Corso di Laurea in Ingegneria Informatica

Corso di Reti di Calcolatori

Roberto Canonico (<u>roberto.canonico@unina.it</u>) Giorgio Ventre (<u>giorgio.ventre@unina.it</u>)

RIP, IGRP ed EIGRP

I lucidi presentati al corso sono uno strumento didattico che NON sostituisce i testi indicati nel programma del corso

Nota di copyright per le slide COMICS

Nota di Copyright

Questo insieme di trasparenze è stato ideato e realizzato dai ricercatori del Gruppo di Ricerca COMICS del Dipartimento di Informatica e Sistemistica dell'Università di Napoli Federico II. Esse possono essere impiegate liberamente per fini didattici esclusivamente senza fini di lucro, a meno di un esplicito consenso scritto degli Autori. Nell'uso dovranno essere esplicitamente riportati la fonte e gli Autori. Gli Autori non sono responsabili per eventuali imprecisioni contenute in tali trasparenze né per eventuali problemi, danni o malfunzionamenti derivanti dal loro uso o applicazione.

Autori:

Simon Pietro Romano, Antonio Pescapè, Stefano Avallone, Marcello Esposito, Roberto Canonico, Giorgio Ventre

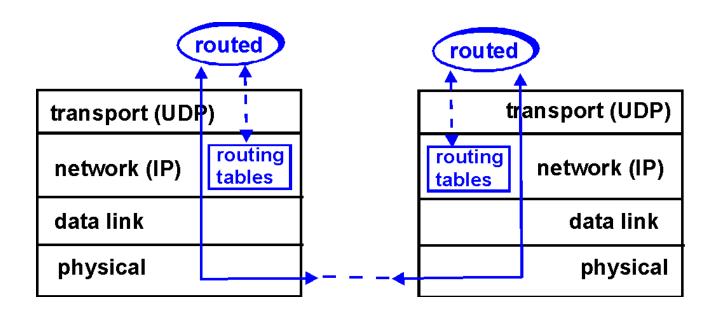
RIP

- Più diffuso protocollo di IGP
 - Non necessariamente il migliore, risale al 1969
 - Implementato su tutti i sistemi UNIX (dal 1982) dal programma routed
- Basato sulla trasmissione broadcast
 - Adatto a reti broadcast (Ethernet)
 - Non adatto a reti WAN
- Implementa l'algoritmo distance vector
- Definito in RFC 1058 (v1) ed RFC 2453 (v2)

RIP: l'implementazione

- RIP non fa distinzione formale tra reti ed host singoli
 - Le routing entry possono puntare ad un singolo host, anche se è conveniente usare reti che aggregano insiemi di indirizzi
- Divide le entità in attive e passive
 - Le entità passive possono solo ricevere messaggi (es. host)
 - Le entità attive possono anche spedire messaggi (es. i router)
- Le entità attive mandano un messaggio in broadcast ogni 30 secondi (messaggi RIP response)
 - contiene la tabella di routing
 - l'unica metrica utilizzata è il numero di hop
- Ogni RIP response contiene fino a 25 reti destinazione
- Un host aggiorna una rotta solo se ne apprende una strettamente migliore
 - ogni informazione ha un timeout di 180 secondi

RIP: l'implementazione



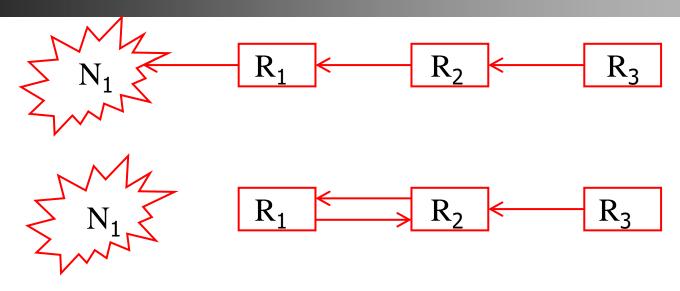
- Se non c'è messaggio di advertisement dopo 180 sec, il link è considerato morto
- Le route che attraversano quel vicino sono rese non valide; un nuovo advertisement è mandato ai vicini
- Vicini propagano l'informazione (se le loro tavole cambiano)
- Notizia dell'interruzione si propaga velocemente a tutta la rete

RIP e lo stack TCP/IP



- RIP è un protocollo di livello applicativo: le tavole di routing RIP sono elaborate da un processo a livello applicazione detto routed
- RIP usa il protocollo UDP.
- Piccoli messaggi regolari non necessitano del meccanismo del windowing, di un meccanismo di handshaking o di ri-trasmissioni.
- I pacchetti sono ricevuti e inviati usando il porto UDP 520

RIP-1: formato messaggi


RIP: analisi

- Il protocollo non individua esplicitamente i cicli
 - Assume che tutte le rotte pubblicizzate siano corrette
- Per prevenire inconsistenze fissa una distanza massima di routing
 - Distanza massima = 15
 - Distanza 16 significa «non raggiungibile»
- Gli aggiornamenti delle rotte si propagano lentamente
 - Slow convergence problem

RIP: analisi

- Il collegamento tra R₁ e N₁ cade
- R₂ invia la sua tabella a R₁
 - R₁ utilizza una nuova rotta lunga 3, passante per R₂
- R₁ invia la sua tabella
 - R₂ utilizza una nuova rotta lunga 4, passante per R₁
- Si prosegue fino ad arrivare a 16

RIP: analisi

- Utilizza hop count come unica metrica
 - Il routing è indipendente dal traffico sulla rete
 - Non adatto a gestire la congestione
- Crede a tutte le informazioni che gli arrivano
 - Un router malizioso può indurre gli altri router a modificare le loro tabelle a suo vantaggio
 - Accettabile all'interno dello stesso AS
 - Inaccettabile tra AS distinti

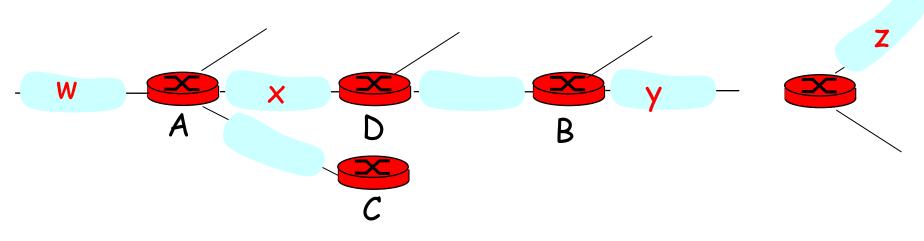
RIP: prevenire le instabilità

- Sono state studiate diverse tecniche per combattere la slow convergence
 - Nessuna risolve completamente il problema
- Split horizon (obbligatorio)
 - R2 non invia ad R1 le rotte che passano per R1
 - Previene solo i loop tra due router
- Split horizon with poisoned reverse (opzionale)
 - R2 dichiara ad R1 a distanza infinita le reti che R2 raggiunge attraverso R1 stesso
 - Produce una più veloce eliminazione dei loop
 - Non elimina del tutto la possibilità dei loop che si creano tra nodi non adiacenti

RIP: prevenire le instabilità (2)

Triggered Updates

 Appena un router aggiorna la propria tabella di routing, invia i distance vector aggiornati ai suoi vicini


Hold down

- R2 dopo aver ricevuto il messaggio di R1 ignora tutte le rotte per N1 per un certo periodo di tempo (60 secondi)
- I loop sono preservati per tutta la durata dell'hold time

RIP

Tabella di routing nel router D

Destination Network	Next Router	Num. of hops to dest.		
W	Α	2		
у	В	2		
Z	В	7		
X		1		
••••	••••			

RIP: contenuto della routing table

- Address/Destination Indirizzo IP (IPv4) dell'host o della rete destinazione.
- Router/Gateway Primo router lungo la route per la destinazione.
- Interface La rete fisica che deve essere usata per raggiungere il prossimo router.
- Metric Un numero che indica la distanza dalla destinazione. Questo numero è la somma dei costi dei link che bisogna attraversare per raggiungere la destinazione.
- Timers Il tempo tra due update della stessa entry nella tabella.
- Flags Ci sono diversi flag. Per esempio, possono indicare lo stato dei router direttamente collegati.

Gateway	Flags	Ref	Use	Interface
127.0.0.1	UH	0	26492	100
192.168.2.5	U	2	13	fa0
193.55.114.6	U	3	58503	le0
192.168.3.5	U	2	25	qaa0
193.55.114.6	U	3	0	le0
193.55.114.129	UG	0	143454	
	127.0.0.1 192.168.2.5 193.55.114.6 192.168.3.5 193.55.114.6	127.0.0.1 UH 192.168.2.5 U 193.55.114.6 U 192.168.3.5 U 193.55.114.6 U	127.0.0.1 UH 0 192.168.2.5 U 2 193.55.114.6 U 3 192.168.3.5 U 2 193.55.114.6 U 3	127.0.0.1 UH 0 26492 192.168.2.5 U 2 13 193.55.114.6 U 3 58503 192.168.3.5 U 2 25 193.55.114.6 U 3 0

Flag di rotte IP

- U: la rotta è disponibile
- G: la rotta utilizza un router intermedio
 - Se il flag G non è presente la destinazione è collegata direttamente
- H: la destinazione è un host e non una rete
- D: rotta creata da un redirect
- M: rotta modificata da redirect

RIP v2

- RIP non gestisce le net mask
 - Non consente di pubblicizzare rotte con subnetting e CIDR
- RIP2 ha modificato la struttura dei pacchetti RIP aggiungendo nuovi campi per
 - net mask
 - next hop (elimina problema loop e slow convergence)
 - Utilizza 0.0.0.0 per rotta di default

IGRP ed EIGRP

- IGRP è un protocollo proprietario CISCO basato sul Distance Vector
- Usa diverse metriche di costo (ritardo, banda, affidabilità, carico, ...)
- Le tavole di routing sono scambiate (tramite TCP) solo quando si modificano costi
- IGRP supporta il multipath routing a costi differenziati: se esistono più rotte per la stessa destinazione il carico è distribuito tra esse proporzionalmente al costo della rotte
- EIGRP (enhanced-IGRP) è una versione "migliorata" di IGRP che supporta indirizzamento classless con maschere di sottorete a lunghezza variabile (Variable Length Subnet Mask - VLSM)
 - Algoritmo di routing DUAL (*Distributed Updating Algorithm*)
 - algoritmo che garantisce assenza di clicli (loop free): dopo l'incremento di una distanza, la tavola di routing è congelata fino a quando tutti i nodi influenzati sanno del cambiamento
 - Le specifiche riguardanti gli aspetti fondamentali di EIGRP sono state rese pubbliche da Cisco nel 2013 ed attualmente sono descritte in RFC 7868