustavo A. A. Santana. CISCO Press (2014)

Multi-rooted Leaf-Spine topologies

- Also known as fat-tree, they derive from Clos networks (folded Clos)
- Two levels hierarchy, each leaf switch is connected to all spine switches
- Advantage: elasticity
- If the number of racks increases, the number of leaf switches increases
- If network capacity is to be increased, the number of spine switches is to be increased

A Leaf-Spine network with 40GbE links

40G Leaf/Spine

https://s3.amazonaws.com/bradhedlund2/2012/40G-10G-leaf-spine/clos-40G.png

Leaf-spine network with Port Extenders

Google DC architecture in 2004

- ToR switches connected by $1 \mathrm{~Gb} / \mathrm{s}$ links to an upper aggregation layer made of 4 routers, in turn connected to form a ring by means of couples of $10 \mathrm{~Gb} / \mathrm{s}$ links
- Each rack included 40 servers, equipped with 1 Gb/s NICs
- A whole cluster included 512.40 20000 servers
- Aggregate bandwidth of a cluster: $4 \cdot 512 \cdot 1 \mathrm{~Gb} / \mathrm{s}=2 \mathrm{~Tb} / \mathrm{s}$
- Each rack could produce up to $40 \mathrm{~Gb} / \mathrm{s}$ of aggregate traffic but racks were connected to the upper layer router with a link capacity of $4 \cdot 1 \mathrm{~Gb} / \mathrm{s}=4 \mathrm{~Gb} / \mathrm{s}$
- Congestions were possible if all the servers of a rack needed to communicate with the rest of DC
- Traffic needed to be kept as local as possible within a rack

Facebook DC architecture in 2013

- Servers connected by $10 \mathrm{~Gb} / \mathrm{s}$ links to a ToR switch(RSW) in each rack
- RSW switches connected by $4 \times 10 \mathrm{~Gb}$ /s uplinks to an aggregation layer formed by 4 cluster switches (CSW) connected to form a ring
- Oversubscription: $\mathbf{4 0}$ servers $\cdot 10 \mathrm{~Gb} / \mathrm{s}: 4$ uplinks $\cdot 10 \mathrm{~Gb} / \mathrm{s}=10: 1$
- A single ring of 4 CSWs identifies a cluster (e.g. including 16 racks)
- The 4 CSW switches are connected in a ring topology by means of $8 \times 10 \mathrm{~Gb} / \mathrm{s}$ links
- CSW switches connected by $4 \times 10 \mathrm{~Gb} / \mathrm{s}$ uplinks to a core layer formed by 4 Fat Cat (FC) switches connected to form a ring by means of $16 \times 10 \mathrm{~Gb} / \mathrm{s}$ links
- Oversubscription: 16 rack $\cdot 10 \mathrm{~Gb} / \mathrm{s}: 4$ uplink $\cdot 10 \mathrm{~Gb} / \mathrm{s}=4: 1$

N. Farrington and A. Andreyev. Facebook's data center network architecture. In Proc. IEEE Optical Interconnects, May 2013

