Reti di Calcolatori I

Prof. Roberto Canonico
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Corso di Laurea in Ingegneria Informatica

A.A. 2018-2019

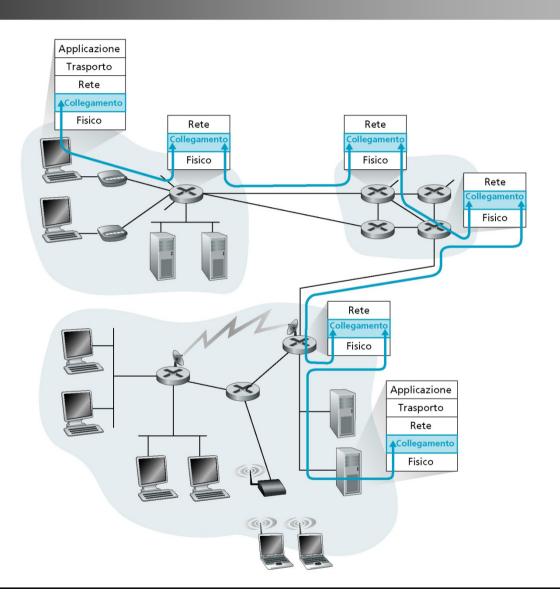
Lo strato di collegamento: introduzione e concetti generali Protocolli ad accesso multiplo

I lucidi presentati al corso sono uno strumento didattico che NON sostituisce i testi indicati nel programma del corso

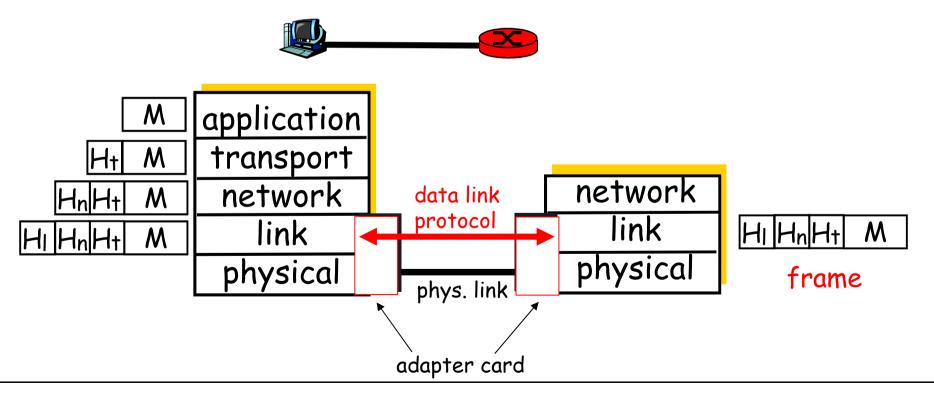
Nota di copyright per le slide COMICS

Nota di Copyright

Questo insieme di trasparenze è stato ideato e realizzato dai ricercatori del Gruppo di Ricerca COMICS del Dipartimento di Informatica e Sistemistica dell'Università di Napoli Federico II. Esse possono essere impiegate liberamente per fini didattici esclusivamente senza fini di lucro, a meno di un esplicito consenso scritto degli Autori. Nell'uso dovranno essere esplicitamente riportati la fonte e gli Autori. Gli Autori non sono responsabili per eventuali imprecisioni contenute in tali trasparenze né per eventuali problemi, danni o malfunzionamenti derivanti dal loro uso o applicazione.


Autori:

Simon Pietro Romano, Antonio Pescapè, Stefano Avallone, Marcello Esposito, Roberto Canonico, Giorgio Ventre


Il livello data link nella rete

Caratteristiche del livello data link

- Si occupa della comunicazione tra due dispositivi fisicamente connessi:
 - host-router, router-router, host-host
- Unità di dati: frame

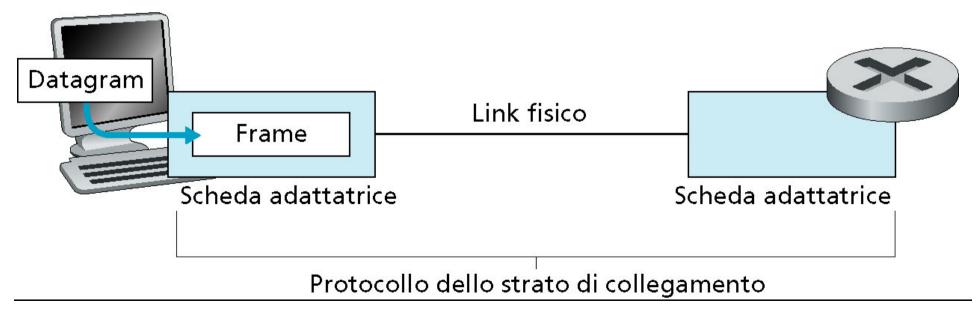
Servizi del livello data link (1/2)

- Framing (incorniciatura) ed accesso al link:
 - Incapsulamento di datagrammi all'interno di frame, aggiunta di campi di intestazione (header e trailer)
 - Gestione dell'accesso al canale, in caso di mezzo condiviso
 - Utilizzo di 'indirizzi fisici' all'interno delle frame, per identificare nodo sorgente e destinazione:
 - NB: indirizzi fisici diversi dagli indirizzi di rete!
- Trasferimento affidabile dei dati tra due dispositivi fisicamente connessi:
 - Utile soprattutto in caso di collegamenti con alta probabilità di errore, quali i link wireless
- Controllo di flusso:
 - Per regolare la velocità di trasmissione tra mittente e destinatario

Servizi del livello data link (2/2)

Rilevazione degli errori:

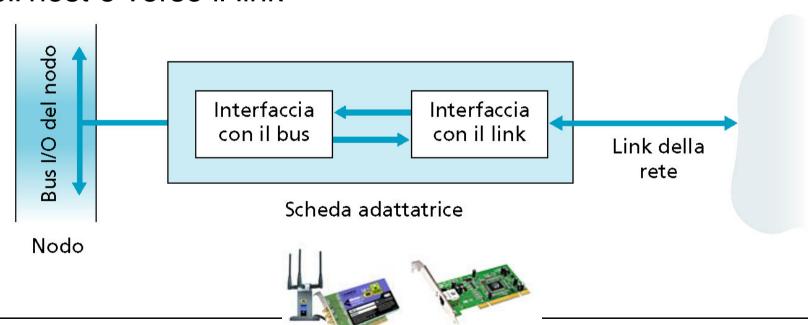
- Errori causati da attenuazione del segnale o da presenza di rumore (interferenza)
- Il ricevente rileva la presenza di errori e:
 - Segnala tale evento al mittente...
 - ...oppure elimina la frame ricevuta

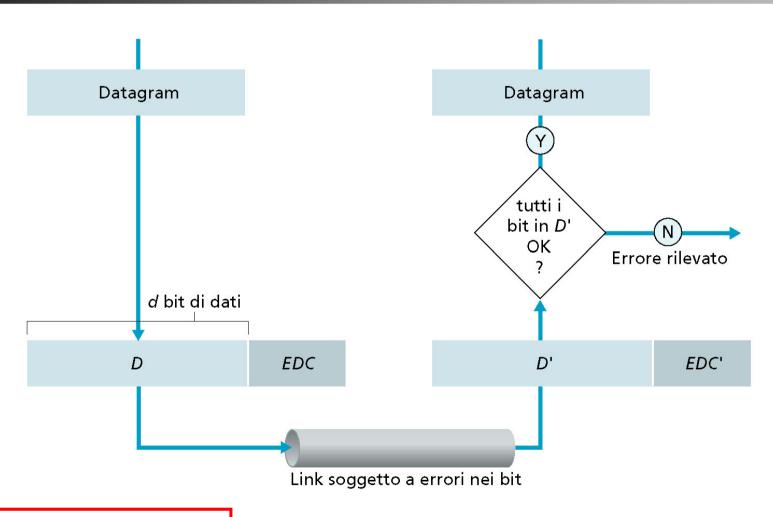

Correzione degli errori:

- Il ricevente identifica e *corregge* errori su alcuni bit della frame, evitando ritrasmissioni da parte del mittente
- Trasferimento dati di tipo half-duplex o fullduplex

FEDERICO II

Interfacce di rete

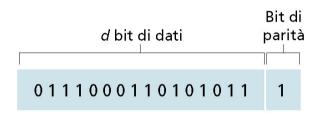

- Un adattatore è un circuito (es: scheda PCMCIA) che si occupa di:
 - Ricevere datagram dallo strato di rete
 - Incapsulare i datagram ricevuti all'interno di frame
 - Trasmettere le frame all'interno del link di comunicazione
 - In ricezione, effettuare le operazioni inverse...

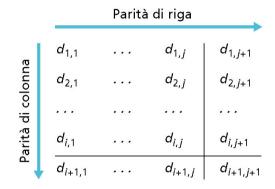

Funzionamento degli adattatori di rete

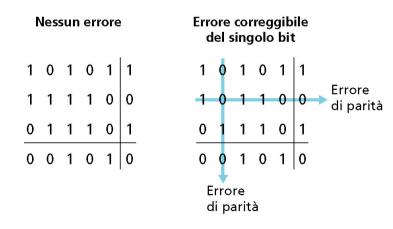
- Gli adattatori sono entità semi-autonome:
 - Alla ricezione di una frame, il nodo è coinvolto solo se i dati devono essere passati al livello rete
 - Un nodo che spedisce un datagram, delega completamente all'adattatore di rete la trasmissione sul link
- Un adattatore è, dunque, dotato di memoria RAM, di un DSP, di chip di elaborazione delle frame e di interfacce verso il bus dell'host e verso il link

Rilevazione degli errori

EDC: Error Detection & Correction


D: Dati


Parità ad un bit:


Rilevazione errori su un singolo bit

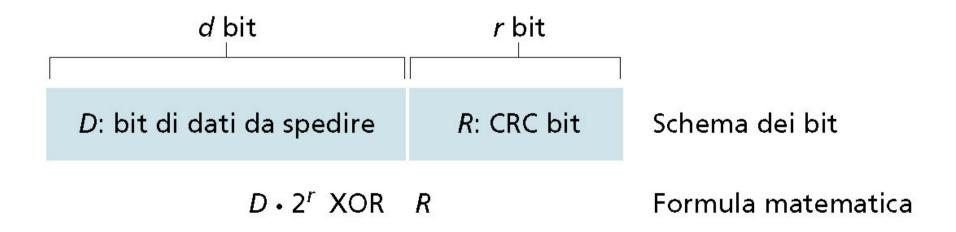
Parità a due bit:

Rilevazione e <u>correzione</u> di errori su un singolo bit Rilevazione di errori su due bit

Obiettivo: rilevare "errori" sui bit all'interno dei segmenti trasmessi (tecnica tipicamente utilizzata al livello trasporto)

Mittente:

- Tratta il contenuto del segmento come una sequenza di interi espressi su 16 bit
- checksum: complemento ad 1 della somma in complementi ad 1 del contenuto del segmento
- La checksum calcolata viene inserita all'interno di un apposito campo dell'header del segmento


Ricevitore:

- Calcola la somma in complemento ad 1 dei dati ricevuti (compresa la checksum)
- Risultato composto da tutti 1?
 - NO: errore!
 - SI: nessun errore rilevato...
 - …il che non vuol dire che non vi siano stati errori ⁽³⁾

Codici CRC -- Cyclic Redundancy Check

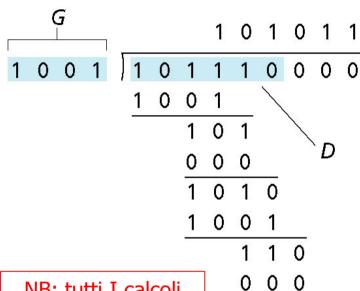
- Si considerano i bit di dati, D, come un numero binario
- Si sceglie un opportuno pattern di r+1 bit (generatore), G
- Obiettivo: scegliere <u>r</u> bit di controllo CRC, R, tali che:
 - <D,R> sia divisibile esattamente per G (modulo 2)
 - Il ricevente, che deve conoscere G, divide <D,R> per G:
 - Se il resto della divisione non è nullo:
 - errore rilevato!
- Con tale tecnica si possono rilevare tutti gli errori che coinvolgono meno di r+1 bit
- Il CRC è molto utilizzato nella pratica, al livello data link

Un esempio di codice CRC

Obiettivo, trovare R in modo tale che esista un n:

 $D \cdot 2^r XOR R = nG$

In maniera equivalente:


$$D \cdot 2^r = nG XOR R$$

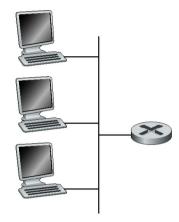
ossia:

se dividiamo D·2^r per G, abbiamo un resto pari a R:

R = resto[
$$\frac{D \cdot 2^r}{G}$$
]

Un esempio con r=3

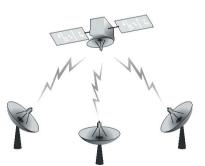
NB: tutti I calcoli sono eseguiti in aritmetica modulo 2 senza riporti in addizione e sottrazione (addizione = sottrazione = XOR)



Tipi di link di rete

Due tipi di "link":

- Punto-punto:
 - Point to Point Protocol –
 PPP
 - Serial Line IP SLIP
- Broadcast:
 - mezzo condiviso
 - Ethernet
 - Wireless LAN WiFi
 - Satellite
 - Reti cellulari
 - Ecc.


Condivisione con cablaggio (per esempio, Ethernet)

Condivisione senza fili (per esempio, Wifi)

Satellite

Cocktail party

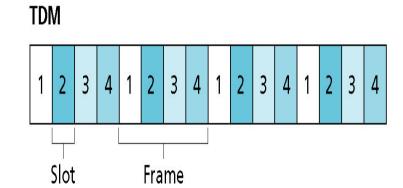
Protocolli di accesso multiplo

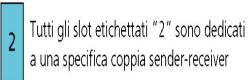
- Un unico canale di comunicazione condiviso
- Due o più trasmissioni simultanee da parte dei nodi della rete:
 - interferenza
 - Solo un nodo può inviare dati con successo!
- Protocolli di accesso multiplo:
 - Un algoritmo distribuito determina le modalità di condivisione del canale, vale a dire quando una stazione può trasmettere
 - Le comunicazioni per regolare l'accesso al canale utilizzano il canale stesso!
 - Caratteristiche di un protocollo di accesso multiplo:
 - Sincrono o asincrono
 - Necessità di informazioni riguardanti le altre stazioni
 - Robustezza (ad esempio, in relazione agli errori sul canale)
 - Prestazioni

Protocolli di accesso multiplo: tassonomia

- Channel Partitioning (suddivisione del canale)
 - Suddivide il canale in "porzioni" più piccole (slot temporali o di frequenza)
 - Ogni nodo gode dell'uso esclusivo di una di tali porzioni
- Random Access
 - Consente collisioni dovute a trasmissioni simultanee
 - Gestisce le collisioni
- Taking turns
 - Coordina opportunamente l'accesso al mezzo, in modo da evitare le collisioni

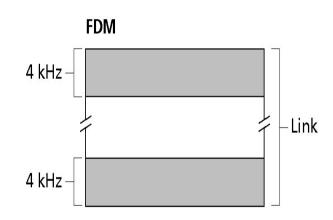
Protocolli di accesso multiplo: obiettivi


- Per un canale con velocità di R bit/sec:
 - Se un solo nodo ha dati da inviare:
 - Quel nodo ha un throughput di R bit/sec
 - Se M nodi hanno dati da spedire:
 - Ognuno di essi ha un throughput medio di R/M bit/sec
 - Il protocollo per la gestione dell'accesso è distribuito:
 - Assenza di "single points of failure"
 - Il protocollo è semplice:
 - Implementazione economica



Time Division Multiple Access

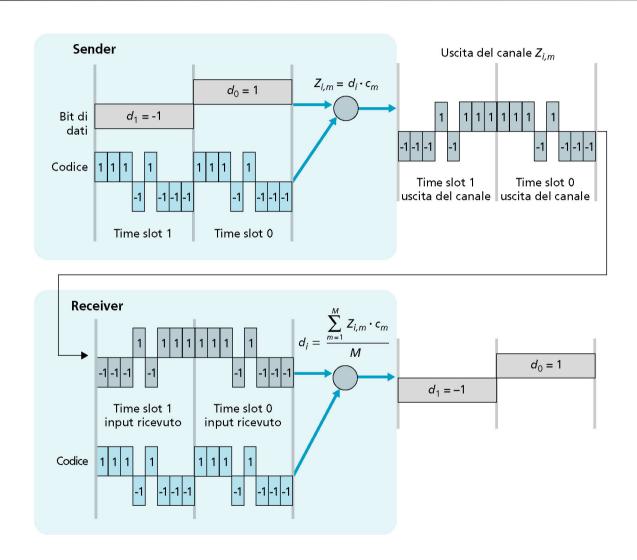
- L'accesso al canale avviene a "cicli":
 - Ogni stazione ottiene uno slot di trasmissione di lunghezza fissa in ogni ciclo
 - Gli slot inutilizzati da una stazione vanno deserti
- Vantaggi:
 - Elimina le collisioni
 - È equo
- Svantaggi:
 - Throughput max per un nodo, in una rete con N stazioni:
 - R/N bit/sec anche se il nodo in esame è l'unico ad avere frame da spedire
 - Un nodo deve sempre aspettare il suo turno nella sequenza di trasmissione



Protocolli di suddivisione del canale: FDMA

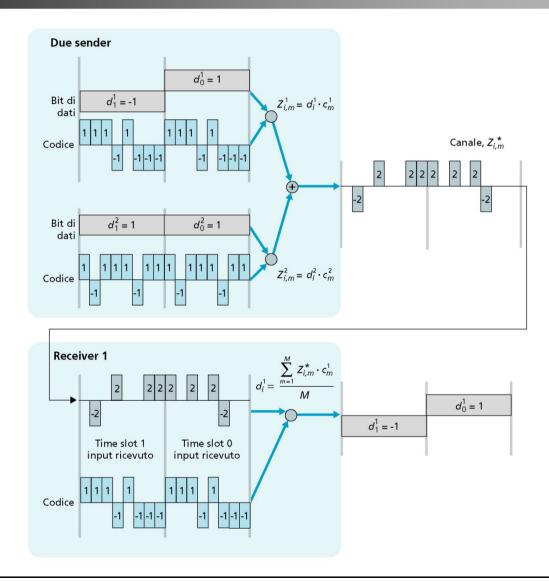
Frequency Division Multiple Access

- Lo spettro di trasmissione è diviso in bande di frequenza
- Ad ogni stazione è assegnata una banda di frequenza fissa
- Il tempo di trasmissione inutilizzato nelle singole bande di frequenza risulta sprecato
- Vantaggi:
 - Come per il TDMA
- Svantaggi:
 - Come per il TDMA


Protocolli di suddivisione del canale: CDMA

CDMA (Code Division Multiple Access)

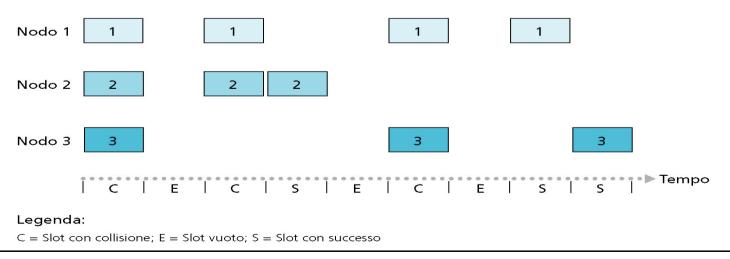
- Un codice unico è assegnato ad ogni utente:
 - code set partitioning
- Usato principalmente nei canali wireless di tipo broadcast (reti cellulari, satellitari, ecc.)
- Tutti gli utenti condividono la stessa frequenza di trasmissione, ma ognuno di essi possiede un codice unico (noto come "chipping sequence") per codificare i dati
- segnale codificato = (dati originali) X (chipping sequence)
- decodifica: prodotto scalare del segnale codificato e della chipping sequence
- Consente a diversi nodi di trasmettere simultaneamente, riducendo al minimo l'interferenza nel caso in cui si siano scelti codici "ortogonali"



CDMA: codifica e decodifica

CDMA: interferenza tra due mittenti*

^{*} CDMA lavora nell'ipotesi che i segnali dei bit trasmessi con interferenza siano cumulativi. 22


Protocolli ad accesso casuale

- Quando un nodo ha un pacchetto da trasmettere:
 - Trasmette alla massima velocità consentita dal canale
 - Non esiste nessuna forma di coordinamento a priori tra i nodi
- Trasmissione simultanea di due o più nodi:
 - Collisione!
- Un protocollo ad accesso casuale specifica:
 - Come rilevare le collisiomi
 - Come risolvere le collisioni:
 - Es: tecniche di ritrasmissione delle frame
- Esempi di protocolli random access:
 - slotted ALOHA
 - ALOHA
 - CSMA e CSMA/CD

FEDERICO II

Slotted Aloha

- Tutti i pacchetti sono lunghi L bit e il tempo è diviso in slot di uguale durata (L/R s)
- Se un nodo ha dati disponibili per la trasmissione:
 - Trasmette all'inizio del primo slot disponibile*
- In caso di collisione:
 - Ritrasmette il pacchetto negli slot successivi con probabilità
 p, finché la trasmissione non va a buon fine

^{*} Tutti i nodi sono sincronizzati: sanno quando iniziano gli slot

INVERSITA DEGLI STUDI DI NAINU FEDERICO II

Slotted ALOHA: efficienza

- Qual è la percentuale massima di slot in cui la trasmissione ha successo?
- Supponiamo che N stazioni abbiano frame da trasmettere:
 - Ogni stazione trasmette in un determinato slot, con probabilità p
 - La probabilità S che una trasmissione abbia successo è data da:
 - Per il singolo nodo:
 - $S = p(1-p)^{(N-1)}$
 - Dato che ci sono N nodi:
 - $S = \text{Prob}(\text{solo uno degli N nodi trasmetta}) = N p (1-p)^{(N-1)}$
 - ...il <u>valore ottimo</u> di *S*, per N che tende ad infinito, è:
 - » 1/e, pari a circa il 37%

Slotted ALOHA: efficienza massima

$$E(p) = Np(1-p)^{N-1}$$

$$E'(p) = N(1-p)^{N-1} - Np(N-1)(1-p)^{N-2}$$

$$= N(1-p)^{N-2}((1-p) - p(N-1))$$

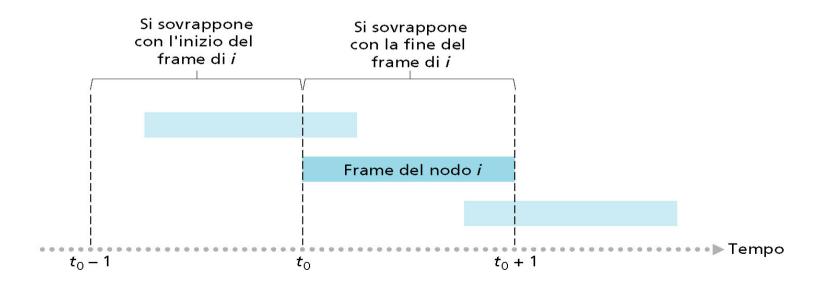
$$E'(p) = 0 \Rightarrow p^* = \frac{1}{N}$$

$$E(p^*) = N \frac{1}{N} (1 - \frac{1}{N})^{N-1} = (1 - \frac{1}{N})^{N-1} = \frac{(1 - \frac{1}{N})^N}{1 - \frac{1}{N}}$$

$$\lim_{N \to \infty} (1 - \frac{1}{N}) = 1 \qquad \lim_{N \to \infty} (1 - \frac{1}{N})^N = \frac{1}{e}$$

Slotted Aloha: valori numerici

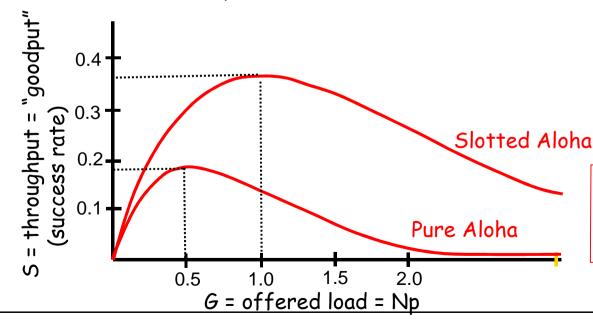
- p*=1/N è la probabilità di trasmissione che conduce al miglior risultato globale
- All'aumentare di N, la singola stazione dovrà trasmettere sempre più raramente ed avrà bassa probabilità di successo
- Il throughput globale tende ad 1/e ≈ 37%


N	p*=(1/N)	p*·(1-p*)^(N-1)	N·p*·(1-p*)^(N-1)
2	0,500	0,250	0,5000
3	0,333	0,148	0,4444
4	0,250	0,105	0,4219
5	0,200	0,082	0,4096
6	0,167	0,067	0,4019
7	0,143	0,057	0,3966
8	0,125	0,049	0,3927
9	0,111	0,043	0,3897
10	0,100	0,039	0,3874
11	0,091	0,035	0,3855
12	0,083	0,032	0,3840
13	0,077	0,029	0,3827
14	0,071	0,027	0,3816
15	0,067	0,025	0,3806
16	0,063	0,024	0,3798
100	0,010	0,004	0,3697
1000	0,001	0,0004	0,3681
10000	0,0001	0,00004	0,3679

1/e =0,36787944

INIVERSITA DEQUISTUDI DI NAIPUI FEDERICO II

ALOHA puro

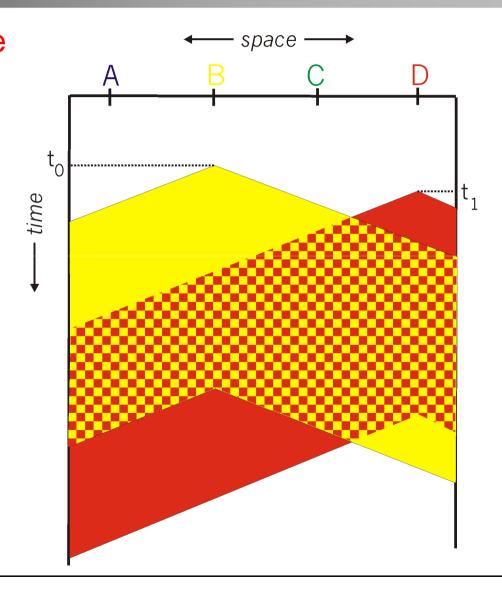

- ALOHA "unslotted":
 - Più semplice
 - Non richiede sincronizzazione:
- In trasmissione:
 - Invia la frame non appena i dati sono disponibili
- La probabilità di collisione raddoppia:
 - Una frame inviata al tempo t₀ può collidere con altre frame inviate in [t₀-1, t₀+1]

ALOHA puro: prestazioni

- P(successo di un dato nodo) =
 - $P(nodo\ trasmetta) \cdot P(nessun\ altro\ nodo\ transmetta\ in\ [t_0-1,t_0]) \cdot P(nessun\ altro\ nodo\ trasmetta\ in\ [t_0,t_0+1]) = p \cdot (1-p)^{(N-1)} \cdot (1-p)^{(N-1)} = p \cdot (1-p)^{2(N-1)}$
- $P(successo\ di\ uno\ su\ N\ nodi) = N \cdot p \cdot (1-p)^{2(N-1)}$
 - …il valore ottimo di p, per N che tende ad infinito, è:
 - » 1/2e, pari a circa il 18%

il *protocollo* limita il throughput effettivo del canale di trasmissione!

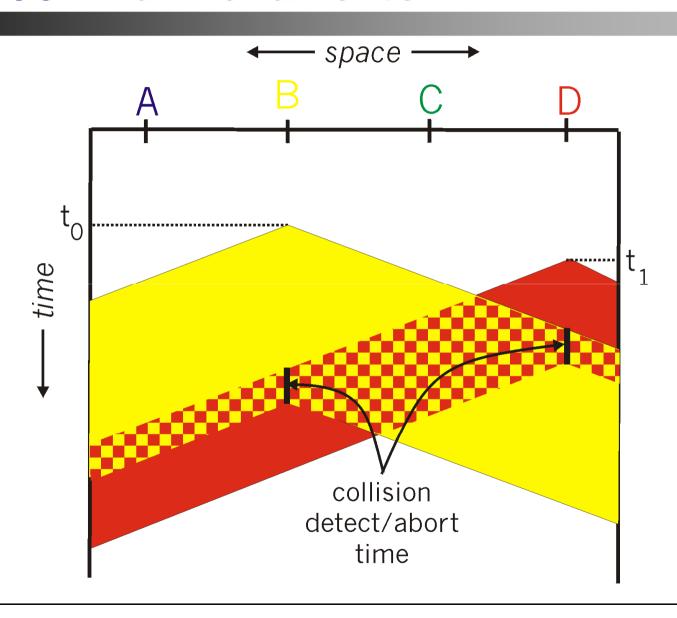
CSMA: Carrier Sense Multiple Access


CSMA:

- "Ascolta prima di parlare" (listen before talking):
 - Se il canale è libero
 - Trasmetti la frame
 - Se il canale è occupato
 - Rimanda la trasmissione
- CSMA persistente:
 - Riprova immediatamente con probabilità p quando il canale si libera
- CSMA non persistente:
 - Riprova dopo un intervallo casuale

CSMA: collisioni

- Col CSMA si possono avere collisioni:
 - Il ritardo di propagazione fa sì che due nodi possano non ascoltare le reciproche trasmissioni
- In caso di collisione:
 - Il tempo di trasmissione della frame risulta completamente sprecato
- La distanza ed il ritardo di propagazione concorrono a determinare la probabilità di collisione


CSMA/CD: CSMA con Collision Detection

CSMA/CD:

- "Ascolta mentre parli" (listen while talking):
 - Analogo al CSMA, ma in più:
 - Rileva le collisioni durante la trasmissione
 - Le trasmissioni che collidono vengono terminate, riducendo lo spreco di risorse del canale trasmissivo
 - Ritrasmissioni persistenti o non persistenti
- Collision Detection:
 - Si misura la potenza del segnale ricevuto e la si compara con quella del segnale trasmesso

CSMA/CD: funzionamento

Protocolli di tipo "Taking Turns"

Protocolli "channel partitioning":

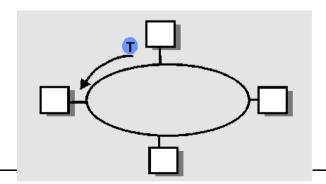
- Condivisione efficiente del canale con carico elevato
- Poco efficienti con carico leggero:
 - Ritardo nell'accesso al canale
 - Banda pari ad 1/N anche se solo uno degli N nodi presenti è attivo!

Protocolli "random access":

- Efficienti con carico leggero:
 - Un singolo nodo può utilizzare a pieno il canale
- Carico elevato:
 - Overhead dovuto alla presenza di collisioni

Protocolli "taking turns":

Cercano di prendere il meglio dai due approcci precedenti!


Tipici protocolli "Taking Turns"

Polling:

- Un nodo master "invita" I nodi slave a trasmettere in maniera alternata
- Impiego di messaggi del tipo "Request to Send",
 "Clear to Send"
- Problemi da affrontare:
 - Overhead dovuto al polling
 - Latenza
 - Presenza di un single point of failure (master)

Token passing:

- Un "gettone" (token) di controllo viene passato da un nodo al successivo in maniera sequenziale
- Il possesso del token dà diritto a trasmettere
- Problemi da affrontare:
 - Overhead nella gestione del token
 - Latenza
 - Presenza di un single point of failure (token)

