Reti di Calcolatori I

Prof. Roberto Canonico
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione Corso di Laurea in Ingegneria Informatica
A.A. 2018-2019

FDiviciil Computer networks: fundamental concepts

1 What is a computer network ?

2 PSTN and circuit switching

3 Computer networks and packet switching

4 Type of networks by geographic extension: LAN, WAN, MAN

5 Internetworking
6 Layered models of computer networks

7 Layers and protocols
8 Five layers model of the Internet and the Internet Protocol suite

Federicoil What is a computer network?

A collection of computing devices connected in various ways in order to communicate and share resources

- Terminals (a.k.a. hosts or end-systems)

$\stackrel{\square}{\square}$
- personal computers, servers, computer peripherals (printers, scanners, ...), smartphones, sensors, "connected things", ...
- Intermediate devices

- perform various communication tasks and are placed "in the middle" while terminals are "at the edges" of the network
- take different names according to the main function they perform
- hub, switches, routers, modems, access points, firewalls, ...
- Connections (a.k.a. links)

- physical wires or cables
- wireless connections, using radio waves or infrared signals

FEDERICO II Digital links: data rate

- A digital link allows to transmit bits (0 and 1 symbols) from one device to another
- A digital link data rate is the amount of bits that can be transmitted over the link in a time unit (1 second)
- Early days' links had a data rate of 56-64 kbps
- Today's links have a data rate in the order of:
- $1 \mathrm{Mb} / \mathrm{s}=10^{6}$ bits per second
- $1 \mathrm{~Gb} / \mathrm{s}=10^{9}$ bits per second
- $1 \mathrm{~Tb} / \mathrm{s}=10^{12}$ bits per second
- Time needed to transmit L bits at data rate $R=\frac{L \text { (bits) }}{R(\text { bits/sec) }}$

FEDERCOIII PSTN and circuit switching (1/2)

- Computer networks operate according to the packet switching model, while the traditional telephone system operates according to the circuit switching model
- In the PSTN (Public Switched Telephone Network), communicating terminals (phones) are connected through switching offices
- The PSTN service is also referred to as POTS (Plain Old Telephone System)
- When a phone call is made, a circuit is established between the two phones as a concatenation of links along a fixed path
- A circuit is dedicated to a single phone call, i.e. its transmission capacity is assigned to a call even when none of the two communicating persons is talking

FEDERICOIII PSTN and circuit switching (2/2)

- Establishing a communication in a circuit switching network involves 3 phases:

1) Circuit establishment

- Route selection and link by link resource allocation

2) Call or data transfer
3) Circuit tear-down

- Resource deallocation
- Phases 1) and 3) involve exchange of signalling information both
- between terminals and switching offices
- and between switching offices among themselves

Fidericoil Link multiplexing in PSTN

- Switching offices in the PSTN network are hierarchically organized
- Links connecting switches need to carry several phone calls at the same time
- The transmission capacity of such links must be split in multiple channels to accommodate this aggregate traffic
- Different multiplexing techniques may be adopted
- time-division multiplexing (TDM) vs. frequency-division multiplexing (FDM)

- Both TDM and FDM partition a link capacity in channels of fixed capacity
- A single phone call is typically transmitted over a $64 \mathrm{~kb} / \mathrm{s}$ channel
- A channel is associated to a specific call during the circuit establishment phase

Computer networks and packet switching

- Computer networks operate according to the packet switching model
- In a packet switched network, information is transmitted in packets formed by a header and a payload
- the header contains control information including a destination address identifying the terminal to which the information must be delivered

Packet header	Packet payload

- Intermediate systems typically operate in a way called store-and-forward
- each packet is received in its entirety, inspected for errors, and retransmitted along the path to the destination
- this implies buffering and enqueueing of packets at these intermediate systems
- a channel is occupied only during the transmission of a packet, and upon completion of the transmission the channel is made available for the transfer of other traffic

Packet switching and statistical multiplexing

Packet switching allows statistical multiplexing of packets

Packet switching: datagram networks

The packet switching model has two possible incarnations:

- Datagram networks
- Virtual circuit networks
- In a datagram network, each packet is independently routed toward its destination
- Packets do not follow a pre-established route
- Each time a packet arrives to an intermediate device operating at network layer (i.e. a router), the device decides what is next hop device to which the packet is to be transmitted
- Subsequent packets sent from the same source A to the same destination B may be routed along different paths
- Packets may arrive to destination with a different order
- No need for connection setup

Beware: packets may get lost during their journey from A to B

The packet switching model has two possible incarnations:

- Datagram networks
- Virtual circuit networks
- In a virtual circuit network, a path from source A to destination B is computed and pinned down before communication begins
- Packets from A to B follow a pre-established route
- Packets arrive in the same order in which they have been transmitted
- A connection setup phase is needed (signalling)
- Resources may be set aside for the $A \rightarrow B$ stream in each intermediate device

Analogies with circuit switching (but this is packet switching!)
Beware: packets may get lost during their journey from A to B

Fidericolil
 Type of networks by geographic extension

Local-area network (LAN)

Connects a relatively small number of terminals in a relatively close geographical area
Wide-area network (WAN)
Connects two or more local-area networks over a potentially large geographic distance

Metropolitan-area network (MAN)

Communication infrastructures spanning large cities

The Internet, as we know it today, is essentially the ultimate wide-area network, spanning the entire globe

WANs are typically created by LAN interconnections

Communication between networks is called internetworking

(7) FDDericoill LAN topologies

Ring topology

Star topology

Bus topology

Internetworking

- When two or more LANs, located at different sites, are to be interconnected, a particular node at each LAN is set up to serve as a gateway to handle all communication going between that LAN and other networks
- In the Internet, gateways are also referred to as routers

Full mesh topology

- Consider an internetwork of N sites in which any site is connected to all other $\mathrm{N}-1$ sites according to a full mesh topology
- Number of bidirectional links is $\mathrm{N}^{*}(\mathrm{~N}-1) / 2$

- Large scale internetworks (such as the Internet) cannot have a full mesh topology for scalability reasons
- Most of the links would be rarely used anyway

Typical WAN topologies

- Large scale WAN internetworks (such as the Internet) typically have a partially connected mesh topology
- Not all the links are equal: some have great capacity than others, i.e. are able to carry a larger amount of information per time unit

If not directly connected, two nodes may communicate along a path traversing other intermediate nodes

A may communicate with F along the paths:
a) $A \leftrightarrow D \leftrightarrow F$
b) $\mathrm{A} \leftrightarrow \mathrm{B} \leftrightarrow \mathrm{C} \leftrightarrow \mathrm{D} \leftrightarrow \mathrm{F}$

NSFNET T3 Network 1992

An Internet map

- Partial map of the Internet based on the January 15, 2005 data found on http://www.opte.org/maps/ opte.org

Layered models of computer networks

- Computer networks are engineered according to layered conceptual models
- Each layer deals with a particular aspect of network communication
- Historically, the International Organization for Standardization (ISO) established the Open Systems Interconnection (OSI) Reference Model, based on seven layers
- Today used almost exclusively for teaching purposes
- Layers 1 to 3 are implemented in both terminals and gateways
- Layers 4 to 7 are implemented in end systems (terminals)

7	Application layer
6	Presentation layer
5	Session layer
4	Transport layer
3	Network layer
2	Data Link layer
1	Physical layer

Names of the seven layers in the ISO-OSI reference model

Fidericoli Five layers model of the Internet

- The Internet has been designed according to a five layers stack model
- With respect to the ISO/OSI model, L5 and L6 functions have not been explicitly assigned to specific layers
- If needed, they are implemented at the upmost level, the Application layer
- The Application layer is sometimes still referred to as L7, as in OSI/ISO

Layers and intermediate devices

- In most networks, two interacting end systems (terminals) are interconnected by a number of intermediate devices
- An intermediate device implements only the lowest layers
- The upmost layer implemented in a device is related to the device specific function
- Repeaters and hubs implement only L1
- Switches implement layers up to L2
- Routers implement layers up to L3

Application	switch	router	Application
Transport			Transport
Network		Network	Network
Datalink	Datalink	Datalink	Datalink
Physical	Physical	Physical	Physical
end system			end system

Fomericoil
 Layers: roles and interactions

- A layer located is responsible of performing specific tasks
- In a layered model, each layer is located at a level identified by an integer number
- Layer 1 is the lowest
- L1 usually referred to as the physical layer
- L1 responsible of transmitting sequence of bits on a digital link
- Lower layers are implemented in hardware, upper layers in software
- Layer n provides a service to layer $n+1$
- Layer n (for $n>1$) uses services provided by layer $n-1$
- The service provided by a layer to the upper layer is accessed through an interface
- Each layer should interact only with adjacent layers

Protocols

- A network protocol is a set of rules and formats that govern the communication between communicating peers operating at the same layer
- It specifies:
- format and order of messages sent and received among communicating entities
- actions to be taken on message transmission or receipt
- Since each layer has its own protocol(s), the term protocol stack is often used

How can I help you, Mr. John Doe?

Please fix my ADSL line,....

Protocols: PDUs handling (1/2)

- In a layered stack of protocols, each layer receives a payload from the upper layer and forms a Protocol Data Unit (PDU) made of a header and a payload

- Such PDU, in turn, is passed to the lower layer as a payload
- Just as with the postal system, the "content" to be sent must be put into an envelope and the envelope must be addressed
- The PDU header contains control information such as the destination address
- When a PDU is received, the payload is extracted and passed to the upper layer

Fidericoil Protocols: PDUs handling (2/2)

Fidericoil Message fragmentation

- At any layer of a stack it may occur that the payload is too large to fit in a single PDU
- In this event, the payload is split into a sequence of packets \rightarrow fragmentation
- The original payload is reconstructed at the receiving entity \rightarrow reassembly

Source: A. S. Tanenbaum. Computer Networks (4 ed.). Prentice Hall, 2003. (Chapter 1, Figure 1.15)

End-to-end communication through an intermediate system

Fepericoill PDU names according to layers

- Generally speaking, a PDU is a packet, made of a header, a payload and, optionally, of a trailer
- PDUs are usually referred to with different names according to the layer

Layer	PDU name
Application	Message
Transport	Segment
Network	Datagram
Data Link	Frame
Physical	Bit

Auxiliary Layer-5 Protocols

Transport Layer Protocols

Network Layer Protocols

- The Internet Protocol Suite is the term used to refer to the whole set of protocols today used in the Internet
- Also known as the TCP/IP protocol stack
- Most of these protocols are defined by the Internet Engineering Task Force (IETF)
- The Internet Protocol Suite does not consider layers below the Network layer
- This is because the IP protocol may be adapted to any layer 2 technology

