Reti di Calcolatori I

Prof. Roberto Canonico Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Corso di Laurea in Ingegneria Informatica

A.A. 2018-2019

Trasmissione di flussi multimediali in Internet RTP/RTCP e DASH

I lucidi presentati al corso sono uno strumento didattico che NON sostituisce i testi indicati nel programma del corso

Nota di copyright per le slide COMICS

Nota di Copyright

Questo insieme di trasparenze è stato ideato e realizzato dai ricercatori del Gruppo di Ricerca COMICS del Dipartimento di Informatica e Sistemistica dell'Università di Napoli Federico II. Esse possono essere impiegate liberamente per fini didattici esclusivamente senza fini di lucro, a meno di un esplicito consenso scritto degli Autori. Nell'uso dovranno essere esplicitamente riportati la fonte e gli Autori. Gli Autori non sono responsabili per eventuali imprecisioni contenute in tali trasparenze né per eventuali problemi, danni o malfunzionamenti derivanti dal loro uso o applicazione.

Autori:

Simon Pietro Romano, Antonio Pescapè, Stefano Avallone, Marcello Esposito, Roberto Canonico, Giorgio Ventre

Trasferimento di informazioni multimediali su rete

- Problema: trasferire informazioni multimediali (audio, video, ...) da una sorgente ad uno o più ricevitori attraverso una rete
- Per ridurre la quantità di informazioni trasferita sulla rete, il **trasmettitore** effettua una compressione mediante un'opportuna tecnica (MPEG 1-2-4, MJPEG, MP3, ...)
- Sulla rete l'informazione è trasferita a pacchetti
- Il ricevitore recupera l'informazione originaria dalla sequenza di pacchetti ricevuti, mediante un'operazione inversa a quella di compressione e una successiva trasformazione in forma sonora o in forma di video (sequenza di fotogrammi)

Trasferimento di informazioni multimediali su rete (2)

- Nel caso di informazioni live, l'informazione è prodotta dalla sorgente mediante un apposito sistema di acquisizione (microfono + scheda audio, telecamera + video capture board), opportunamente compressa (in tempo reale) e trasmessa sulla rete ai ricevitori
- Nel caso di informazioni pre-registrate, l'informazione è già registrata in formato compresso (MPEG, MJPEG, MP3, ...) in un file memorizzato su memoria di massa (hard-disk, CDROM, DVD, ...)

Informazioni multimediali pre-registrate

- Trasferimento dell'intero file da sorgente a ricevitore e successiva riproduzione: file transfer
 - La riproduzione può iniziare solo al termine del trasferimento del file (ritardo proporzionale alla dimensione del file)
 - E' necessaria una adeguata capacità di memorizzazione (su memoria di massa) da parte del ricevitore
 - Questa soluzione è idonea solo per documenti di piccole dimensioni (audio-clip e/o video-clip)
- Riproduzione progressiva del contenuto multimediale <u>durante il</u> <u>trasferimento</u> dell'informazione: <u>streaming</u>
 - Il ricevitore memorizza l'informazione ricevuta in un buffer (*playout buffer*) che viene continuamente alimentato dai dati ricevuti dalla rete e svuotato progressivamente
 - La riproduzione può iniziare non appena il buffer si è "sufficientemente" riempito
 - Il ricevitore non deve memorizzare l'intero file
 - La qualità della riproduzione può degradare se la rete non mantiene la continuità temporale del flusso di informazioni trasmesso dalla sorgente (sensibilità al jitter)

Informazioni multimediali live

- Nel caso di informazioni live, la sorgente produce un flusso continuo di informazioni
- Questo flusso di informazioni è spezzato in pacchetti che sono trasmessi individualmente sulla rete: trasmissione in streaming

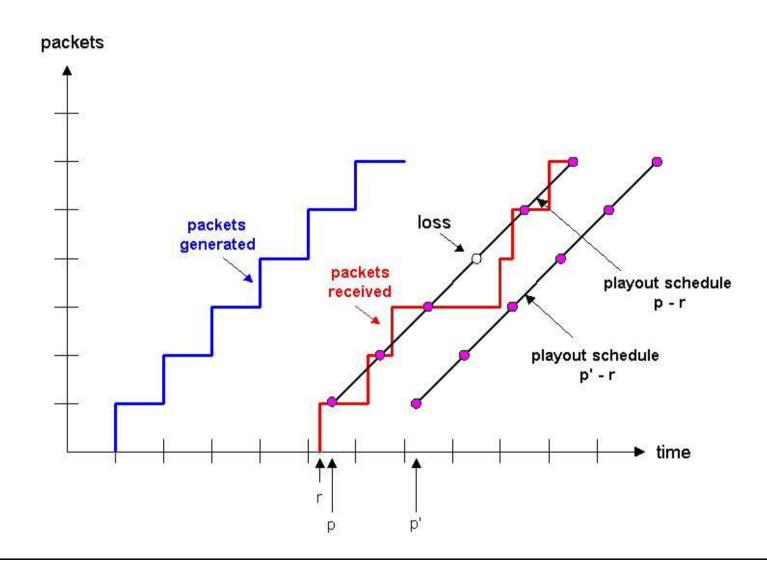
Sensibilità dello streaming alla QoS

- Il ricevitore riceve i pacchetti, recupera l'informazione originaria e la riconverte in forma audio/video
- Il ricevitore riesce a recuperare la continuità del flusso di informazioni prodotto dalla sorgente se tutti i pacchetti arrivano a destinazione, con la stessa tempificazione relativa
- La rete può alterare la continuità temporale del flusso di informazioni in due modi:
 - Facendo occasionalmente perdere dei pacchetti
 - Consegnando i pacchetti al ricevitore con una tempificazione relativa diversa da quella con cui sono stati trasmessi (jitter)
- Perchè la rete possa effettivamente supportare la trasmissione di flussi multimediali occorre che alcuni parametri di Qualità del Servizio (QoS) siano soddisfatti
 - Percentuale di perdita di pacchetti, latenza, jitter, ...

Degradazione introdotta dalla rete

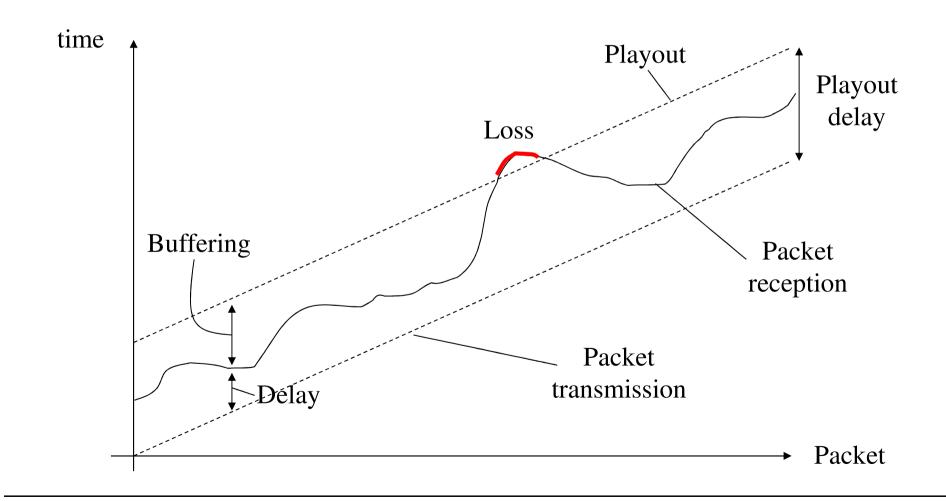
- Gli effetti sono diversi a seconda della natura del media (audio/video), a seconda della tecnica di compressione utilizzata ed a seconda del grado di alterazione introdotto
 - nel caso di flusso audio, vengono percepite dei "disturbi" (hiccups)
 - nel caso di flusso video, si hanno dei disturbi (glitches) che possono essere più o meno localizzati nel tempo e nello spazio
- Sia audio che video possono in genere tollerare una parziale degradazione, ma quando si oltrepassano dei valori di soglia l'informazione diventa inintelligibile

Esempio di distorsione video prodotta da errori di trasmissione



Contromisure

- Rispetto alla perdita occasionale di pacchetti, ci si difende mediante l'adozione di tecniche di compressione robuste, per le quali l'informazione audio/video ricostruita non è sensibilmente degradata quando occasionalmente si perde un pacchetto
 - In alcuni casi si adottano tecniche di *Forward Error Correction* (FEC)
 - L'adozione di tecniche basate sulla ritrasmissione (alla TCP) non sono considerate idonee per lo streaming
- Per limitare gli effetti del *jitter* si adotta una strategia di bufferizzazione: un buffer in ricezione fa da volano e compensa (introducendo un ritardo extra) la variabilità del ritardo di attraversamento della rete
- NOTA: non sarebbe necessario introdurre delle contromisure se la rete fosse in grado di offrire servizi a <u>qualità garantita</u>
 - Internet offre un servizio best-effort!


Bufferizzazione con ritardo di riproduzione costante

Bufferizzazione con ritardo di riproduzione costante (2)

Trasferimento di informazioni multimediali su Internet

- Il trasferimento di informazioni multimediali su Internet mediante la tecnica del file transfer è tipicamente realizzato adottando il protocollo applicativo HTTP, il quale si appoggia sul protocollo di trasporto TCP
- Per la trasmissione in streaming sono adottate due tecniche:
 - mediante un protocollo ad-hoc (RTP) su UDP
 - mediante HTTP su TCP

RTP

- RTP sta per "real-time transport protocol"
- definito dal Working Group "Audio/Video Transport" dell' IETF inizialmente in RFC 1889 (gennaio 1996)
 - http://www.ietf.org/rfc/rfc1889.txt
- e successivamente in RFC 3550 (luglio 2003)
 - http://www.ietf.org/rfc/rfc3550.txt
- RTP offre un servizio di livello trasporto specificamente progettato per i requisiti di flussi multimediali
- I pacchetti RTP sono incapsulati in datagrammi UDP
 - Un protocollo di livello trasporto su un altro di livello trasporto

RTP (2)

- RTP è un protocollo concepito secondo il modello Application Level Framing proposto in
 - Clark D., and D. Tennenhouse, "Architectural Considerations for a New Generation of Protocols", IEEE Computer Communications Review, Vol. 20(4), September 1990.
- è concepito per essere implementato direttamente nelle applicazioni, e non come uno strato aggiuntivo dello stack protocollare
- offre le funzionalità minimali richieste dalla trasmissione di flussi continui tipici delle applicazioni multimediali
- è neutrale rispetto alla codifica utilizzata (MPEG, ecc...)

RTP (3)

- RTP fornisce informazioni di tempificazione (timestamp) per consentire
 - sincronizzazione intra-media: ricostruzione della corretta tempificazione della sequenza di pacchetti ricevuti
 - sincronizzazione inter-media: finalizzata a mantenere "al passo" flussi multimediali trasmessi separatamente (es. audio e video: sincronizzazione "lip-sync")

RTP (4)

- supporta sia la trasmissione unicast che la trasmissione multicast
- i suoi meccanismi sono scalabili rispetto al numero di appartenenti al gruppo multicast
- separa la trasmissione dei dati dalla trasmissione delle informazioni di controllo
- RTP è definito congiuntamente ad un protocollo di controllo (RTCP) utilizzato per scambiare informazioni di servizio e di controllo sulla qualità della trasmissione
- fornisce informazioni necessarie a combinare flussi di informazioni differenti mediante appositi mixer software

Incapsulamento di pacchetti RTP

20 bytes	8 bytes	12 bytes	
IP header	UDP header	RTP header	payload

- Un pacchetto RTP è trasmesso in un datagramma UDP
- L'header UDP contiene i numeri di porto sorgente e destinazione
- RTP usa numeri di porto destinazione pari per la trasmissione dei flussi dati
- Se 2n è il numero di porto destinazione usato per uno flusso, il numero successivo 2n+1 è usato da RTCP per trasmettere le informazioni di controllo relative a quel flusso

Header RTP


```
2
 0
                1
| V=2 | P | X |
                             sequence number
                    timestamp
            -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        synchronization source (SSRC) identifier
contributing source (CSRC) identifiers
payload (audio, video...)
                            padding |
                                     count
  Version (V)
                          CSRC Count (CC)
  Padding (P)
                              Marker (M)

    eXtension (X)

                           Payload Type (PT)
  Sequence Number
                         Sync. SouRCe (SSRC)
```

Campi dell'header RTP

- Payload Type: 7 bit, specifica la codifica utilizzata per i dati (PCM, MPEG2 video,ecc.)
- Sequence Number: 16 bit, serve ad identificare perdite di pacchetti
- Timestamp: 32 bit, specifica il tempo di campionamento del primo byte del payload; serve a rimuovere il jitter introdotto dalla rete mediante bufferizzazione
- Synchronization Source identifier (SSRC): 32 bit, identifica la sorgente del flusso, ed è scelto casualmente dalla sorgente stessa; è introdotto per non dover fare affidamento sull'indirizzo IP per identificare la sorgente;
 - problema: sono possibili conflitti ...

Campi dell'header RTP (2)

- Contributing Source identifier list (CSRC): sequenza di n campi da 32 bit $(0 \le n \le 15)$, ciascuno dei quali identifica la sorgente originaria in un flusso prodotto dalla "fusione" di flussi diversi mediante un mixer software
 - esempio: audio-conferenza a più partecipanti
 - SSRC identifica il mixer
 - CSRC indica lo speaker corrente

Sessione RTP

- Una associazione tra un gruppo di entità che comunicano mediante RTP
- Alcune applicazioni danno vita a sessioni RTP differenti per media differenti (es. audio e video), a meno che la tecnica di codifica adottata non effettui un multiplexing di flussi differenti in un singolo flusso di dati
- Sessioni RTP differenti (es. audio e video) vengono distinte da un ricevitore mediante il port number di livello trasporto (UDP)

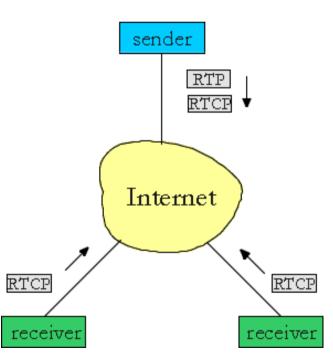
RTP timestamp e numero di sequenza

- Il valore di timestamp inserito in ogni pacchetto riferisce la tempificazione dei dati inseriti nel payload rispetto ad un clock specifico per il media trasportato
- Possono essere generati pacchetti RTP consecutivi con lo stesso timestamp
- Il numero di sequenza identifica un pacchetto rispetto agli altri principalmente per consentire di identificare pacchetti persi
- non possono essere generati due pacchetti con lo stesso numero di sequenza

RTCP

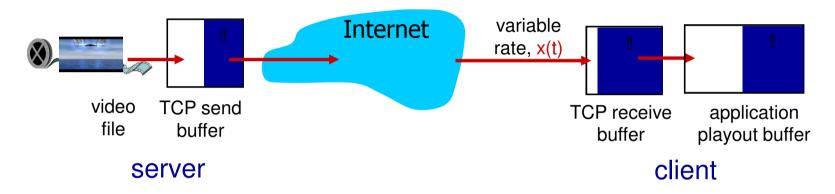
- Protocollo utilizzato congiuntamente ad RTP per la trasmissione di informazioni di controllo
- I pacchetti RTCP vengono inviati con una certa periodicità e trasportano informazioni di varia natura:
 - feedback sulla qualità della ricezione dei dati (perc. pacchetti persi, ...)
 - identificazione dei partecipanti ad una sessione RTP mediante un identificativo detto CNAME
- Nel caso di trasmissione RTP tra partecipanti ad un gruppo multicast, RTCP consente ad ogni partecipante di conoscere il numero di partecipanti

Messaggi RTCP



- Il protocollo RTCP definisce cinque tipi diversi di messaggi:
 - Source Report (SR)
 - Receiver Report (RR)
 - Source Description (SD)
 - BYE
 - APP
- I messaggi di tipo report contengono statistiche sul numero di pacchetti inviati, numero di pacchetti ricevuti, percentuale di pacchetti persi, jitter dei tempi di interarrivo, ecc. e servono a monitorare la qualità della trasmissione
- I messaggi di tipo description, invece, descrivono la sorgente del flusso (contengono tra l'altro il CNAME)
- BYE serve a notificare l'uscita da una sessione
- APP è un tipo di messaggio le cui funzioni sono definibili dall'applicazione

Banda usata da RTCP


- Nel caso di trasmissione multicast, ciascun ricevitore invia periodicamente (allo stesso gruppo multicast) i report RTCP
- Cosa succede se il numero di membri del gruppo diventa molto elevato ?
- Per contenere il traffico di controllo, si inserisce una minima forma di coordinamento:
- L'intervallo temporale tra due report è proporzionale al numero di partecipanti alla sessione
- in modo che la banda consumata da RTCP non superi il 5% della banda usata dalla sessione

Streaming di dati multimediali con HTTP

- multimedia file retrieved via HTTP GET
- send at maximum possible rate under TCP

- fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- larger playout delay: smooth TCP delivery rate
- HTTP/TCP passes more easily through firewalls

Streaming di dati multimediali con DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- server:
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - *manifest file:* provides URLs for different chunks
- client:
 - periodically measures server-to-client bandwidth
 - consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming di dati multimediali con DASH (2)

- DASH: Dynamic, Adaptive Streaming over HTTP
- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)