Cloud e Datacenter Networking

Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione DIETI Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

OpenStack: an introduction

Lesson outline

- OpenStack Architecture
- Presentation of core OpenStack services

OpenStack

- OpenStack is a cloud management system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface
- Apache 2.0 license (OSI), open development process
- Publically available open source code repository
- Modular design for deployment flexibility via APIs

- September 2009: NASA Launches Nebula
 - One of the first cloud computing platforms built for Federal Government Private Cloud
- March 2010: Rackspace Open Sources Cloud Files software, aka Swift
- May 2010: NASA open sources compute software, aka "Nova"
- June 2010: OpenStack is formed
- July 2010: The inaugural Design Summit
- April 2012: OpenStack Foundation
- April 2013: Grizzly Release (7th)
- October 2013: Havana Release (8th)
 - Quantum service renamed to Neutron
- April 2014: Icehouse Release (9th)
- October 2014: Juno Release (10th)
- April 2015: Kilo Release (11th)
- October 2015: Liberty Release (12th)
- April 2016: Mitaka Release (13th)

JUNO THE TENTH OPENSTACK RELEASE

OPENSTACK GOES TO ELEVEN

THE TWELFTH RELEASE OF OPENSTACK 12

OpenStack top contributors

OpenStack Core Services

- Compute ("Nova") provides virtual servers upon demand
 - Compute resources are accessible via APIs for developers building cloud applications and via web interfaces for administrators and users
 - The compute architecture is designed to scale horizontally on standard hardware
- Network ("Neutron" formerly known as "Quantum") is a pluggable, scalable and API-driven system for managing networks and IP addresses
 - Replaced at some point the old Nova-Network service
- Block Storage ("Cinder") provides persistent block storage to guest VMs
 - This project was born from code originally in Nova
- Dashboard ("Horizon") provides a modular web-based user interface for all the OpenStack services

OpenStack Core Services

- Object Store ("Swift") provides object storage
 - It allows you to store or retrieve files (but not mount directories)

Image ("Glance") provides a catalog and repository for virtual disk images
 These disk images are most commonly used in OpenStack Compute

 Identity ("Keystone") provides authentication and authorization for all the OpenStack services

- Orchestration ("Heat") orchestrates multiple cloud applications using the AWS CloudFormation template format, through both an OpenStack-native REST API and a CloudFormation-compatible Query API
- Metering ("Ceilometer") monitoring and metering framework

OpenStack Core Services: relationships

OpenStack Core Services: interactions (1)

OpenStack Core Services: interactions (2)

- Command-line interfaces (nova, neutron, swift, and so on)
- Cloud Management Tools (Rightscale, Enstratius, and so on.)
- OVI tools (Pashboard, Cyberduck, iPhone client, and so on.)

Common approach to OpenStack services design

- Each OpenStack core service exposes all its capabilities over a RESTful API
- Services interoperate through RESTful API calls, so when a service requires resources from another services, it makes a RESTful API call to query services' capabilities, list its resources or call for a certain action
- Each Openstack service consists of several components
- Components use a message broker server for inner service communication
 - RabbitMQ in most cases
- Components save persistent data and objects' states into a database

Message bus

- Communication among OpenStack components happens through a message bus
- Message routing between services
- Generic API to send messages
- Multiple drivers supported
 - RabbitMQ
 - ZeroMQ
 - Qpid

Qpid[™]

Nova database

- All system data are stored in a MySQL Server
 - Instance info
 - Network info
 - Node info
- Python library SQL-Alchemy ORM
- SQLite for unit testing
- Other relational databases

Keystone Overview

- Keystone acts as front-ends to various OpenStack services (compute, storage, etc.)
 for authentication and authorization (AA)
- Can function as an ID service on its own with SQLite or MySQL as ID server
 - Provides capabilities to create users and roles
- Supports multiple forms of authentication including user name and password credentials, token-based systems, and Amazon Web Services style logins
- Other ID services can be interfaced
- Can function as Service Catalogue (SC) to any client (users, applications, GUI)
 - SC is returned along with the token in response to an authentication request
 - SC contains following information
 - > Service end-point (EP):
 <service http address>:<port>/<service API version>/<tenant ID>
 - Region in which service has been deployed

Image Service (Glance) Overview

- For actual storage of images, Glance registry can interface with
 - Swift, S3, Ceph or a File System
 - Can also interface with any web server (HTTP) for read-only data
- Meta-data stored in SQLlite or MySQL
- Glance does not scan the image to identify image parameters

Nova Compute service

- Nova Compute service supports:
 - On-demand CRUD (Create / Read / Update / Delete) of instances (VMs)
 - On-demand attachment/detachment of VM to a network via Nova-Network
 - Nova-Network has been replaced by the Neutron service
 - On-demand attachment/detachment of block storage ("volume") to/from VM
- Supports a number of different hypervisors
 - KVM
 - VMWare ESX/ESXi
 - XenServer, Xen Cloud Platform (XCP)
 - Hyper-V
- ... but also lightweight container-based virtualization solutions
 - LXC Linux Containers
 - UML User Mode Linux
- ... but also instances directly instantiated on bare-metal hardware (no virtualization)

Nova Compute service

Nova interacts with Keystone for authentication, Glance for images and Horizon for web UI

Compute Instances

Servers

- An abstraction of running VM instances or virtual servers
- A compute instance is associated to a set of resources
 - Flavor
 - Image
 - IPv4/6 addresses
 - Metadata
 - user specified, such as server name

Flavors

- Templates of hardware resources associated to a running instance
- Example:
 - m1.medium: Memory: 4096MB,
 VCPUS: 2,
 Storage: 40GB,
 Swap: 0GB,
 RXTX Quota: 0GB,
 RXTX Cap: 0MB

Admin can create new flavors:

nova-manage instance_type create m1.mega 32768 16 320 0 0 0

Image

- Images can be used as templates when setting up new servers
- OS image
- VM disk
- Other files

Nova-Volume Service (Cinder)

- Provides a persistent Block Storage Service for the instances running in Nova
- Create / Delete / Connect volumes to running instances via iSCSI
- Snapshots can be taken to create backups or to create new block storage volumes (e.g. to clone an instance)
- Different drivers available to physically connect to different storage systems
 - LVM / iSCSI
 - SAN drivers
 - Ceph

Nova-Scheduler Service

- Determines the placement of new resources requested via the API
- Modular architecture to allow for optimization
- Base Schedulers include
 - Round Robin
 - Filter Scheduler
 - Spread First
 - Fill First
 - Chance (random)

Nova compute: instance creation and storage

- **1**. Image is copied from the Image store to the Compute node
- 2. A volume is made available to the VM from the Volume store through the Cinder service
- **3.** The VM is activated in the Compute node
 - Some storage volumes live in the instance local storage
 - **Destroyed when the instance is terminated (***ephemeral storage***)**
 - Others are accessed through iSCSI (requires initiator sw in the VM)
 - Survive the instance termination (*persistent storage*)
 - Can be attached to another instance after instance termination

Neutron architecture

- Provides REST APIs to manage network connections for the resources managed by other services
- Modular design: API specifies service, vendors provide their implementation
 - Extensions for vendor-specific features

OpenStack deployments

- Deploying an OpenStack Cloud is a difficult task, as many alternative choices are possible
 - if one has enough hardware resources ...
- A typical real-worls deployment of OpenStack relies on
 - N nodes acting as Controller and API nodes (N>1 for High Availability, HA)
 - K nodes acting as Network node
 - M nodes acting as Compute nodes
- To automatically install and configure the OpenStack services on a cluster of servers, several OpenStack distributions have been developed over the years
 - E.g. Mirantis Fuel, Red Hat Enterprise Linux OpenStack Platform, Ubuntu OpenStack , Cisco Metapod HP Helion OpenStack , Rackspace Private Cloud, IBM Cloud Manager, Oracle OpenStack , ...
- For testing purposes, one can install all the core services in a single VM using DevStack

Corso di Cloud e Datacenter Networking – Prof. Roberto Canonico