#### Reti di Calcolatori

Prof. Roberto Canonico
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Corso di Laurea in Ingegneria Informatica

### Il protocollo IPv6

I lucidi presentati al corso sono uno strumento didattico che NON sostituisce i testi indicati nel programma del corso



### Nota di copyright per le slide COMICS

## Nota di Copyright

Questo insieme di trasparenze è stato ideato e realizzato dai ricercatori del Gruppo di Ricerca COMICS del Dipartimento di Informatica e Sistemistica dell'Università di Napoli Federico II. Esse possono essere impiegate liberamente per fini didattici esclusivamente senza fini di lucro, a meno di un esplicito consenso scritto degli Autori. Nell'uso dovranno essere esplicitamente riportati la fonte e gli Autori. Gli Autori non sono responsabili per eventuali imprecisioni contenute in tali trasparenze né per eventuali problemi, danni o malfunzionamenti derivanti dal loro uso o applicazione.

#### Autori:

Simon Pietro Romano, Antonio Pescapè, Stefano Avallone, Marcello Esposito, Roberto Canonico, Giorgio Ventre





## **IP Next Generation (IPng o IPv6)**

- Una versione del protocollo IP progettata per risolvere alcuni dei problemi che affliggono IPv4
- Principali questioni affrontate nel progetto di IPv6:
  - indirizzamento e routing
  - sicurezza
  - configurazione automatica
  - servizi di tipo real-time e supporto alla QoS
  - elaborazione efficiente dei pacchetti da parte dei router
  - migrazione da IPv4 ad IPv6 / coesistenza di IPv4 ed IPv6
  - miglior supporto di terminali mobili



## Motivazioni per la definizione di IPv6

 La prima motivazione che spinse alla definizione di un nuovo protocollo standard per il livello rete fu la consapevolezza dell'esaurimento dello spazio di indirizzi supportati da IPv4

| 1985                 | ~ 1/16 of total space |
|----------------------|-----------------------|
| 1990                 | ~ 1/8 of total space  |
| 1995                 | ~ 1/4of total space   |
| 2000                 | ~ 1/2 of total space  |
| Halfway through 2002 | ~ 2/3 of total space  |

- L' Internet Engineering Task Force (IETF) attivò un working group per la definizione di una nuova versione di IP nel 1994
- Il primo RFC di specifica di IPv6 è del 1998 (RFC-2460)
- La specificazione di altri protocolli ausiliari (es. DHCPv6) e di altri aspetti legati all'utilizzo di IPv4 ed alla transizione da IPv4 ad IPv6 è stata compiuta negli anni successivi





- Il progetto di IPv6 (negli anni 1994-2006) richiese la definizione di una strategia di transizione incrementale che garantisse l'interoperabilità tra le due versioni di IP
- Nel frattempo, una serie di contromisure furono intraprese per dilazionare il più possibile l'esaurimento dello spazio di indirizzamento di IPv4:
  - Consolidamento degli indirizzi IPv4 in blocchi contigui tramite subnetting e routing CIDR (adozione di protocolli di routing che supportano CIDR)
  - Uso estensivo di indirizzi IPv4 privati e NAT in reti aziendali e domestiche
- La coesistenza tra IPv4 ed IPv6 dura tuttora....

#### UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

## IPv6: differenze rispetto ad IPv4 (1)

- Espansione capacità di indirizzamento e di routing
  - la dimensione degli indirizzi passa da 32 (4 byte) a 128 bit (16 byte), per supportare un numero di nodi molto più elevato
  - la scalabilità del routing multicast è migliorata grazie all'aggiunta di un campo scope agli indirizzi di classe D
  - viene definito un nuovo tipo di indirizzo (anycast address) che si riferisce ad un insieme di interfacce (eventualmente di host diversi)
    - un pacchetto inviato ad un indirizzo anycast viene recapitato ad una delle interfacce che fanno parte dell'insieme da esso individuato
    - tipicamente da quella più "vicina", secondo la misura di "distanza" utilizzata dal protocollo di routing
- Semplificazione del formato dell'header:
  - alcuni campi dell'header IPv4 (sfruttati solo in casi particolari) sono stati eliminati o resi opzionali
    - ciò ha consentito di ottenere che, malgrado gli indirizzi di IPv6 siano 4 volte più lunghi di quelli di IPv4, l'header del primo è soltanto il doppio di quello del secondo

#### Università degli Studi di Naioci FEDERICO II

## IPv6: differenze rispetto ad IPv4 (2)

### Supporto per le opzioni migliorato:

- alcuni cambiamenti nel modo di codificare le opzioni permettono uno smistamento più efficiente ed una maggiore flessibilità per introdurre, in futuro, nuove funzionalità
- Supporto della Quality of Service (QoS)
  - viene introdotta una nuova funzionalità per permettere di etichettare (flow label) i pacchetti appartenenti a flussi di dati particolari per i quali si richiede un trattamento di tipo non-default
- Autenticazione e salvaguardia della privacy:
  - definizione di estensioni che forniscono il supporto per:
    - l'autenticazione
    - l'integrità dei dati
    - la sicurezza, considerata elemento fondamentale del nuovo protocollo

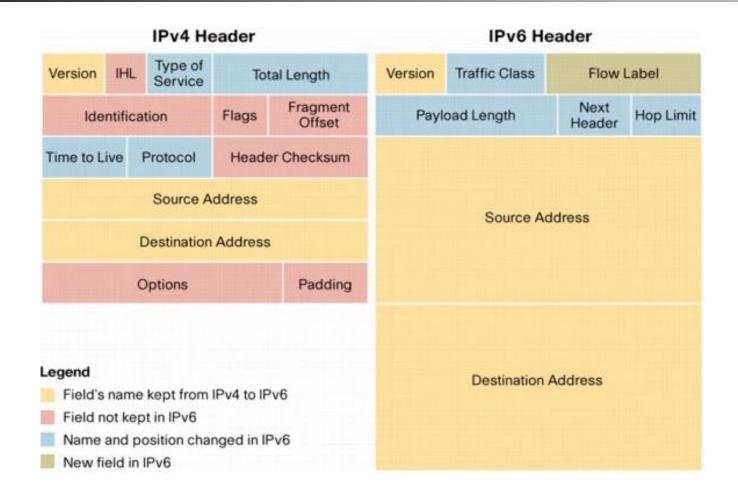
## Header principale ed extension headers Feder

- L'header IPv6 consiste di due parti:
  - header principale (main header)
  - extension headers
    - introdotti per ospitare le eventuali opzioni
    - situati, all'interno del pacchetto, in una posizione intermedia tra l'header principale e l'header del protocollo di trasporto
    - forniscono, tra l'altro, informazioni relative:
      - al routing
      - alla frammentazione
      - all'autenticazione
      - alla sicurezza








## IPv6: header principale (2)



- Lunghezza: 40 byte
- Campi:
  - **Version**: 4 bit, numero della versione (6 = 110<sub>2</sub>)
  - Traffic Class: 8 bit, identifica priorità del pacchetto (simile a ToS di IPv4)
  - Flow Label: 20 bit, associa il pachetto ad un «flusso»
  - Payload Length: 16 bit, lunghezza del payload (max 64KB)
  - Next Hdr: 8 bit, identifica il tipo di header che segue l'header principale
    - Il valore di next header indica se dopo l'header principale c'è un extension header oppure direttamente un payload
    - I valori di next header sono compatibili con i valori previsti per il campo «protocol» dell'header IPv4
  - Hop Limit: 8 bit, simile al TTL di IPv4
  - Source Address: 128 bit, indirizzo del mittente
  - **Destination Address**: 128 bit, indirizzo del destinatario



### Header IPv4 ed IPv6 a confronto

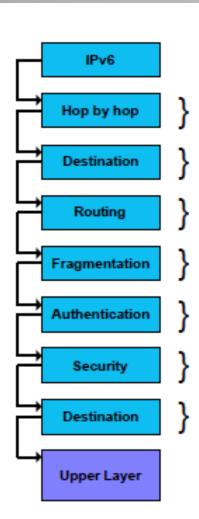




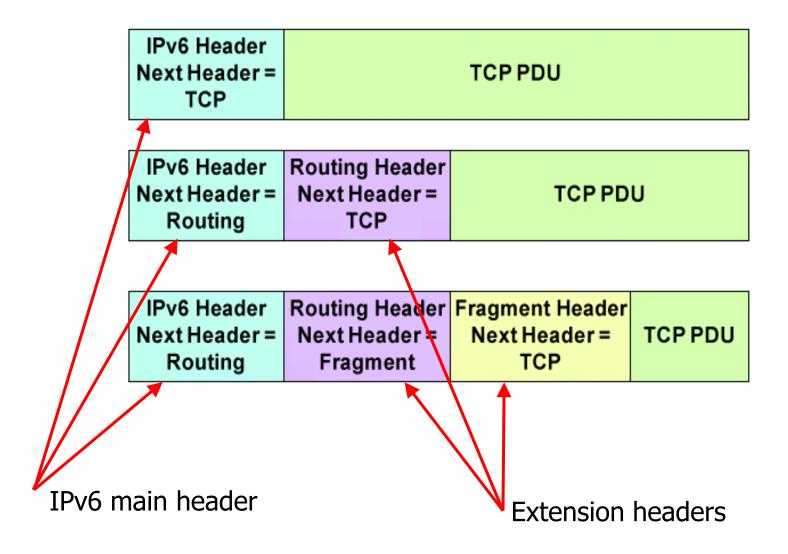
### IPv6: differenze con l'header IPv4

- Checksum: rimossa completamente per ridurre il tempo di processamento nei router ad ogni hop
- Options: sono previste, ma non nell'header
  - E' possibile prevederle fuori dall'header utilizzando il campo "Next Header"






traffico non noto traffico di riempimento (es. news) traffico batch (es. e-mail) riservato traffico interattivo a bassa priorità (es. ftp, NFS) riservato traffico interattivo ad alta priorità (es. telnet, X) traffico di controllo di internet (es. OSPF, SNMP)


### **Gli Extension Header**



- Hop by hop option header
  - es: jumbograms
- Routing header:
  - strict source routing
  - loose source routing
- Fragment header:
  - gestisce la frammentazione
- Authentication header
- Encrypted security payload header
- Destination option header
- Gli extension header (se presenti) devono apparire secondo un ordine prestabilito



# Gli Extension Headers ed il Daisy Chaining





## Valori di Next Header

| Value<br>(Hexadecimal) | Value (Decimal) | Protocol / Extension Header                                                       |
|------------------------|-----------------|-----------------------------------------------------------------------------------|
| 00                     | 0               | Hop-By-Hop Options Extension Header (note that this value was "Reserved" in IPv4) |
| 01                     | 1               | ICMPv4                                                                            |
| 02                     | 2               | IGMPv4                                                                            |
| 04                     | 4               | IP in IP Encapsulation                                                            |
| 06                     | 6               | TCP                                                                               |
| 08                     | 8               | EGP                                                                               |
| 11                     | 17              | UDP                                                                               |
| 29                     | 41              | IPv6                                                                              |
| 2B                     | 43              | Routing Extension Header                                                          |
| 2C                     | 44              | Fragmentation Extension Header                                                    |
| 2E                     | 46              | Resource Reservation Protocol (RSVP)                                              |
| 32                     | 50              | Encrypted Security Payload (ESP) Extension Header                                 |
| 33                     | 51              | Authentication Header (AH) Extension Header                                       |
| 3A                     | 58              | ICMPv6                                                                            |
| 3B                     | 59              | No Next Header                                                                    |
| 3C                     | 60              | Destination Options Extension Header                                              |

### Indirizzi IPv6: notazione



- Un indirizzo IPv6 è formato da 128 bit ovvero 16 byte
- Per la trascrizione degli indirizzi IPv6 si formano otto gruppi di 2 byte ciascuno
- Ciascun gruppo (2 byte) è rappresentato con 4 cifre esadecimali
- Gli otto gruppi sono separati dal simbolo ':'
- Esempio di indirizzo IPv6 valido:
   2340:0023:AABA:0A01:0055:5054:9ABC:ABB0
- Valgono due regole di semplificazione della notazione:
  - 1. Una sequenza di zeri all'inizio di un gruppo di 4 cifre può essere omessa
    - Ad esempio 2340:0023:AABA:0A01:0055:5054:9ABC:ABB0 può essere abbreviato in 2340:23:AABA:A01:55:5054:9ABC:ABB0
  - 2. Una sequenza di campi successivi uguali a zero può essere rappresentata con il simbolo '::'
    - Ad esempio 2340:0000:0000:0000:0455:0000:AAAB:1121
       può essere scritto come 2340::0455:0000:AAAB:1121

## Tre tipi di indirizzi IPv6



- Unicast (identificano una sola interfaccia nella rete)
  - Trasmissione uno ad uno
- Anycast (identificano molteplici interfacce, di cui una sola è selezionata)
  - Tramissione uno al più vicino
- Multicast (identificano un sottoinsieme definito dinamicamente di interfacce)
  - Trasmissione uno a molti
- Non è prevista la trasmissione broadcast

# Ripartizione dello spazio di indirizzamento

| Allocation                            | Prefix       | Fraction of Address Space |
|---------------------------------------|--------------|---------------------------|
| Reserved                              | 0000 0000    | 1/256                     |
| Unassigned                            | 0000 0001    | 1/256                     |
| Reserved for NSAP Allocation          | 0000 001     | 1/128                     |
| Reserved for IPX Allocation           | 0000 010     | 1/128                     |
| Unassigned                            | 0000 011     | 1/128                     |
| Unassigned                            | 0000 1       | 1/32                      |
| Unassigned                            | 0001         | 1/16                      |
| Aggregatable Global Unicast Addresses |              | 1/8                       |
| Unassigned                            | 010          | 1/8                       |
| Unassigned                            | 011          | 1/8                       |
| Unassigned                            | 100          | 1/8                       |
| Unassigned                            | 101          | 1/8                       |
| Unassigned                            | 110          | 1/8                       |
| Unassigned                            | 1110         | 1/16                      |
| Unassigned                            | 1111 0       | 1/32                      |
| _                                     |              | ·                         |
| Unassigned                            | 1111 10      | 1/64                      |
| Unassigned                            | 1111 110     | 1/128                     |
| Unassigned                            | 1111 1110 0  | 1/512                     |
| Link-Local Unicast Addresses          | 1111 1110 10 | 1/1024                    |
| Site-Local Unicast Addresses (*)      | 1111 1110 11 | 1/1024                    |
| Multicast Addresses                   | 1111 1111    | 1/256                     |

RFC 3513 - Internet Protocol Version 6 (IPv6) Addressing Architecture

### Indirizzi IPv6 unicast



Prefix (hex)

2000::/3

FD00::/8 FE80::/10

FF00::/8

ype of Address

Global

Unique Local

Link-local

Multicast

- Esistono 3 tipi di indirizzi IPv6 unicast:
- Global unicast simili agli indirizzi IPv4 pubblici
  - Hanno un prefisso **2000::/3** (indirizzi che in binario iniziano per 001)
  - Sono assegnati da IANA per garantirne l'unicità in reti pubbliche
  - Sono costituiti da due sottocampi da 64 bit ciascuno: Subnet ID & Interface ID

| Subnet ID      | Interface ID   |  |
|----------------|----------------|--|
| XXXX:XXXX:XXXX | XXXX:XXXX:XXXX |  |

- Link local usati per l'invio di pacchetti nella sottorete locale
  - Hanno un prefisso FE80::/10
  - Ogni interfaccia di rete su cui è abilitato il protocollo IPv6 è configurata obbligatoriamente con un indirizzo IPv6 link-local
  - I router non inoltrano pacchetti con questi indirizzi ad altre subnet
- Unique local simili agli indirizzi IPv4 privati
  - Hanno un prefisso FD00::/8
  - Usati in reti private, non sono inoltrati dai router di Internet ma possono essere inoltrati da router all'interno di una organizzazione
  - Hanno rimpiazzato gli indirizzi IPv6 site-local (deprecati in RFC 3879)

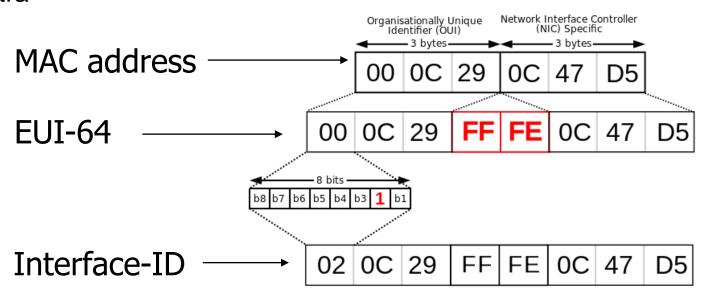
### Indirizzi IPv6 link-local e site-local



- Nella assegnazione degli indirizzi IPv6, gli RFC 2373 e 3513 (IPv6 Addressing Architecture) identificano due diversi ambiti:
- Link, comprende tutti i dispositivi in comunicazione diretta tramite una LAN o un collegamento punto-punto
  - Host e router appartenenti allo stesso link sono detti neighbor
- Site, comprende un insieme di link gestiti da un'unica entità, es. un campus universitario
- RFC 2373 ed RFC 3513 prevedevano l'assegnazione di indirizzi locali distinti sia in ambito Link (prefisso FE80::/10) che Site (prefisso FEC0::/10)
  - Si tratta di indirizzi usati in reti private ma non «ruotabili» da router di Internet
  - RFC 3879 ha deprecato l'uso di indirizzi IPv6 unici nell'ambito site, in quanto è
    emerso nell'IETF che il concetto di site fosse mal definito (ambiguo) e che l'uso
    di indirizzi site-local rendesse difficile la migrazione di indirizzi all'interno di una
    organizzazione
  - Il prefisso FEC0::/10 è ora considerato deprecato da IANA
  - L'assegnazione di un indirizzo IPv6 link-local è invece considerata obbligatoria per tutte le interfacce di rete di un qualunque dispositivo che supporti IPv6

### IPv6: indirizzi link-local




- Definiti in <a href="RFC 4291">RFC 4291</a> (IPv6 Addressing Architecture)
- Caratterizzati dal prefisso FE80::/10 seguito da 54 zeri, quindi FE80::/64

| 10 bits prefix | 54 bits padding | 64 bits      |
|----------------|-----------------|--------------|
| 1111111010     | 00000000        | Interface ID |

- Il modo con cui l'Interface-ID è prodotto varia a seconda del sistema operativo
  - In alcuni sistemi, l'interface-ID è calcolato a partire dal MAC address
  - In altri sistemi l'interface-ID è generato in maniera pseudo-random
- In generale, non vi è garanzia che un indirizzo link-local sia globalmente univoco
- Un indirizzo IPv6 link-local può essere usato esclusivamente per comunicare con altri host o router direttamente raggiungibili tramite un link
- Ogni interfaccia di rete che supporti IPv6 deve essere configurata con almeno un indirizzo IPv6 link-local

# Interface-ID calcolato a partire da EUI-64 FEDERICO II

- RFC-2373 definisce un modo per generare un identificativo a 64 bit (EUI-64, Extended Unique Identifier) a partire dal MAC address della scheda di rete (indirizzo di 48 bit, cablato nell'hardware della scheda di rete)
  - L'EUI-64 si ottiene inserendo la sequenza di 16 bit FF:FE tra i primi 24 bit ed i secondi 24 bit del MAC address
- L'interface-ID può essere calcolato a partire da EUI-64, invertendo il 7° bit da sinistra



# Esempio di indirizzo link-local da EUI-64 FEDERICO II

MAC address: 00:0C:29:0C:47:D5

EUI-64: 000C:29FF:FE0C:47D5

Interface-ID: 020C:29FF:FE0C:47D5

Link-local IPv6 address: FE80::020C:29FF:FE0C:47D5

### Indirizzi IPv6 Global Unicast



- Identificati da un prefisso 2000::/3 (indirizzi che in binario iniziano per 001)
  - RFC 3849 riserva il blocco 2001:DB8::/32 a scopi di documentazione
- Identificano un'interfaccia di rete in maniera univoca a livello globale
- Sono costituiti da due parti:
  - Un subnet ID da 64 bit, che identifica la sottorete
  - Un interface ID da 64 bit, che identifica l'interfaccia nella sottorete
- L'interface ID può essere generato automaticamente a partire dal MAC address della scheda di rete
- Il subnet ID è un identificatore composto ottenuto aggregando identificatori più piccoli secondo un criterio gerarchico:
  - Top Level ID (TLA ID)
  - Next Level ID (NLA ID)
  - Site Level ID (SLA ID)



## Indirizzi IPv6 speciali



- Unspecified address: ::/128
  - Indica assenza di indirizzo, usato come indirizzo sorgente per una richiesta di indirizzo con DHCPv6
  - Anche usato per indicare la rotta di default nelle tabelle di routing
- Loopback:

::1/128

- Analogo di 127.0.0.1 di IPv4
- Per controllare se un host ha IPv6 abilitato:
  - ping ::1 in Windows
  - ping6 ::1 in Linux





 Iniziano per FF::/8, sono usati come indirizzo destinazione per datagrammi che devono essere inviati a gruppi di device (host o router)

| 8 bits | 4 bits | 4 bits | 112 bits |     |
|--------|--------|--------|----------|-----|
| FF     | Flags  | Scope  | Group ID | (6) |

• Indirizzi IPv6 multicast speciali usati in contesti nei quali IPv4 usa invece l'indirizzo broadcast 255.255.255.

All-nodes: FF02::1

• All-routers: FF02::2

## Esempio indirizzi IPv6 in un host Linux

```
$ ip addr
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default
qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
      valid lft forever preferred lft forever
    inet6 ::1/128 scope host
      valid lft forever preferred lft forever
2: enp0s5: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP
group default glen 1000
    link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff
    inet 192.0.2.42/24 brd 192.0.2.255 scope global noprefixroute dynamic enp0s5
      valid 1ft 767sec preferred 1ft 767sec
    inet6 2001:db8::8c28:c929:72db:49fe/64 scope global noprefixroute dynamic
      valid 1ft 2591998sec preferred 1ft 604798sec
    inet6 fe80::9656:d028:8652:66b6/64 scope link noprefixroute
      valid lft forever preferred lft forever
```

- L'interfaccia lo (*loopback*) ha indirizzo IPv6 ::1
- L'interfaccia Ethernet enp0s5 ha due indirizzi IPv6
  - 2001:db8::8c28:c929:72db:49fe/64 (indirizzo globale)
  - fe80::9656:d028:8652:66b6/64 (indirizzo link-local)



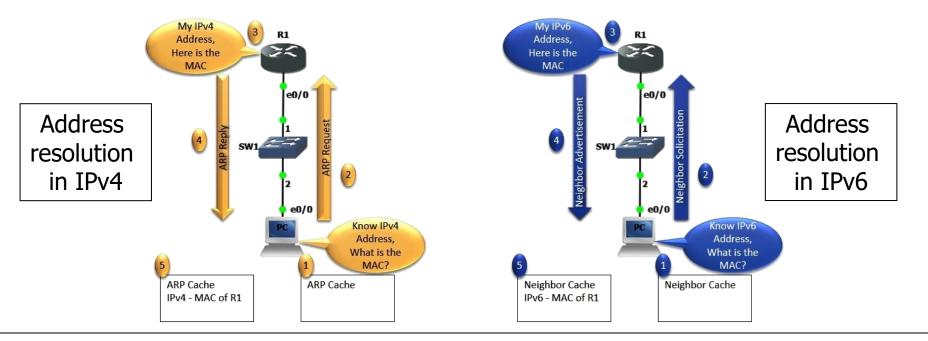
## Assegnazione di indirizzi IPv6 a host

- Esistono diversi modi per attribuire un indirizzo IPv6 ad una interfaccia di host
- Static address configuration
  - configurazione statica da parte dell'amministratore
- Stateless address auto-configuration (SLAAC) RFC 4862
  - un indirizzo IPv6 link-local è attribuito autonomamente dal sistema operativo dell'host
  - altri indirizzi possono essere configurati mediante un meccanismo basato su messaggi ICMPv6 di Router Advertisement generati dai router che indicano un prefisso di 64 bit che deve essere utilizzato dagli host ad essi collegati
- Stateful DHCP address assignment RFC 8415
  - configurazione dinamica con indirizzo assegnato da un server DHCPv6
- Gli indirizzi assegnati mediante meccanismi stateless sono determinati (totalmente o parzialmente) dall'host stesso
- L'assegnazione tramite DHCP consente di tenere traccia degli indirizzi utilizzati nella rete

### ICMPv6



- Insieme ad IPv6 è stata definita una nuova versione del protocollo ICMP: ICMPv6
- Simile ad ICMPv4, fornisce funzionalità di controllo, segnalazione errori e diagnostica
- Accorpa le funzioni di IGMP
- Prevede ulteriori tipi di messaggi
  - Packet Too Big
    - usato in situazioni che in IPv4 sarebbero gestite con la frammentazione
  - Router Solicitation
  - Router Advertisement
  - Neighbor Solicitation
  - Neighbor Advertisement
  - Funzioni per il management dei gruppi multicast


# ICMPv6: messaggi per neighbor discovery

- RFC 4861 definisce 5 tipi di messaggio ICMPv6 per il neighbor discovery
- RS Router Solicitation (ICMPv6 type 133)
  - usati da un host per sollecitare i router direttamente raggiungibili tramite le proprie interfacce ad inviare immediatamente un messaggio di tipo Router Advertisements (RA)
- RA Router Advertisement (ICMPv6 type 134)
  - usati dai router per manifestare la propria presenza; sono inviati sia periodicamente sia in seguito a sollecitazione di unhost tramite messaggio RS
  - trasmessi all'indirizzo destinazione all-hosts FE20::1
  - un messaggio RA contiene i prefissi usati per determinare se un altro indirizzo condivide lo stesso link, un valore suggerito di hop limit ed altro
- NS Neighbor Solicitation (ICMPv6 type 135)
  - usati da host e router per determinare l'indirizzo link-layer di un vicino, o per verificare che un vicino sia ancora raggiungibile attraverso l'indirizzo link-layer mantenuto in cache
  - anche usati per rilevazione di indirizzi duplicati (Duplicate Address Detection o DAD).
- NA Neighbor Advertisement (ICMPv6 type 136)
  - inviati in risposta ad un messaggio NS message
  - anche inviati in modo unsolicited per annunciare un cambiamento di indirizzo link-layer
- Redirect (ICMPv6 type 137)
  - Usati da un router per informare gli hosts dell'esistenza di un router migliore per una certa destinazione

### **Address resolution in IPv6**



- In IPv6 non esiste un indirizzo broadcast
  - Non c'è l'equivalente di 255.255.255.255 per IPv4
- Non si usa ARP per address resolution ma ICMPv6
  - Un end-system invia un messaggio *Neighbour Solicitation* (NS) per scoprire il MAC address del sistema al quale vuole inviare un pacchetto
  - Il sistema interpellato risponde con un Neighbour Advertisement (NA)



#### UNIVERSITÀ DECLI STUDI DI NAPCUI FEDERICO II

## Indirizzi IPv6 compatibili con IPv4

- Definiti in RFC1884 e successivi aggiornamenti (IP Version 6 Addressing Architecture)
   come caso particolare di indirizzi IPv6 che incorporano un indirizzo IPv4
  - Ora deprecati Nuove implementazioni non sono obbligate a supportare questo tipo di indirizzi
- Gli indirizzi IPv6 compatibili con IPv4 sono indirizzi IPv6 formati da un prefisso di 80+16=96 bit zero e successivi 32 bit corrispondenti ad un indirizzo IPv4

• Un indirizzo IPv6 compatibile con IPv4, anziché essere rappresentato come:

**0:0:0:0:0:X:Y** con X ed Y numeri rappresentati con 4 cifre esadecimali è tipicamente rappresentato in una notazione mista con gli ultimi 32 bit rappresentati nella notazione *dotted decimal* usata per gli indirizzi IPv4:

0:0:0:0:0:0:w.x.y.z oppure ::w.x.y.z

dove w.x.y.z è un indirizzo IPv4 in notazione dotted decimal

- Gli indirizzi IPv6 compatibili con IPv4 sono utilizzati dai nodi a doppio stack che comunicano in IPv6 tramite un'infrastruttura IPv4
  - I nodi a doppio stack utilizzano entrambi i protocolli IPv4 e IPv6
  - Quando un indirizzo compatibile con IPv4 viene usato come destinazione IPv6, il traffico IPv6 viene incapsulato automaticamente con un'intestazione IPv4 e inviato alla destinazione tramite l'infrastruttura IPv4

## Indirizzi IPv6 mappati su indirizzi IPv4



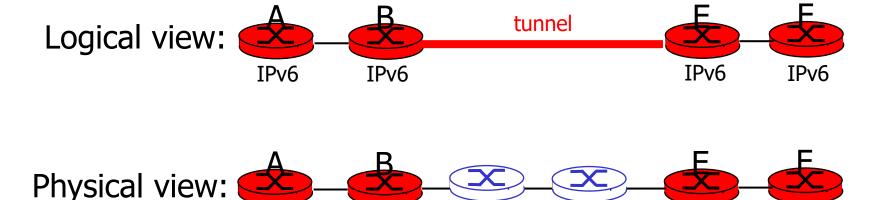
- Definiti in RFC1884 e successivi aggiornamenti (IP Version 6 Addressing Architecture)
   come secondo caso particolare di indirizzi IPv6 che incorporano un indirizzo IPv4
- Gli indirizzi IPv6 mappati su IPv4 sono indirizzi IPv6 formati da un prefisso di 80 bit zero, 16 bit uno e successivi 32 bit corrispondenti ad un indirizzo IPv4

| <b>+</b>                  |    |
|---------------------------|----|
| 00000000 FFFF  IPv4 addre | ss |

Un indirizzo IPv6 mappato su IPv4, anziché essere rappresentato come:

**0:0:0:0:0:FFFF:X:Y** con X ed Y numeri rappresentati con 4 cifre esadecimali è tipicamente rappresentato in una notazione mista con gli ultimi 32 bit rappresentati nella notazione *dotted decimal* usata per gli indirizzi IPv4:

0:0:0:0:0:FFFF: w.x.y.z oppure ::FFFF: w.x.y.z


dove w.x.y.z è un indirizzo IPv4 in notazione dotted decimal

- Gli indirizzi IPv6 mappati su IPv4 sono utilizzati per mettere in comunicazione un nodo IPv6 ed un nodo IPv4
- Se la destinazione è nel formato ::FFFF:w.x.y.z il mittente genera un pacchetto IPv4

## Transizione da IPv4 a IPv6: Tunneling



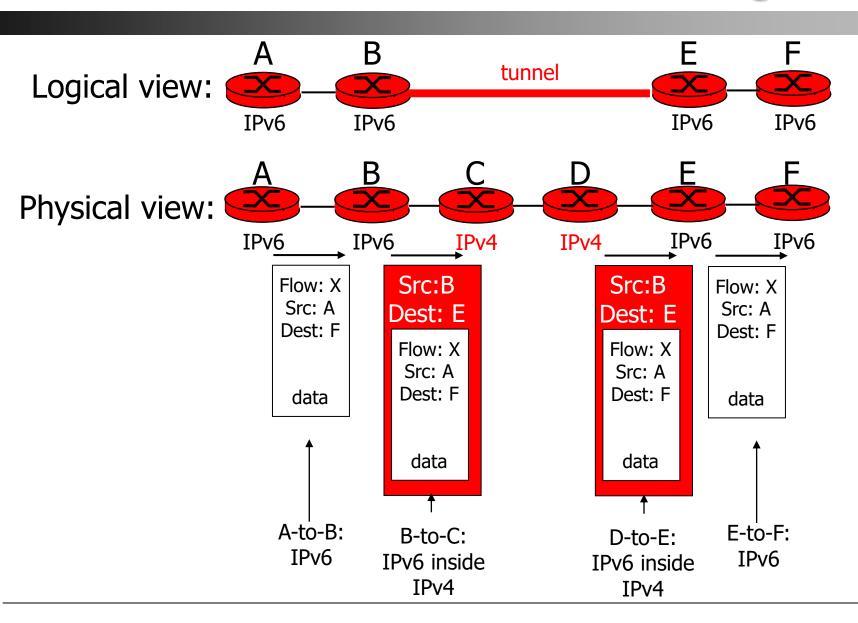
*Tunneling:* I pacchetti IPv6 vengono trasportati come payload all'interno di datagrammi IPv4 tra router IPv4



**TPv4** 

IPv4

IPv6


IPv6

IPv<sub>6</sub>

IPv<sub>6</sub>

## Transizione da IPv4 a IPv6: Tunneling





### Conclusioni



- Cambiare il protocollo di rete (le fondamenta) non è cosa semplice
  - IPv6, Multicast, RSVP
- Cambiare/aggiungere protocolli di livello applicativo è cosa più semplice
  - Streaming, p2p, gaming ...