Simulation of computer networks

Corso di Reti di Calcolatori |
November, 2012

Giovanni Di Stasi
Roberto Canonico
Giorgio Ventre

Simulation of computer networks 1

Outline of presentation

* Brief introduction to network simulation

* Ns-3 tutorial
—|ntroduction to ns-3
— Experimenting with ns-3
—Reading ns-3 code
—Basics of ns-3 architecture

Simulation of computer networks 2

Simulation of computer networks

To evaluate protocols and distributed algorithms for
computer networks the following alternatives are
possible:

1) Small scale experimental testbeds (in the laboratory)
2) Testbed sperimentali su media scala (wide area), PlanetLab
3) Sistemi di network emulation
4) Ambienti di simulazione generali per reti di calcolatori
* ns-3, GLOMOSIM, OPNET, NCTUns, ...
1) Strumenti di simulazione sviluppati ad hoc

2) Modelli matematici del sistema

Simulation of computer networks 3

The evaluation spectrum

simulation prototype
numerical emulation operational
models system

Simulation of computer networks 4

What is simulation?

system boundary

exogenous inputs system under study
to system (has deterministic rules “"real” life
(the environment) governing its behavior)
observer

program boundary

pseudo random inputs computer program
to system simulates deterministic “simulated” life
(models environment) rules governing behavior
Tobserver

Simulation of computer networks)

Why Simulation?

study system performance, operation

real-system not available, is complex/costly or
dangerous (eg: space simulations, flight simulations)

quickly evaluate design alternatives (eg: different
system configurations)

evaluate complex functions for which closed form
formulas or numerical techniques not available

Need of complete control over the inputs of the system

Simulation of computer networks 6

Requisiti per un simulatore di reti

v' Astrazione

v" Generazione di scenari (topologie, pattern di
traffico, ...)

v" Programmabilita

v' Estendibilita

v Disponibilita di un’ampia gamma di moduli

di protocolli riutilizzabili, affidabili e validati
v' Possibilita di modificare protocolli esistenti
v Visualizzazione dei risultati
v Emulazione

Simulation of computer networks 4

Programming a simulation

What ‘s in a simulation program??

simulated time: internal (to simulation program) variable that
keeps track of simulated time

system “state”: variables maintained by simulation program
define system “state”

® e.g., may track number (possibly order) of packets in queue, current
value of retransmission timer

events: points in time when system changes state
® each event has associated

e.g., arrival of packet to queue, departure from queue

precisely at these points in time that simulation must
take action (change state and may cause new future
events)

" model for time between events (probabilistic) caused by external
environment
Simulation of computer networks 8

Discrete Event Simulation

simulation program maintains and updates list of future
events: event list initialize event list

simulator structure: :1

get next (nearest future)
event from event list

V
Need: time = event time
well defined set of l
process event
events (change state values, add/delete

future events from event list

for each event:
simulated system
action, updating of
event list

update statistics

no done?

yes|

Simulation of computer networks 9

Things to remember about Discrete Event Simulation

The programming model revolves around “events”
(eg: packet arrivals):
" Events trigger particular sub-routines

Huge “switch” statement to classify events and call appropriate
subroutine

The subroutine may schedule new events! (cannot schedule
events for past, l.e., events are causal)

Rarely you might introduce new event types

Events have associated with them:
® Event type, event data structures (eg: packet)
® Simulation time when the event is scheduled

Key event operations: Enqueue (l.e. schedule a event)
" Dequeue is handled by the simulation engine

Simulation of computer networks 10

Discrete Event Simulation: Scheduler

Purpose: maintain a notion of simulation time, schedule
events. A.k.a: “simulation engine”

Simulation time # Real time
® A simulation for 5 sec of video transmission might take 1 hour!

Events are sorted by simulation time (not by type!):
priority queue or heap data structure

® After all subroutines for an event have been executed, control is
transferred to the simulation engine

® The simulation engine schedules the next event available at the same
time (if any)

® Once all the events for current time have been executed, simulation time
is advanced and nearest future event is executed.

= Simulation time = time of currently executing event

Simulation of computer networks 11

Simulation: example

packets arrive (avg. interrarrival time: 1/ A) to router (avg.
execution time 1/) with two outgoing links

arriving packet joins link i with probability @
A < ®—

state of system: size of each queue

system events:
® packet arrivals
B service time completions

Simulation of computer networks 12

Simulation: example

| | \ (wy)—
Simulator actions on event —— @
choose a link

= if link idle {place pkt in service, determine service time
(random number drawn from service time distribution) add
future event onto event list for pkt transfer completion, set
number of pkts in queue to 1}

= if buffer full {increment # dropped packets, ignore arrival}
® else increment number in queue where queued

create event for next arrival (generate interarrival
time) stick event on event list

Simulation of computer networks 13

Simulation: example

Simulator actions on departure event nn ‘—’

remove event, update simulation time, update
performance statistics

decrement counter of number of pkts in queue

If (number of jobs in queue > 0) put next pkt into
service — schedule completion event (generate
service time for put)

Simulation of computer networks 14

Ns-3 tutorial

* Outline
— Introduction to ns-3
— Experimenting with ns-3
— Reading ns-3 code
— Basics of ns-3 architecture

 Goals

— Understand the software architecture, conventions, and
basic usage of ns-3

— Read a couple of ns-3 scripts
— Learn how you can conduct your own experiments

Simulation of computer networks 15

Assumptions

* Some familiarity with C++ programming
language

* Some familiarity with Unix Network
Programming (e.g., sockets)

* Some familiarity with discrete-event
simulators

Simulation of computer networks 16

Ns-3 features

open source licensing (GNU GPLv2) and
development model

Python scripts or C++ programs

alignment with real systems (sockets, device
driver interfaces)

alignment with input/output standards (pcap
traces, ns-2 mobility scripts)

testbed integration as a priority
modular, documented core
Easy to modify, extend

Ns-3 is not an extension of ns-2

Simulation of computer networks 17

Resources

Web site:
Mailing list:

Tutorial:

Code server:

WIKki:

Simulation of computer networks

18

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

Outline of the tutorial

Introduction to ns-3

Simulation of computer networks

19

Basics

* ns-3 is written in C++

* Bindings in Python

* ns-3 uses the waf build system

* |.e., Instead of ./configure;make, type . /waf

* simulation programs are either C++
executables or python scripts

Simulation of computer networks 20

Browse the source

giovanni@Montecalvario:~/ns-3-dev$ 1s

AUTHORS doc README test.py utils.pyc waf-tools
bindings examples RELEASE NOTES testpy.supp VERSION wscript
build LICENSE scratch utils waf wutils.py
CHANGES.html ns3 src utils.py waf.bat wutils.pyc

Pause presentation to browse source code

Simulation of computer networks 21

Doxygen documentation

* Most of the ns-3 APl is documented with
Doxygen

— http://www.stack.nl/~dimitri/doxygen/

Pause presentation to browse Doxygen
http://www.nsnam.org/doxygen/index.html

Simulation of computer networks 22

the waf build system

* Waf is a Python-based framework for
configuring, compiling and installing applications.

— It is a replacement for other tools such as
Autotools, Scons, CMake or Ant

— http://code.google.com/p/waf/

* For those familiar with autotools:
— configure -> ./waf -d [optimized|debug] configure
— make -> ./waf
— make test -> ./waf check (run unit tests)

Simulation of computer networks 23

http://code.google.com/p/waf/

waf key concepts

* Can run programs through a special waf
shell; e.g.
— ./waf --run simple-point-to-point

— (this gets the library paths right for you)

Simulation of computer networks 24

The basic model

-
[Applicationﬁ
/ Sockets-like

sthek Packet(s)

~~~~~~~~ Channel

~

.

[NetDe ice (O ( Channﬂ

Simulation of computer networks

-

[A

pplicatio

I




Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

Simulation of computer networks 26



Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

_ Apr" .
Appl Application

. ‘..
s
11 7
W, | stacks
K VS
7
- 7
g ;
A i )
Ut b 4 ba.
e
vy 4
.
BN 3 R
s R B
~ & " .
N

Simulation ui cullputer 1




NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

WifiNetDevice

Nodes are architected for multiple interfaces

Simulation of computer networks 28



Node basics

Two key abstractions are maintained:

1) applications use an (asynchrounous for
the moment) sockets API
—Based on the BSD Socket API

2) the boundary between IP and layer 2
mimics the boundary at the device-
iIndependent sublayer in Linux

l.e., Linux Packet Sockets

Simulation of computer networks 29



Ns-3 packets

* each network packet contains a byte buffer,
a list of tags, and metadata

—buffer: bit-by-bit (serialized) representation of
headers and trailers

—tags: set of arbitrary, user-provided data
structures (e.qg., per-packet cross-layer
messages, or flow identifiers)

—metadata: describes types of headers and
and trailers that have been serialized

* optional-- disabled by default

Simulation of computer networks 30



Ns-3 packets (2)

* Each type of header is represented by a
subclass of ns3::Header

* to add a new header, subclass from
Header, and write your Serialize() and
Deserialize() methods

—how bits get written to/from the Buffer

* Similar for Packet Tags

Simulation of computer networks 31



Example: UDP header

class UdpHeader : public Header
{
public:

void SetDestination (uintlo t port);

volid Serilalize (Buffer::Iterator start) const;

uint32 t Deserialize (Buffer::Iterator start);
private:

uintlo t m sourcePort;

uintl6 t m destinationPort;

uintl6o t m payloadSize;

uint16_t m_initialChecksum;

Simulation of computer networks 32



Example: UDP header

void
UdpHeader::Serialize (Buffer::Iterator start) const
{
Buffer::Iterator 1 = start;
1.WriteHtonUl6 (m sourcePort);
1.WriteHtonUl6 (m destinationPort);
1.WriteHtonUl6 (m payloadSize + GetSerializedSize ());
1.WriteUlo6e (0);
if (m calcChecksum)
{
uintl6 t checksum = Ipv4ChecksumCalculate (...);
1.WriteUl6 (checksum);

}

Simulation of computer networks 33



Simulation basics

* As previously said, simulation time moves
discretely from event to event

* A simulation scheduler orders the event
execution

* Simulation::Run() gets it all started

* Simulation stops at specific time or when
events end (Simulation::Stop())

Simulation of computer networks 34



Ns-3 object metadata system

* ns-3 is, at heart, a C++ object system

* ns-3 objects that inherit from base class
ns3::0bject get several additional features
—dynamic run-time object aggregation
—an attribute system
—smart-pointer memory management

Simulation of computer networks 35



Object aggregation

* You can aggregate objects to one another
at run-time

—Avoids the need to modify a base class to
provide pointers to all possible connected
objects

* Object aggregation is planned to be the
main way to create new Node types
(rather than subclassing Node)

Simulation of computer networks 36



Object aggregation example

* How aggregation works

°o-0¢

node->AggregateObject (mobility);

* How to access on aggregated object

Ptr<MobilityModel> mob = node->GetObject<MobilityModel> ();

Simulation of computer networks 37



Attributes

* An Attribute represents a value in our
system

* An Attribute can be connected to an
underlying variable or function
—e.g. TcpSocket::m_cwnd;
—Or a trace source

Simulation of computer networks 38



Attributes (2)

* What would users like to do?
— Set a default initial value for a variable
—Set or get the current value of a variable

— Know what are all the attributes that affect the
simulation at run time

— Initialize the value of a variable when a
constructor is called

* The attribute system is a unified way of
handling these functions

Simulation of computer networks 39



How to handle attributes?

* The traditional C++ way:
—export attributes as part of a class's public API

—walk pointer chains (and iterators, when
needed) to find what you need

— use static variables for defaults

* The attribute system provides a more
convenient API to the user to do these
things

Simulation of computer networks 40



The traditional C++ way

class Foo {
public:
void SetVarl (uint32 t value);
uint32 t GetVarl (void);
static void SetInitialVarl (uint32 t value);
void SetVar2 (uint32 t value);
uint32 t GetVar2 (void);
static void SetInitialVar2 (uint32 t wvalue);

private:
uint32 t m varl; // document varl
uint32 t m var2; // document var?2
static uint32 t m initial varl;
static uint32 t m initial var2;

Foo::Foo() : m varl(Foo::m initial varl), m var2(Foo::m initial var2) {

}

To modify an instance of Foo, get the pointer somehow, and use the public accessor functions
To modify the default values, modify the statics
Default values may be available in a separate framework (e.g. ns-2 Bind())

Simulation of computer networks 41



Navigating the attributes

* Attributes are exported into a string-based
namespace, with filesystem-like paths

—namespace supports regular expressions

* Attributes also can be used without the
paths

—e.g. "YansWifiPhy::TxGain”

* A Config class allows users to manipulate
the attributes

Simulation of computer networks 42



Navigating the attributes using paths

* Examples:
— Nodes with Node ids 1, 3, 4, 5, 8, 9, 10, 11:
“/NodeList/[3-5]|[8-11]"
— UdpL4Protocol object instance aggregated to

matching nodes:
“/NodeList/[3-5]|[8-11]/$UdpL4Protocol”

— UdpL4Protocol object instances of all nodes:
“/NodeList/*/$UdpL4Protocol”

— EndPoints which match the SrcPort=1025
specification:
“/EndPoints/*:SrcPort=1025"

Simulation of computer networks 43



What users can do

* e.g.: Set a default initial value for a
variable

* (Note: this replaces DefaultValue::Bind())

Config::Set (“YansWifiPhy::TxGain”, Double
(1.0));

Attribute
Value

Simulation of computer networks 44



What users can do (2)

* Set or get the current value of a variable

—Here, one needs the path in the namespace to
the right instance of the object

Config::SetAttribute (“/NodeList/5/Devicelist/3/Ya
nsWifiPhy/TxGain”, Double(1.0));

Double d =
Config::GetAttribute (“/NodelList/5/NetDevice/3/Ya
nsWifiPhy/TxGain”) ;

* Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

Simulation of computer networks 45



CreateObject<> ();

* CreateObject<> is a wrapper for operator new.

* Why not just, e.g., Node * node = new Node()?

— You have to manage the memory allocation and
deallocation

* ns3::0bject are created on the heap using
CreateObject<> (), which returns a smart
pointer; e.g.

Ptr<Node> rxNode = CreateObject<Node> ();

Simulation of computer networks 46



Create<> ();

* What is Create<> ()?

* Create<> provides some smart pointer
help for objects that use ns3::Ptr<> but
that do not inherit from Object.

* Principally, class ns3::Packet

Ptr<Packet> p = Create<Packet> (data,size);

Simulation of computer networks 47



Non-default constructors

* The attribute system allows you to also
pass them through the CreateObject<>
constructor.

* This provides a generic non-default
constructor for users (any combination of

parameters), e.qg.:

Ptr<YansWifiPhy> phy = CreateObject<YansWifiPhy> (
“TxGain”, Double (1.0));

Simulation of computer networks 48



How is all this implemented (overview)

class Foo: public Object
{
public:
static Typeld GetTypelId (void);
private:
uint32 t m varl; // document varl
uint32 t m var2; // document var2

}

Foo::Foo () {
}

Typeld Foo::GetTypeId (void)
{
static Typeld tid = TypeId(“Foo”)
.AddConstructor<Foo> ();
.AddAttribute (“m varl”, “document varl”,
UInteger(3),
MakeUIntegerAccessor (&Foo::m varl),
MakeUIntegerChecker<uint32 t> ())
.AddAttribute (“m var2”, “7, ...)
return tid;

Simulation of computer networks 49



A real Typeld example

TypeId
RandomWalk2dMobilityModel: :GetTypelId (void)
{
static TypelId tid = Typeld ("RandomWalkMobilityModel")
.SetParent<MobilityModel> ()
.SetGroupName ("Mobility")
.AddConstructor<RandomWalk2dMobilityModel> ()
AddAttribute ("bounds",
"Bounds of the area to cruise.",
Rectangle (0.0, 0.0, 100.0, 100.0),
MakeRectangleAccessor (&RandomWalkZdMobilityModel::m bounds),
MakeRectangleChecker ())
.AddAttribute ("time",
"Change current direction and speed after moving for this delay.",
Seconds (1.0),
MakeTimeAccessor (&RandomWalk2ZdMobilityModel::m modeTime),
MakeTimeChecker ())

.AddAttribute ("distance",
"Change current direction and speed after moving for this distance.",

Seconds (1.0),
MakeTimeAccessor (&RandomWalk2dMobilityModel::m modeTime),

MakeTimeChecker ())

Simulation of computer networks 50



Also part of Object: smart pointers

* ns-3 uses reference-counting smart
pointers at its APIs to limit memory leaks

—Or “pass by value” or “pass by reference to
const” where appropriate

* A “smart pointer” behaves like a normal
pointer (syntax) but does not lose memory
when reference count goes to zero

* Use them like built-in pointers:

Ptr<MyClass> p = CreateObject<MyClass> ()

->method ;
b 0 Simulation of computer networks 51



Statements you should understand now

amu
....................................
..........
......
0 * .

*
.....
-------
--------------

C++ Smart Pointer ns3::0Object

Config::SetDefault (“OnOffApplication::DataRate”, String(“448kb/s”));

sma
------------------
[ 34 "
. L]
. G
. 3

*
.....
-------
-----------------

Attribute namespace

Simulation of computer networks 52



How to parse command line arguments

* To configure the from the command line ns-3
provides the Command facility

* int main (int argc, char *argv][])

{

CommandLine cmd;
cmd.Parse (argc, argv);

}

* The snippet of code above enables the setting of all
the attributes in the ns-3 attributes namespace

* ./waf --run "scratch/first --ns3::PointToPointNetDevice::DataRate=5Mbps"

Simulation of computer networks 53



How to parse command line arguments (2)

* Custom global properties can be set from
the command line as well

— int main(int argc, char * argv[] X

uint32_t nPackets = 1;
CommandLine cmd;
cmd.AddValue("nPackets", "Number of packets to echo", nPackets);

cmd.Parse (argc, argv);

* How to set the property on the command line
— ./waf --run "scratch/first --nPackets=2"

Simulation of computer networks 54



Helpers objects

* Helpers make it easier to repeat the same
operations on a set of resources (e.g. nodes,
interfaces)

* The settings are applied once to the helper and
used to perform the operation on the resources

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to read for
network researchers

* Each function applies a single operation on a "set
of same objects”

Simulation of computer networks 55



Helper Objects (2)

* InternetStackHelper

* MobilityHelper

* OlsrHelper

* ... Each model provides a helper class

* What does this apply to?
—NodeContainer: vector of Ptr<Node>
— NetDeviceContainer: vector of Ptr<NetDevice>

Simulation of computer networks 56



Ns-3 logging

* ns-3 has a built-in logging facility to stderr

* Features:
—Multiple log levels like syslog

—can be driven from shell environment
variables

— Function and call argument tracing

* Intended for debugging, but can be
abused to provide tracing

— It is not guaranteed that format is unchanging

Simulation of computer networks o7



Tracing model

* Tracing is a structured form of simulation output

— tracing format should be relatively static across simulator
releases

* Example (from ns-2):

+ 1.84375 0 2 cbr 210 -—————- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 --=———--- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 -—-————-- 1 3.0 1.0 195 600
r 1.845660 2 0 ack 40 —-—————- 2 3.2 0.1 82 602

+ 1.84560 0 2 tcp 1000 —-=-=—-=——- 2 0.1 3.2 102 o611

* Needs vary widely

Simulation of computer networks 59



Crude tracing

#include <iostream>

int main ()

{

std: :cout << "The wvalue of x is " <K x <<
std: :endl;

Simulation of computer networks 60



Slightly less crude

#include <iostream>

int main ()

{

NS LOG UNCOND ("The value of x 1s " << x);

Simulation of computer networks 61



Simple ns-3 tracing

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/ascii-trace.h"

AsciiTrace ascllitrace ("mixed-wireless.tr");
asciitrace.TraceAllQueues () ;
asciitrace.TraceAllNetDeviceRx () ;

Simulation of computer networks 62



Simple ns-3 tracing (pcap version)

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/pcap-trace.h"

PcapTrace pcaptrace ("mixed-wireless.pcap");

pcaptrace.TraceAllIp ()

Simulation of computer networks 63



Ns-3 tracing model

* Fundamental #1: decouple trace sources
from trace sinks

* Fundamental #2: prefer standard trace
outputs for built-in traces

Trace source
Trace source i
configurable by
unchanging user

Simulation of computer networks 64




Tracing overview

* Simulator provides a set of pre-configured
trace sources

—Users may edit the core to add their own
* Users provide trace sinks and attach to the
trace source

—Simulator core provides a few examples for
common cases

* Multiple trace sources can connect to a
trace sink

Simulation of computer networks 65



Multiple levels of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

 Low-level: Add trace sources to the
tracing namespace

— Or expose trace source explicitly

Simulation of computer networks 66



High-level of tracing

* High-level: Use built-in trace sources and
sinks and hook a trace file to them

// Also configure some tcpdump traces; each interface will be traced
// The output files will be named

// simple-point-to-point.pcap-<nodelId>-<interfaceld>

// and can be read by the "tcpdump -r" command (use "-tt" option to
// display timestamps correctly)

PcapTrace pcaptrace ("simple-point-to-point.pcap");
pcaptrace.TraceAllIp ();

// Ascii format

std::ofstream ascii;

ascii.open ("myfirst.tr");

PointToPointHelper: :EnableAsciiAll (ascii);

Simulation of computer networks 67



High level of tracing (2)

void EnablePcap (std::string prefix, Ptr<NetDevice> nd, bool promiscuous =
false, bool explicitFilename = false);

void EnablePcap (std::string prefix, std::string ndName, bool promiscuous =
false, bool explicitFilename = false);

void EnablePcap (std::string prefix, NetDeviceContainer d, bool promiscuous =
false);

void EnablePcap (std::string prefix, NodeContainer n, bool promiscuous = false);
void EnablePcap (std::string prefix, uint32 t nodeid, uint32 t deviceid, bool
promiscuous = false);

void EnablePcapAll (std::string prefix, bool promiscuous = false);

Simulation of computer networks 68



Reading pcap files

* pcap files can be read by means of
— Wireshark
— Tcpdump
// Example of tcpdump usage
tcpdump —-nn -tt -r simple-point-to-point.pcap
reading from file myfirst-0-0O.pcap, link-type PPP (PPP)

2.000000 IP 10.1.1.1.49153 > 10.1.1.2.9: UDP, length 1024
2.514048 IP 10.1.1.2.9 > 10.1.1.1.49153: UDP, length 1024

Simulation of computer networks 69



Mid-level of tracing

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

void Regular expression editing

PcapTrace: :TraceAllIp (void) K////////
{

NodeList::Connect ("/nodes/*/ipv4/ (tx|rx)",

MakeCallback (&PcapTrace::Loglp, this));

} N

Hook in a different trace sink

Simulation of computer networks 70



Low-level of tracing

* Define your own trace sources
* For specific advanced needs

* Need to modify the core of ns-3
—Can be defined in custom-elements

—Easy to apply to any existing object
attribute

Simulation of computer networks 71



An additional trace method: statistics

* Avoid large trace files
* Collect statistics of the simulation
* Reuse tracing framework

* One similar approach: ns-2-measure project
— http://info.iet.unipi.it/~chg/ns2measure/

— Static “Stat” object that collects samples of variables based on explicit
function calls inserted into the code

— Graphical front end, and framework for replicating simulation runs

FlowMon is currently available
— http://telecom.inescn.pt/~gjc/flowmon-presentation.pdf

Simulation of computer networks 72



Ns-3 tutorial

Introduction to ns-3
Experimenting with ns-3
Reading ns-3 code

Basic of ns-3 architecture

Simulation of computer networks

73



examples/ directory

* examples/ contains other scripts with similar themes

S 1s

csma-broadcast.cc simple-point-to-point.cc
csma-multicast.cc tcp-large-transfer—-errors.cc
csma—-one-subnet.cc tcp-large-transfer.cc
csma-packet-socket.cc tcp-nonlistening-server.cc
mixed-global-routing.cc tcp-small-transfer-oneloss.cc
simple-alternate-routing.cc tcp-small-transfer.cc
simple-error-model.cc udp-echo.cc
simple-global-routing.cc waf

simple-point-to-point-olsr.cc wscript

Simulation of computer networks 74



Outline

Introduction to ns-3
Experimenting with ns-3
Reading ns-3 code

Basics of ns-3 architecture

Simulation of computer networks

75



Path of a packet (send)

Function/object trace for sending a packet

Socket: Send()
Getﬁddress {outgoing if}
( UdpSocket } Ipve )
i Send()
( UdpProtacol )
LEen

di}
:Lookup()
al )-7 [pvd Route
dih

( Ipwd Protoc
na

En
Lookup(}
( ArplpvdInterface )F ArpProtocol ]
l Send()

etlevice

Step in packet sending process:

1. The Applicaton has previously created a socket (here, a UdpSocket).
It calls Socket::Send(). Eitherreal data or durnmy data is passed atthe APL

2. Socket:Send() forwards to UdpSocket::DoSend:) and later to UdpSocket: DoSendToi).
These functons set the proper source and destination addresses, handle socket calls

such as hind(} and connect{) and then the UdpProtocol::Send() funchon is called. Asina
real implementation, the socket must query the Ipvd layer to find the right source address

to match the destination address,

3. UdpProtocolis where the socket-independent

protocollogic for UDP is implemented, The Send() method adds the

ULP header, iniializes the checksurn, and sends the packet to the Ipwd layer,
Here, a private API {Ipwd Private) is queried, and the Send{) method iz called.

4. IpvAProtocol adds the [P header, looks up a route, and sends the packet to an
appropriate [pvdInterface instance. Inthis example, the device is one that supports
Arp, so the packetis sent to an ArplpvdInterface object,

5. IpvdInterface is an abstract base class; here, we depict the ArplpvdInterface
concrete class, This objectlooks up the MAC address if Arp is supported on this
WetDevice technology, and if there is a cache hit, it sends it to the NetDevice, or

else it first initiates an Arp request,

Simulation of computer networks 76



Path of a packet (receive)

Function/object trace for receiving a packet

'HEEHHHHH!!’

im_rzCallback)-=Recv() or RecvDurnmy()

UdpSocket

im_rzCallback)-=ForwardUp{}

[pv4EndPoint
hgvd EndPointD em}?'
s ForwardUp()

—

"’E::Loukup()
UdpProtocol

Receivel) f Ipwd:: ProtocolHandJ;Ers

[pv4 Protocel

Receivel)

—_— et o — — —

{ Node: ProtocolHanglers

_—

RN ——

—_
—_—

” m_receiveCallback
etDevicse

Simulation of computer networks

Step in packet receive process:

7. UdpSocketitself calls one of two callbacks to get the data
to the application. If the Applicaton is sending fake data, the RecvDurnrry()
callback is called; else, the Recw() callback is called.

&, IpvdEndPoint has a callback where a Socket object is able to
register areceive method. Here, this callback calls to
UdpSocket:: ForwardUp()

5. UdpProtocolis where the socket-independent

protocollogic for UDP is implemented. The Receive!) method removes the
UDP header and looks up the per-flow context state, which is one or more
[pw4EndPoint objects stored in an Ipwd EndPointD ermux (indexed by src addr,
src port, dest addr, dest port). It then calls Ipwd EndPoint:: ForwardUp()
when done,

4. Ipv4Protocol removwes the [P header, checks checksumn (if implemnented), and

either Forwards the packet or calls ForwardUp{). ForwardUp() then looks up the

[P protocol number in a callback-based dernultiplexer {similar to Mode:: ProtocolHandlers,
and calls the registered 1 Receive() method.

3. Node:!:ReceiveFromDevice stores a set of callbacks that are looked
up based on protocol number and device. In this case, the lookup
will result in Ipvw4 Protocol:: Receivel) being called,

2. This is typically the Node::ReceiveFromDevice!) function
1. NetDevice calls the function registered at Node::m_receiveCallback

77



ns-3 used for emulation

real machine
ns-3 ns-3
virtual virtual real real
machine ns-3 machine machine machine
Testbed
1) ns-3 interconnects virtual 2) testbeds interconnect ns-3
machines stacks

Simulation of computer networks 78



Summary

* ns-3 Is an emerging simulator to replace ns-2

* Consider ns-3 if you are interested In:
— Modular architecture
* Easily extendable

— More faithful representations of real computers and
the Internet

— Integration with testbeds
— A powerful low-level API
— Python scripting

Simulation of computer networks 79



Resources

Web site:
Mailing list:

Tutorial:

Code server:

WIKki:

Simulation of computer networks

80



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

