Cloud e Datacenter Networking

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione DIETI
Laurea Magistrale in Ingegneria Informatica

Prof. Roberto Canonico

OpenStack: an introduction
Lesson outline

- OpenStack Architecture
- Presentation of core OpenStack services
OpenStack

- OpenStack is a cloud management system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface.
- Apache 2.0 license (OSI), open development process.
- Publically available open source code repository.
- Modular design for deployment flexibility via APIs.
OpenStack: A Brief History (up to 2016 …)

- September 2009: NASA Launches Nebula
 - One of the first cloud computing platforms built for Federal Government Private Cloud
- March 2010: Rackspace Open Sources Cloud Files software, aka Swift
- May 2010: NASA open sources compute software, aka “Nova”
- June 2010: OpenStack is formed
- July 2010: The inaugural Design Summit
- April 2012: OpenStack Foundation
- April 2013: Grizzly Release (7th)
- October 2013: Havana Release (8th)
 - Quantum service renamed to Neutron
- April 2014: Icehouse Release (9th)
- October 2014: Juno Release (10th)
- April 2015: Kilo Release (11th)
- October 2015: Liberty Release (12th)
- April 2016: Mitaka Release (13th)
- Two releases per year since 2012
OpenStack releases

<table>
<thead>
<tr>
<th>Series</th>
<th>Status</th>
<th>Initial Release Date</th>
<th>Next Phase</th>
<th>EOL Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stein</td>
<td>Development</td>
<td>2019-04-10 estimated (schedule)</td>
<td>Maintained estimated 2019-04-10</td>
<td></td>
</tr>
<tr>
<td>Rocky</td>
<td>Maintained</td>
<td>2018-08-30</td>
<td>Extended Maintenance estimated 2020-02-24</td>
<td></td>
</tr>
<tr>
<td>Queens</td>
<td>Maintained</td>
<td>2018-02-28</td>
<td>Extended Maintenance estimated 2019-08-25</td>
<td></td>
</tr>
<tr>
<td>Pike</td>
<td>Maintained</td>
<td>2017-08-30</td>
<td>Extended Maintenance estimated 2019-03-03</td>
<td></td>
</tr>
<tr>
<td>Ocata</td>
<td>Extended Maintenance</td>
<td>2017-02-22</td>
<td>Unmaintained estimated TBD</td>
<td></td>
</tr>
<tr>
<td>Newton</td>
<td>End Of Life</td>
<td>2016-10-06</td>
<td></td>
<td>2017-10-25</td>
</tr>
<tr>
<td>Mitaka</td>
<td>End Of Life</td>
<td>2016-04-07</td>
<td></td>
<td>2017-04-10</td>
</tr>
<tr>
<td>Liberty</td>
<td>End Of Life</td>
<td>2015-10-15</td>
<td></td>
<td>2016-11-17</td>
</tr>
<tr>
<td>Kilo</td>
<td>End Of Life</td>
<td>2015-04-30</td>
<td></td>
<td>2016-05-02</td>
</tr>
<tr>
<td>Juno</td>
<td>End Of Life</td>
<td>2014-10-16</td>
<td></td>
<td>2015-12-07</td>
</tr>
<tr>
<td>Icehouse</td>
<td>End Of Life</td>
<td>2014-04-17</td>
<td></td>
<td>2015-07-02</td>
</tr>
<tr>
<td>Havana</td>
<td>End Of Life</td>
<td>2013-10-17</td>
<td></td>
<td>2014-09-30</td>
</tr>
<tr>
<td>Grizzly</td>
<td>End Of Life</td>
<td>2013-04-04</td>
<td></td>
<td>2014-03-29</td>
</tr>
<tr>
<td>Folsom</td>
<td>End Of Life</td>
<td>2012-09-27</td>
<td></td>
<td>2013-11-19</td>
</tr>
<tr>
<td>Essex</td>
<td>End Of Life</td>
<td>2012-04-05</td>
<td></td>
<td>2013-05-06</td>
</tr>
<tr>
<td>Diablo</td>
<td>End Of Life</td>
<td>2011-09-22</td>
<td></td>
<td>2013-05-06</td>
</tr>
<tr>
<td>Cactus</td>
<td>End Of Life</td>
<td>2011-04-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bexar</td>
<td>End Of Life</td>
<td>2011-02-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin</td>
<td>End Of Life</td>
<td>2010-10-21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OpenStack top contributors
OpenStack Core Services

- Compute ("Nova") provides virtual servers upon demand
 - Compute resources are accessible via APIs for developers building cloud applications and via web interfaces for administrators and users
 - The compute architecture is designed to scale horizontally on standard hardware

- Network ("Neutron" formerly known as "Quantum") is a pluggable, scalable and API-driven system for managing networks and IP addresses
 - Replaced at some point the old Nova-Network service

- Identity ("Keystone") provides authentication and authorization for all the OpenStack services

- Dashboard ("Horizon") provides a modular web-based user interface for all the OpenStack services
OpenStack Core Services

- **Block Storage** ("Cinder") provides persistent block storage to guest VMs
 - This project was born from code originally in Nova

- **Object Store** ("Swift") provides object storage
 - It allows you to store or retrieve files (but not mount directories)

- **Image** ("Glance") provides a catalog and repository for virtual disk images
 - These disk images are most commonly used in OpenStack Compute
OpenStack architecture

Service Components

- Public API
- Message Bus
- Scheduler
- Compute
- Network
- Volume
- NovaDB
- Glance
- SWIFT
- MySQL
- Container
- Guest
- APT Repo
- Pluggable (Postgres, Memcached, Apache, etc.)

Swift
Nova
DBaaS
OpenStack Core Services: relationships
Common approach to OpenStack services design

- Each OpenStack core service exposes all its capabilities over a RESTful API.
- Services interoperate through RESTful API calls, so when a service requires resources from another service, it makes a RESTful API call to query services’ capabilities, list its resources or call for a certain action.
- Each OpenStack service consists of several components.
- Components use a message broker server for inner service communication:
 - RabbitMQ in most cases.
- Components save persistent data and objects’ states into a database.
General architecture of core OpenStack services

- OpenStack services are designed according to a three level structure:
 - An API layer that exposes the services through a REST API
 - A driver layer that translates API calls into interactions with the implementation layer
 - An implementation layer that actually implements the services
Communication among OpenStack components happens through an AMQP message bus
- Message routing between services
- Generic API to send messages
- Multiple drivers supported
 - RabbitMQ
 - ZeroMQ
 - Qpid
Nova database

- All system data are stored in a MySQL Server
 - Instance info
 - Network info
 - Node info
- Python library SQL-Alchemy ORM
- SQLite for unit testing
- Other relational databases
Keystone Overview

- Keystone acts as front-ends to various OpenStack services (compute, storage, etc.) for authentication and authorization (AA)
- Can function as an ID service on its own with SQLite or MySQL as ID server
 - Provides capabilities to create users and roles
- Supports multiple forms of authentication including user name and password credentials, token-based systems, and Amazon Web Services style logins
- Other ID services can be interfaced
- Can function as Service Catalogue (SC) to any client (users, applications, GUI)
 - SC is returned along with the token in response to an authentication request
 - SC contains following information
 - **Service end-point** (EP):

 `<service http address>:<port>/<service API version>/<tenant ID>`
 - **Region** in which service has been deployed
Meta-data about a [VM] image can be stored or updated in Glance Registry

For actual storage of images, Glance registry can interface with
- Swift, S3, Ceph or a File System
- Can also interface with any web server (HTTP) for read-only data

Meta-data stored in SQLlite or MySQL

Glance does not scan the image to identify image parameters
Nova Compute service supports:
- On-demand CRUD (Create / Read / Update / Delete) of instances (VMs)
- On-demand attachment/detachment of VM to a network via Nova-Network
 - Nova-Network has been replaced by the Neutron service
- On-demand attachment/detachment of block storage (“volume”) to/from VM

Supports a number of different hypervisors:
- KVM
- VMWare ESX/ESXi
- XenServer, Xen Cloud Platform (XCP)
- Hyper-V

... but also lightweight container-based virtualization solutions
- LXC Linux Containers
- UML User Mode Linux

... but also instances directly instantiated on bare-metal hardware (no virtualization)
Nova Compute service

- Nova interacts with Keystone for authentication, Glance for images and Horizon for web UI.
Nova-compute and different hypervisors

- Either directly or through libvirt, nova-compute is able to interact with a number of different hypervisors and container technologies.
Compute Instances

- Servers
 - An abstraction of running VM instances or virtual servers
 - A compute instance is associated to a set of resources
 - Flavor
 - Image
 - IPv4/6 addresses
 - Metadata
 - user specified, such as server name

- Flavors
 - Templates of hardware resources associated to a running instance
 - Example:
 - m1.medium: Memory: 4096MB, VCPUS: 2, Storage: 40GB, Swap: 0GB, RXTX Quota: 0GB, RXTX Cap: 0MB
 - Admin can create new flavors:
 nova-manage instance_type create m1.mega 32768 16 320 0 0 0

- Image
 - Images can be used as templates when setting up new servers
 - OS image
 - VM disk
 - Other files
Nova-Volume Service (Cinder)

- Provides a persistent Block Storage Service for the instances running in Nova
- Create / Delete / Connect volumes to running instances via iSCSI
- Snapshots can be taken to create backups or to create new block storage volumes (e.g. to clone an instance)
- Different drivers available to physically connect to different storage systems
 - LVM / iSCSI
 - SAN drivers
 - Ceph
Nova-Scheduler Service

- Determines the placement of new resources requested via the API
- Modular architecture to allow for optimization
- Base Schedulers include
 - Round Robin
 - Filter Scheduler
 - Spread First
 - Fill First
 - Chance (random)
Nova compute: instance creation and storage

1. Image is copied from the Image store to the Compute node
2. A volume is made available to the VM from the Volume store through the Cinder service
3. The VM is activated in the Compute node
 - Some storage volumes live in the instance local storage
 - Destroyed when the instance is terminated (*ephemeral storage*)
 - Others are accessed through iSCSI (requires initiator sw in the VM)
 - Survive the instance termination (*persistent storage*)
 - Can be attached to another instance after instance termination
In an OpenStack cluster there are several storage-related services

- Cinder, Glance, Swift, Ceph, ...
Why different storage services?

- object-oriented storage manages «objects» accessed through HTTP
- file-oriented storage manages «files» accessed through a network file system (eg. NFS) typically stored in NAS devices
- block-oriented storage manages volumes typically accessed through iSCSI and stored in SAN devices
Neutron architecture

- Provides REST APIs to manage network connections for the resources managed by other services
- Modular design: API specifies service, vendors provide their implementation
 - Extensions for vendor-specific features
OpenStack deployments

- Deploying an OpenStack Cloud is a difficult task, as many alternative choices are possible
 - if one has enough hardware resources ...
- A typical real-world deployment of OpenStack relies on
 - N nodes acting as Controller and API nodes (N>1 for High Availability, HA)
 - K nodes acting as Network node
 - M nodes acting as Compute nodes
- To automatically install and configure the OpenStack services on a cluster of servers, several OpenStack distributions have been developed over the years
 - E.g. Mirantis Fuel, Red Hat Enterprise Linux OpenStack Platform, Ubuntu OpenStack, Cisco Metapod, HP Helion OpenStack, Rackspace Private Cloud, IBM Cloud Manager, Oracle OpenStack, ...
- For testing purposes, one can install all the core services in a single VM using DevStack
 - See tutorial