
 Simulation of computer networks 1

Corso di Reti di Calcolatori I

Network simulation with ns-3

 Simulation of computer networks 2

Outline of presentation

• Breve introduzione al concetto di
simulazione di computer networks

• Tutorial su ns-3
– Introduzione
– Architettura
– Lettura di codice

Simulation of computer networks 3

To evaluate protocols and distributed algorithms for
computer networks the following alternatives are

possible:

1) Small scale experimental testbeds (in the laboratory)

2) Testbed sperimentali su media scala (wide area), PlanetLab

3) Sistemi di network emulation

4) Ambienti di simulazione generali per reti di calcolatori

• ns-3, GLOMOSIM, OPNET, NCTUns, …

1) Strumenti di simulazione sviluppati ad hoc

2) Modelli matematici del sistema

Simulation of computer networks

Simulation of computer networks 4

The evaluation spectrum

numerical
models

simulation

emulation

prototype

operational
 system

Simulation of computer networks 5

What is simulation?

system under study
(has deterministic rules
governing its behavior)

exogenous inputs
to system

(the environment)

system boundary

observer

“real” life

computer program
simulates deterministic
rules governing behavior

pseudo random inputs
to system

(models environment)

program boundary

observer

“simulated” life

Simulation of computer networks 6

Why Simulation?

 goal: study system performance, operation
 real-system not available, is complex/costly or

dangerous (eg: space simulations, flight simulations)
 quickly evaluate design alternatives (eg: different

system configurations)
 evaluate complex functions for which closed form

formulas or numerical techniques not available
 Need of complete control over the inputs of the system

Simulation of computer networks 7

 Astrazione
 Generazione di scenari (topologie, pattern di

traffico, ...)
 Programmabilità
 Estendibilità
 Disponibilità di un’ampia gamma di moduli

di protocolli riutilizzabili, affidabili e validati
 Possibilità di modificare protocolli esistenti
 Visualizzazione dei risultati
 Emulazione

Requisiti per un simulatore di reti

Simulation of computer networks 8

Programming a simulation

What ‘s in a simulation program?
 simulated time: internal (to simulation program) variable that

keeps track of simulated time
 system “state”: variables maintained by simulation program

define system “state”
 e.g., may track number (possibly order) of packets in queue, current

value of retransmission timer
 events: points in time when system changes state

 each event has associated event time
 e.g., arrival of packet to queue, departure from queue
 precisely at these points in time that simulation must

take action (change state and may cause new future
events)

 model for time between events (probabilistic) caused by external
environment

Simulation of computer networks 9

Discrete Event Simulation

 simulation program maintains and updates list of future
events: event list

 simulator structure:
initialize event list

get next (nearest future)
event from event list

time = event time

process event
(change state values, add/delete

future events from event list

update statistics

done?no

Need:

 well defined set of
events

 for each event:
simulated system
action, updating of
event list

yes

Simulation of computer networks 10

Things to remember about Discrete Event Simulation

 The programming model revolves around “events”
(eg: packet arrivals):
 Events trigger particular sub-routines

 Huge “switch” statement to classify events and call appropriate
subroutine

 The subroutine may schedule new events! (cannot schedule
events for past, I.e., events are causal)

 Rarely you might introduce new event types

 Events have associated with them:
 Event type, event data structures (eg: packet)
 Simulation time when the event is scheduled

 Key event operations: Enqueue (I.e. schedule a event)
 Dequeue is handled by the simulation engine

Simulation of computer networks 11

Discrete Event Simulation: Scheduler

 Purpose: maintain a notion of simulation time, schedule
events. A.k.a: “simulation engine”

 Simulation time ≠ Real time
 A simulation for 5 sec of video transmission might take 1 hour!

 Events are sorted by simulation time (not by type!):
priority queue or heap data structure
 After all subroutines for an event have been executed, control is

transferred to the simulation engine
 The simulation engine schedules the next event available at the same

time (if any)
 Once all the events for current time have been executed, simulation time

is advanced and nearest future event is executed.
 Simulation time = time of currently executing event

Simulation of computer networks 12

Simulation: example

 packets arrive (avg. interrarrival time: 1/ λ) to router (avg.
execution time 1/µ) with two outgoing links

 arriving packet joins link i with probability φi

µ1

µ2

 state of system: size of each queue
 system events:

 packet arrivals
 service time completions

λ

Simulation of computer networks 13

Simulation: example

µ1

µ2

λSimulator actions on arrival event
 choose a link

 if link idle {place pkt in service, determine service time
(random number drawn from service time distribution) add
future event onto event list for pkt transfer completion, set
number of pkts in queue to 1}

 if buffer full {increment # dropped packets, ignore arrival}
 else increment number in queue where queued

 create event for next arrival (generate interarrival
time) stick event on event list

Simulation of computer networks 14

Simulation: example

µ1

µ2

λ
Simulator actions on departure event
 remove event, update simulation time, update

performance statistics
 decrement counter of number of pkts in queue
 If (number of jobs in queue > 0) put next pkt into

service – schedule completion event (generate
service time for put)

 Simulation of computer networks 15

Ns-3 tutorial: assumptions

• Some familiarity with C++ programming
language

• Some familiarity with Unix Network
Programming (e.g., sockets)

• Some familiarity with discrete-event
simulators

 Simulation of computer networks 16

Ns-3 features

• open source licensing (GNU GPLv2) and
development model

• Python scripts or C++ programs
• alignment with real systems (sockets, device

driver interfaces)
• alignment with input/output standards (pcap

traces, ns-2 mobility scripts)
• testbed integration as a priority
• modular, documented core
• Easy to modify, extend
• Ns-3 is not an extension of ns-2

 Simulation of computer networks 17

Resources

Web site:
http://www.nsnam.org

Mailing list:
http://mailman.isi.edu/mailman/listinfo/ns-developers

Tutorial:
http://www.nsnam.org/docs/tutorial/tutorial.html

Code server:
http://code.nsnam.org

Wiki:
http://www.nsnam.org/wiki/index.php/Main_Page

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

 Simulation of computer networks 18

Resources (2)

• Most of the ns-3 API is documented with
Doxygen

http://www.nsnam.org/doxygen/index.html

 Simulation of computer networks 19

Outline of the tutorial

• Introduction to ns-3

• Architecture of ns-3

• Ns-3 logging and tracing

• Ns-3 examples

 Simulation of computer networks 20

Introduction to ns-3

• ns-3 is written in C++

• Bindings in Python

• ns-3 uses the waf build system

• simulation programs are either C++
executables or python scripts

 Simulation of computer networks 21

the waf build system

• Waf is a Python-based framework for
configuring, compiling and installing applications.
– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant

– http://code.google.com/p/waf/
• To download the simulator

– hg clone http://code.nsnam.org/ns-3-allinone

• Steps to build the simulator
– cd ns-3-dev
– ./waf [-d optimized|debug] configure [--enable-

modules=netanim]
– make -> ./waf
– make test -> ./waf check (run unit tests)

http://code.google.com/p/waf/

 Simulation of computer networks 22

waf key concepts

• Can run programs through a special waf
shell; e.g.
– ./waf --run simple-point-to-point

– (this gets the library paths right for you)

 Simulation of computer networks 23

Outline of the tutorial

• Introduction to ns-3

• Architecture of ns-3

• Ns-3 logging and tracing

• Ns-3 examples

 Simulation of computer networks 24

Application

Architecture: the basic model

Application

Protocol
stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like
 API

Channel

Channel

Packet(s)

 Simulation of computer networks 25

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes may contain Applications, “stacks”,
and NetDevices

 Simulation of computer networks 26

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

Application
Application

Application

“stacks”

 Simulation of computer networks 27

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

Nodes are architected for multiple interfaces

WifiNetDevice

WifiChannel

 Simulation of computer networks 28

Node basics

Two key abstractions are maintained:

1) applications use an (asynchrounous for
the moment) sockets API
– Based on the BSD Socket API

2) the boundary between IP and layer 2
mimics the boundary at the device-
independent sublayer in Linux
i.e., Linux Packet Sockets

 Simulation of computer networks 29

Ns-3 packets

• each network packet contains a byte buffer,
a list of tags, and metadata
– buffer: bit-by-bit (serialized) representation of

headers and trailers
– tags: set of arbitrary, user-provided data

structures (e.g., per-packet cross-layer
messages, or flow identifiers)

– metadata: describes types of headers and
and trailers that have been serialized

• optional-- disabled by default

 Simulation of computer networks 30

Ns-3 packets (2)

• Each type of header is represented by a
subclass of ns3::Header

• to add a new header, subclass from
Header, and write your Serialize() and
Deserialize() methods
– how bits get written to/from the Buffer

• Similar for Packet Tags

 Simulation of computer networks 31

Simulation basics

• Simulation time moves discretely from
event to event

• A simulation scheduler orders the event
execution

• Simulation::Run() gets it all started

• Simulation stops at specific time or when
events end (Simulation::Stop())

 Simulation of computer networks 32

Ns-3 object metadata system

• ns-3 is, at heart, a C++ object system

• ns-3 objects that inherit from base class
ns3::Object get several additional features
– dynamic run-time object aggregation
– an attribute system
– smart-pointer memory management

 Simulation of computer networks 33

Object aggregation

• You can aggregate objects to one another
at run-time
– Avoids the need to modify a base class to

provide pointers to all possible connected
objects

• Object aggregation is planned to be the
main way to create new Node types
(rather than subclassing Node)

 Simulation of computer networks 34

Object aggregation example

• How aggregation works

• How to access on aggregated object

 Simulation of computer networks 35

Attributes

• An Attribute represents a value in our
system

• An Attribute can be connected to an
underlying variable or function
– e.g. TcpSocket::m_cwnd;
– or a trace source

 Simulation of computer networks 36

Attributes (2)

• What would users like to do?
– Set a default initial value for a variable
– Set or get the current value of a variable
– Know what are all the attributes that affect the

simulation at run time
– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of
handling these functions

 Simulation of computer networks 37

How to handle attributes?

• The traditional C++ way:
– export attributes as part of a class's public API
– walk pointer chains (and iterators, when

needed) to find what you need
– use static variables for defaults

• The attribute system provides a more
convenient API to the user to do these
things

 Simulation of computer networks 38

The traditional C++ way

class Foo {
public:
 void SetVar1 (uint32_t value);
 uint32_t GetVar1 (void);
 static void SetInitialVar1(uint32_t value);
 void SetVar2 (uint32_t value);
 uint32_t GetVar2 (void);
 static void SetInitialVar2(uint32_t value);
 ...
private:
 uint32_t m_var1; // document var1
 uint32_t m_var2; // document var2
 static uint32_t m_initial_var1;
 static uint32_t m_initial_var2;
}

Foo::Foo() : m_var1(Foo::m_initial_var1), m_var2(Foo::m_initial_var2){
}

To modify an instance of Foo, get the pointer somehow, and use the public accessor functions
To modify the default values, modify the statics
Default values may be available in a separate framework (e.g. ns-2 Bind())

 Simulation of computer networks 39

Navigating the attributes

• Attributes are exported into a string-based
namespace, with filesystem-like paths
– namespace supports regular expressions

• Examples:
– Nodes with identifiers 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]”

– UdpL4Protocol object instance aggregated to matching nodes:
“/NodeList/[3-5]|[8-11]/$UdpL4Protocol”

– UdpL4Protocol object instances of all nodes:
“/NodeList/*/$UdpL4Protocol”

– EndPoints which match the SrcPort=1025 specification:
“/EndPoints/*:SrcPort=1025”

 Simulation of computer networks 40

Creating references in the namespace

• Names::Add ("server", serverNode);
• Names::Add ("server/eth0", serverDevice);
• ...
• Config::Set

("/Names/server/eth0/TxQueue/MaxPacke
ts", UintegerValue (25));

 Simulation of computer networks 41

Attributes: details

• Attributes also can be referred to without
the paths
– e.g. “YansWifiPhy::TxGain”

• A Config class allows users to manipulate
the attributes
– e.g.: Set a default initial value for a variable
– (Note: this replaces DefaultValue::Bind())

Config::SetDefault (“YansWifiPhy::TxGain”, Double (1.0));

Attribute Value

 Simulation of computer networks 42

Attributes: details

• Set or get the current value of a variable
• Here, one needs the path in the namespace to the

right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/
3/YansWifiPhy/TxGain”, Double(1.0));
Double d =
Config::GetAttribute(“/NodeList/5/NetDevice/3
/YansWifiPhy/TxGain”);

• Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

 Simulation of computer networks 43

How is all this implemented (overview)

class Foo: public Object
{
public:
 static TypeId GetTypeId (void);
private:
 uint32_t m_var1; // document var1
 uint32_t m_var2; // document var2
}

Foo::Foo() {
}

TypeId Foo::GetTypeId (void)
{
 static TypeId tid = TypeId(“Foo”)
 .AddConstructor<Foo> ();
 .AddAttribute (“m_var1”, “document var1”,
 UInteger(3),
 MakeUIntegerAccessor (&Foo::m_var1),
 MakeUIntegerChecker<uint32_t> ())
 return tid;
}

 Simulation of computer networks 44

A real TypeId example

TypeId
RandomWalk2dMobilityModel::GetTypeId (void)
{
 static TypeId tid = TypeId ("RandomWalkMobilityModel")
 .SetParent<MobilityModel> ()
 .SetGroupName ("Mobility")
 .AddConstructor<RandomWalk2dMobilityModel> ()
 .AddAttribute ("bounds",
 "Bounds of the area to cruise.",
 Rectangle (0.0, 0.0, 100.0, 100.0),
 MakeRectangleAccessor (&RandomWalk2dMobilityModel::m_bounds),
 MakeRectangleChecker ())
 .AddAttribute ("time",
 "Change current direction and speed after moving for this delay.",
 Seconds (1.0),
 MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
 MakeTimeChecker ())
 .AddAttribute ("distance",
 "Change current direction and speed after moving for this distance.",
 Seconds (1.0),
 MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
 MakeTimeChecker ())

 Simulation of computer networks 45

Object system: smart pointers

• ns-3 uses reference-counting smart
pointers at its APIs to limit memory leaks
– Or “pass by value” or “pass by reference to

const” where appropriate

• A “smart pointer” behaves like a normal
pointer (syntax) but does not lose memory
when reference count goes to zero

• Use them like built-in pointers:
 Ptr<MyClass> p = CreateObject<MyClass> ();

 p->method ();

 Simulation of computer networks 46

CreateObject<> ();

• CreateObject<> is a wrapper for operator new.

• Why not just, e.g., Node * node = new Node()?
– You have to manage the memory allocation and

deallocation

• ns3::Object are created on the heap using
CreateObject<> (), which returns a smart
pointer; e.g.

Ptr<Node> rxNode = CreateObject<Node> ();

 Simulation of computer networks 47

Create<> ();

• What is Create<> ()?

• Create<> provides some smart pointer
help for objects that use ns3::Ptr<> but
that do not inherit from Object.

• Principally, class ns3::Packet
Ptr<Packet> p = Create<Packet>
(data,size);

 Simulation of computer networks 48

Non-default constructors

• The attribute system allows you to also
pass them through the CreateObject<>
constructor.

• This provides a generic non-default
constructor for users (any combination of
parameters), e.g.:

Ptr<YansWifiPhy> phy = CreateObject<YansWifiPhy>
(“TxGain”, Double (1.0));

 Simulation of computer networks 49

How to parse command line arguments

• To configure the from the command line ns-3
provides the Command facility

• int main (int argc, char *argv[])

 {

 ...

 CommandLine cmd;

 cmd.Parse (argc, argv);

 ...

}

• The snippet of code above enables the setting of all
the attributes in the ns-3 attributes namespace

• ./waf --run "scratch/first --ns3::PointToPointNetDevice::DataRate=5Mbps"

 Simulation of computer networks 50

How to parse command line arguments (2)

• Custom global properties can be set from
the command line as well

– int main(int argc, char * argv[]){

...

uint32_t nPackets = 1;

CommandLine cmd;

cmd.AddValue("nPackets", "Number of packets to echo", nPackets);

 cmd.Parse (argc, argv);

...

}

• How to set the property on the command line
– ./waf --run "scratch/first --nPackets=2"

 Simulation of computer networks 51

Helpers objects

• Provide simple 'syntactical sugar' to make
simulation scripts look nicer and easier to read for
network researchers

• Helpers make it easier to repeat the same
operations on a set of resources (e.g. nodes,
interfaces)

• The settings are applied to the helper and used to
perform the operations on the resources

• Each function applies a single operation on a ''set
of same objects”

 Simulation of computer networks 52

Helper Objects (2)

• InternetStackHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

• What does this apply to?
– NodeContainer: vector of Ptr<Node>
– NetDeviceContainer: vector of Ptr<NetDevice>

 Simulation of computer networks 53

Tutorial outline

• Introduction to ns-3

• Architecture of ns-3

• Ns-3 logging and tracing

• Ns-3 examples

 Simulation of computer networks 54

Ns-3 logging

• ns-3 has a built-in logging facility to stderr

• Features:
– Multiple log levels like syslog

– can be driven from shell environment
variables

– Function and call argument tracing

• Intended for debugging, but can be
abused to provide tracing
– It is not guaranteed that format is unchanging

 Simulation of computer networks 55

Ns-3 logging example

• Logging facilities
– NS_LOG_ERROR -- Log error messages;

– NS_LOG_WARN -- Log warning messages;

– NS_LOG_DEBUG -- Log relatively rare, ad-hoc debugging messages;

– NS_LOG_INFO -- Log informational messages about program progress;

– NS_LOG_FUNCTION -- Log a message describing each function called;

– NS_LOG_LOGIC -- Log messages describing logical flow within a function;

– NS_LOG_ALL -- Log everything.

– NS_LOG_UNCOND() – Log unconditionally (irrespective to the debug settings);

• How to activate logging messages:

– From the shell

• export NS_LOG=”WifiNetDevice:YansWifiChannel” (Unix)

• export NS_LOG=”*” (Unix)

• export NS_LOG=UdpEchoClientApplication=level_all

– In the code

• LogComponentEnable("Class", LOGGING_LEVEL);

• LogComponentEnable ("UdpEchoExample", LOG_LEVEL_INFO);

 Simulation of computer networks 56

Tracing model

• Tracing is a structured form of simulation output
– tracing format should be relatively static across simulator

releases

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

• Needs vary widely

 Simulation of computer networks 57

Crude tracing

#include <iostream>

...

int main ()

{

 ...

 std::cout << "The value of x is " << x <<
std::endl;

 ...

}

 Simulation of computer networks 58

Slightly less crude

#include <iostream>

...

int main ()

{

 ...

 NS_LOG_UNCOND ("The value of x is " << x);

 ...

}

 Simulation of computer networks 59

Simple ns-3 tracing

• these are wrapper functions/classes

• see examples/mixed-wireless.cc
 #include "ns3/ascii-trace.h"

 AsciiTrace asciitrace ("mixed-wireless.tr");

 asciitrace.TraceAllQueues ();

 asciitrace.TraceAllNetDeviceRx ();

 Simulation of computer networks 60

Simple ns-3 tracing (pcap version)

• these are wrapper functions/classes

• see examples/mixed-wireless.cc
 #include "ns3/pcap-trace.h"

 PcapTrace pcaptrace ("mixed-wireless.pcap");

 pcaptrace.TraceAllIp ();

 Simulation of computer networks 61

Ns-3 tracing model

• Fundamental #1: decouple trace sources
from trace sinks

• Fundamental #2: prefer standard trace
outputs for built-in traces

Trace source

Trace source

Trace source

Trace sink

unchanging
configurable by
user

 Simulation of computer networks 62

Tracing overview

• Simulator provides a set of pre-configured
trace sources
– Users may edit the core to add their own

• Users provide trace sinks and attach to the
trace source
– Simulator core provides a few examples for

common cases

• Multiple trace sources can connect to a
trace sink

 Simulation of computer networks 63

Multiple levels of tracing

• Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

• Low-level: Add trace sources to the
tracing namespace
– Or expose trace source explicitly

 Simulation of computer networks 64

High-level of tracing

• High-level: Use built-in trace sources and
sinks and hook a trace file to them

 // Also configure some tcpdump traces; each interface will be traced

 // The output files will be named

 // simple-point-to-point.pcap-<nodeId>-<interfaceId>

 // and can be read by the "tcpdump -r" command (use "-tt" option to

 // display timestamps correctly)

 PcapTrace pcaptrace ("simple-point-to-point.pcap");

 pcaptrace.TraceAllIp ();

 // Ascii format

 std::ofstream ascii;

 ascii.open ("myfirst.tr");

 PointToPointHelper::EnableAsciiAll (ascii);

 Simulation of computer networks 65

High level of tracing (2)

//Su Helper di interfaccia

...

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous =

false, bool explicitFilename = false);

void EnablePcap (std::string prefix, std::string ndName, bool promiscuous =

false, bool explicitFilename = false);

void EnablePcap (std::string prefix, NetDeviceContainer d, bool promiscuous =

false);

void EnablePcap (std::string prefix, NodeContainer n, bool promiscuous = false);

void EnablePcap (std::string prefix, uint32_t nodeid, uint32_t deviceid, bool

promiscuous = false);

void EnablePcapAll (std::string prefix, bool promiscuous = false);

 Simulation of computer networks 66

Reading pcap files

• pcap files can be read by means of
– Wireshark
– Tcpdump

 // Example of tcpdump usage

 tcpdump -nn -tt -r simple-point-to-point.pcap

 reading from file myfirst-0-0.pcap, link-type PPP (PPP)

 2.000000 IP 10.1.1.1.49153 > 10.1.1.2.9: UDP, length 1024

 2.514648 IP 10.1.1.2.9 > 10.1.1.1.49153: UDP, length 1024

 Simulation of computer networks 67

Mid-level of tracing

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

static void CwndTracer (uint32_t oldval, uint32_t newval)

{

 NS_LOG_INFO ("Moving cwnd from " << oldval << " to " <<

newval);

}

 Config::ConnectWithoutContext

("/NodeList/0/$ns3::TcpL4Protocol/SocketList/0/CongestionWindow"

, MakeCallback (&CwndTracer));

 Simulation of computer networks 68

Low-level of tracing

• Define your own trace sources
• For specific advanced needs
• Need to modify the core of ns-3

–Can be defined in custom-elements
–Easy to apply to any existing object

attribute

 Simulation of computer networks 69

An additional trace method: statistics

• Avoid large trace files

• Collect statistics of the simulation

• Reuse tracing framework

• One similar approach: ns-2-measure project
– http://info.iet.unipi.it/~cng/ns2measure/

– Static “Stat” object that collects samples of variables based on explicit
function calls inserted into the code

– Graphical front end, and framework for replicating simulation runs

• FlowMon is currently available
– http://telecom.inescn.pt/~gjc/flowmon-presentation.pdf

 Simulation of computer networks 70

Ns-3 tutorial

• Introduction to ns-3

• Architecture of ns-3

• Logging and tracing

• Ns-3 examples

 Simulation of computer networks 71

examples/ directory

• examples/ contains other scripts with similar themes
$ ls
csma-broadcast.cc simple-point-to-point.cc
csma-multicast.cc tcp-large-transfer-errors.cc
csma-one-subnet.cc tcp-large-transfer.cc
csma-packet-socket.cc tcp-nonlistening-server.cc
mixed-global-routing.cc tcp-small-transfer-oneloss.cc
simple-alternate-routing.cc tcp-small-transfer.cc
simple-error-model.cc udp-echo.cc
simple-global-routing.cc waf
simple-point-to-point-olsr.cc wscript

 Simulation of computer networks 72

First example (udp-echo)

• We simulate a simple network with 2
nodes connected through an ethernet link

• One node send a (udp) packet to a
second node

• The second node receives the packet and
send a copy of the packet back

 Simulation of computer networks 73

udp-echo

• First step: create nodes

– NodeContainer n
– n.Create (4);

• Install the fundamental TCP/IP entities
on the nodes
– InternetStackHelper internet;
– internet.Install (n);

 Simulation of computer networks 74

Udp-echo (2)

• Create the local network (i.e. ethernet
network)
– CsmaHelper csma;
– csma.SetChannelAttribute ("DataRate",

DataRateValue (DataRate (5000000)));
– csma.SetChannelAttribute ("Delay", TimeValue

(MilliSeconds (2)));
– csma.SetDeviceAttribute ("Mtu", UintegerValue

(1400));
– NetDeviceContainer d = csma.Install (n);

 Simulation of computer networks 75

Udp-echo (3)

• Assign the addresses to the nodes'
interfaces
– Ipv4AddressHelper ipv4;
– ipv4.SetBase ("10.1.1.0", "255.255.255.0");
– Ipv4InterfaceContainer i = ipv4.Assign (d);
– serverAddress = Address(i.GetAddress (1));

 Simulation of computer networks 76

udp-echo

• Install the server application on node 1
– uint16_t port = 9; // well-known echo port

number
– UdpEchoServerHelper server (port);
– ApplicationContainer apps = server.Install

(n.Get (1));
– apps.Start (Seconds (1.0));
– apps.Stop (Seconds (10.0));

 Simulation of computer networks 77

udp-echo

• Install the client application on node 0
– uint32_t packetSize = 1024;
– uint32_t maxPacketCount = 1;
– Time interPacketInterval = Seconds (1.);
– UdpEchoClientHelper client (serverAddress, port);
– client.SetAttribute ("MaxPackets", UintegerValue

(maxPacketCount));
– client.SetAttribute ("Interval", TimeValue (interPacketInterval));
– client.SetAttribute ("PacketSize", UintegerValue (packetSize));
– apps = client.Install (n.Get (0));
– apps.Start (Seconds (2.0));
– apps.Stop (Seconds (10.0));

 Simulation of computer networks 78

udp-echo

• Enable netanim logs
– [#include "ns3/netanim-module.h"]
– AnimationInterface anim ("udp-echo.xml");

• Enable pcap logs
– AsciiTraceHelper ascii;
– csma.EnableAsciiAll (ascii.CreateFileStream ("udp-

echo.tr"));
– csma.EnablePcapAll ("udp-echo", false);

• Start the simulation
– Simulator::Run ()

 Simulation of computer networks 79

One more thing: ns-3 used for emulation

virtual
machine

ns-3

virtual
machine

real
machine

ns-3

 Testbed Testbed

real
machine

ns-3

1) ns-3 interconnects virtual
machines

2) testbeds interconnect ns-3
stacks

real machine

 Simulation of computer networks 80

Summary

• ns-3 is an emerging simulator to replace ns-2
• Consider ns-3 if you are interested in:

– Modular architecture
• Easily extendable

– More faithful representations of real computers and
the Internet

– Integration with testbeds
– A powerful low-level API
– Python scripting

