
AN ARCHITECTURE FOR STREAMING CONTROL IN
DISTRIBUTED MULTIMEDIA SYSTEMS

R. Canonico, D. Cotroneo, S. D’Antonio, S. Russo, and G. Ventre

Università di Napoli Federico II
Dipartimento di Informatica e Sistemistica

Via Claudio, 21 – 80125 Napoli (Italy)

e-mail: {roberto.canonico, cotroneo, saldanto, sterusso, giorgio}@unina.it

ABSTRACT

The development of distributed multimedia systems
can benefit from the availability of a flexible
infrastructure able to support the interoperation
between components, and capable of dynamically
adapt itself to the system configuration. CORBA-
compliant distributed multimedia applications permit
a high level of accessibility, decentralization and
interoperability with other components. However, a
large number of non-CORBA-compliant multimedia
client applications are already available and
commercialized. These applications have been
designed according to a protocol-centric
interoperation scheme. In this paper we present an
innovative architecture for streaming control which
allows client applications implementing the standard
RTSP multimedia streaming protocol access a
Multimedia Storage Server which provides a set of
services through a CORBA interface. Our proposed
scheme is particularly suitable in the case of proxy-
based scenarios, where clients do not directly interact
with the storage server, but receive streams from an
intermediate caching element.

1 INTRODUCTION

Multimedia Storage Servers play a
fundamental role in the forthcoming scenario of a
world-wide distributed infrastructure enabling the
provision of multimedia services to end-users. Due to
the peculiar requirements imposed by multimedia
applications to distributed systems, the design of most

such servers has been primarily marked by the
necessity of achieving reliable and predictable
performance with maximum efficiency, thus leading
to the adoption of proprietary solutions in their
architecture. Further requirements for multimedia
service provision over world-wide systems are high
flexibility and extensibility. These issues have been
addressed by adopting standard middleware
architectures, such as the Common Object Request
Broker Architecture (CORBA), defined by the Object
Management Group (OMG). CORBA provides an
object-oriented infrastructure that allows object to
communicate, regardless of the specific platforms and
techniques used to implement these objects [1]. The
use of CORBA as a communication middleware
enhances application flexibility and portability, by
automating common network programming tasks,
such as service location and object activation.
CORBA provides the basic mechanisms for remote
object invocation, through the Object Request Broker
(ORB), as well as a set of services for object
management, e.g. Naming Services, Transaction
Service and Event Service [2]. The interface of a
CORBA object is defined in a standard definition
language, the Interface Definition Language (IDL).
The advantages of an interface-based design are
flexibility, extensibility and pluggability.

The OMG group is currently standardizing a
growing number of common services. The
Telecommunication Workgroup of OMG has defined
in [3] a standard IDL interface to be implemented in
CORBA-based multimedia servers. This interface

defines a set of services for multimedia stream
control.

On the other hand, several companies have
supported the definition of standard protocols for
client-server interaction. These protocols can be
roughly classified in three areas: data transport,
command and control communication, and
network/application signalling. This kind of
interaction does not conform to an object-oriented
paradigm. However, a large number of commercial
applications already implement different standard
‘command and control’ protocols [8] (e.g. RTSP
defined by IETF [9], and DSM-CC defined by
ISO/IEC [10]). As for the transport of media data
from the server to the client, either standard (e.g. RTP
[11]) or proprietary solutions (e.g. Real Networks'
RDT) can be found in commercial products.

This paper presents a new scheme which
enhances the accessibility and flexibility of the
services provided by a CORBA-compliant
Multimedia Storage Server by allowing such services
to be accessed also through standard streaming
protocols, and in particular via the RTSP protocol.
Hence, our architecture allows to access the services
not only by a CORBA-compliant client, but also by
non-CORBA-compliant commercial applications. We
believe that with this approach we can achieve
interoperability and still keeping the advantages
provided by CORBA. We present a prototype of the
proposed architecture, that allows the access of a
cluster-based Multimedia Storage Server (MuSA) [4]
by RTSP clients.

The rest of the paper is organized as follows.
In section 2 we describe the architecture of MuSA, a
Multimedia Storage Server which provides a CORBA
service interface for streams control and resource
management. In section 3 we describe a scheme to
access the MuSA services by a non-CORBA client
application, by means of the IETF-standard RTSP
protocol. In section 4 we discuss the interoperability
issues and the multi-personality capability made
possible by adopting our proxy-based architecture. In
Section 5 we conclude the paper by discussing the
rationale of our work.

2 MuSA ARCHITECTURE AND SERVICES

In this paper we illustrate a scheme to
enhance the accessibility of a CORBA-based
Multimedia Storage Server through standard
streaming protocols. To substantiate our scheme we
have implemented it in MuSA, a real server that we
have developed at University of Napoli, in the
framework of the MOSAICO national research
project [5].

MuSA is a cluster-based architecture for
highly scalable multimedia servers. A MuSA server is

a mix of hardware and software components. The
hardware architecture consists of a cluster of
commodity PCs, interconnected by a high
performance network (HPN). The software
architecture, instead, is made of a set of functional
modules, which communicate over the internal server
interconnection via message passing, according to the
MPI standard [6]. The MuSA server prototype on
which we have developed our work is made of
Symmetric Multi Processor PCs (SMPs), equipped
with 2 Pentium-II CPUs, 512 MB RAM, and Ultra-2
Wide SCSI disks. The interconnection network, i.e.
the network through which the nodes of the cluster
communicate, is Myrinet [7].

The peculiarity of the MuSA server
architecture stems from the functional decomposition
which originated its design. The identification of
functional modules was guided by the observation
that the streaming activity, which is the most
demanding for a Multimedia Storage Server, involves
interaction of two different subsystems: storage
devices and network interface. To preserve the system
efficiency, data retrieval from the storage subsystem
and media quanta transmission to clients are carried
out by two different modules in MuSA. Content
management and interaction with clients for control of
active streams are also distinct activities, which are
managed by other modules. The overall architecture
of MuSA is shown in Fig.1. From a functional point
of view, it is possible to distinguish two different
parts in MuSA:
• server front-end, consisting of the MDDB, SFE

and GW modules;
• server back-end, consisting of the SS, ACM and

DS modules.

These two parts are briefly described in the following
two subsections.

Figure 1. Architecture of the MuSA server.

DS1 DS2 DS3
MDDB

Clients

DistributionDistribution
NetworkNetwork

SFE

G1

G2

SS

DS1 DS2 DS3
MDDBDS1 DS2 DS3
MDDB

Clients

DistributionDistribution
NetworkNetwork

SFE

G1

G2

SS

2.1 MuSA server front-end

The server front-end is made of those
modules that directly interact with the client
application. Hence, these modules implement a
standard service interface.

The Metadata Database (MDDB) module
provides clients with the full catalogue of available
documents. A user can select the document to be
transmitted through a web-like user interface. Once
the user has selected the desired document, a
Document Description file is transmitted to the client
application.

The Server Front End (SFE) is a CORBA
module which offers a set of services to access the
server resources by client applications. It also
provides management and configuration services to
coordinate the server activity in a distributed scenario.
The SFE module is responsible of management and
control of active streaming sessions. It provides a
subset of the OMG Telecommunication Workgroup
standard interface in order to make it accessible from
any CORBA-client which implements the standard
interface. The VCR-like methods used to control
document playback were designed after the CORBA
standard IDL interface [3]. However, other
management services are provided in order to
dynamically configure the server resources (e.g. the
number of active Disk Servers, or document
allocation).

A Gateway (G) module receives chunks of
multimedia documents from Disk Servers and
transmit them as streams to clients. A single MuSA
server can be configured with several G modules,
instantiated on different nodes of the cluster. If the G
modules implement the same transport protocol, the
server load can be balanced among them. Another
scenario, with multiple Gateway modules
implementing different transport protocols, is also
possible. In this latter case, the choice of the transport
protocol to be adopted depends on the characteristics
of the distribution network and/or the characteristics
of the client application. When the access network is
IP-based, either the standard RTP transport protocol
or a proprietary transport protocol for continuous
media (e.g RealNetworks’ RDP) or both could be
implemented. In a LAN scenario, where IP packets do
not cross routers, even a raw UDP encapsulation
could be adopted (this is the case of our prototype).
Finally, if the distribution network is an ATM
network, a native AAL5 transport may be
implemented.

2.2 MuSA server back-end

The server back-end comprises modules that
do not have a direct interaction with clients. A custom

design intended to maximize efficiency has been
adopted for these modules.

The Disk Server (DS) module performs
physical access to the local storage subsystem and
transfers data to the Gateway module. The DS module
does not provide any timing control, but it relies on
the SS module for isochronous data pumping.

The Server Scheduler (SS) module is the
heart of a MuSA server. Its main role is the
orchestration of other nodes’ activities. The SS
maintains the status of client sessions and periodically
sends commands to other modules to guarantee
regular delivery of continuous data. It is also
responsible of assigning a stream_ID to each
streaming session.

The Admission Control Module (ACM)
performs the admission control test, i.e. it decides if
enough resources are available in the server to accept
a new service request, and gives directives to the SS
about the most suitable DS and GW modules to be
assigned to each streaming session.

3 A PROXY-BASED ARCHITECTURE TO
SUPPORT THE RTSP PROTOCOL

To date, several multimedia client
applications and Multimedia SDKs (e.g. Real Player,
CISCO IP/TV Viewer, Apple QuickTime) are not
CORBA-compliant, but they adopt some standard
streaming protocol such as RTSP/RTP or DSM-CC.

The MuSA server was adopted as a case-
study to investigate the possibility of enhancing the
interoperability of a CORBA-based multimedia server
through a standard command and control protocol,
namely RTSP [9]. RTSP, Real Time Streaming
Protocol, is an application-level client-server protocol
which enables controlled delivery of streamed
multimedia data over IP networks, between a
Multimedia Storage Server and clients. It provides
“VCR-style” remote control functionality for audio
and video streams, like pause, fast forward, reverse,
and absolute positioning. A client application can use
RTSP to control a stream which may be sent via a
separate protocol, independent of the control channel.
For example, RTSP control may occur on a TCP
connection, while data flows via UDP.

In RTSP, each presentation and media
stream is identified by an RTSP URL (Universal
Resource Locator). The overall presentation and the
properties of the media are defined in a presentation
description file, which may include the encoding,
language, RTSP URLs, destination address, port, and
other parameters. Such a description file can be
retrieved by the client application from a web server
(via the HTTP GET method). RTSP is a text-based
protocol. Client and server communicate via

messages, according to a request/reply scheme (see
Figure 2).

 Figure 2. RTSP protocol messages.

In order to improve the flexibility of MuSA,

by making it accessible from any commercial
multimedia client which uses the RTSP protocol, we
present a proxy-based architecture based on a
component named RTSP_proxy. The aim of this
component is to map the RTSP protocol logic into a
corresponding sequence of methods provided by the
SFE CORBA-interface. Figure 3 depicts the overall
architecture, which allows the MuSA server to be
accessed by both CORBA clients and RTSP clients.
RTSP clients access the server through the proxy
component, which holds their sessions status, and
translates each RTSP message into the corresponding
service provided by the SFE CORBA module. Since
the MuSA frontend implements a subset of the
standard OMG interface for the control of
Audio/Video flows, its services are also accessible
from any CORBA-compliant client which implements
the standard interface.

Figure 3. The RTSP proxy architecture.

It is worth noting that the RTSP proxy acts

as a middle tier only for the command and control
tasks, while media delivery is carried out directly

from the Gateway modules and the client, via the
selected transport protocol (e.g. RTP).

At startup the RTSP_proxy needs a number
of configuration values, stored in the file
RTSP_proxy.cfg. This file contains the following
information:
• doc_ID: RTSP presentation identifier;
• fileID: identifier of the media file belonging to

the presentation;
• doc_path: RTSP URL of the presentation;
• media_type: media type (video, audio, etc…);

The RTSP_proxy also maintains an archive

of document description files, encoded in the SDP
description format [10]. Hence, each document is
associated to an sdpfile. All these values are
organized in a URL_t_LIST object (see Figure 5). By
means of this object, the RTSP_proxy keeps track of
all the resources available on the server.

RTSP_proxy.cfg

 doc_ID doc_path media_type fileID

DOC= AB00003 music/songs.mp3 ----- MuSA.000
DOC= AA00001 inet/routers.mpg audio MuSA.001
DOC= AA00001 inet/routers.mpg video MuSA.002
DOC= AA00002 cmc/customer.mpg video MuSA.003
DOC= AA00003 cmc/1000kbs.mpg video MuSA.004
DOC= AA00003 cmc/1000kbs.mpg audio MuSA.005
DOC= AB00001 ecom/market.avi video MuSA.006
DOC= AB00002 ecom/epsilon.avi video MuSA.007

Figure 4. The RTSP_proxy.cfg file.

As we stated earlier, the main task of the
RTSP_proxy is to map the RTSP logic onto the
CORBA service interface of MuSA. This task is
accomplished by taking into account the difference of
the concept of 'resource' between these two
environments. In particular, in the RTSP context, a
'resource' is conceived as a whole multimedia
presentation, which can be composed of multiple
media streams. Some RTSP commands address the
single media (e.g. the SETUP command), while
others address the presentation as a whole (e.g. the
PLAY command). The MuSA service interface,
instead, considers as a 'resource' a single media file.
Methods are provided to deal with the single file
entity. For instance, Figure 4 shows that the
RTSP_proxy associates two distinct MuSA resources
(MuSA.001 and MuSA.002) to the same RTSP
presentation (AA00001).

The RTSP_proxy component has been
designed using the OO (Object Oriented)
methodology. The RTSP_proxy class diagram is
depicted in Figure 5.

The communication between the client and

the RTSP_proxy is performed through a TCP
connection. The frontend object is responsible for the
TCP connection management, by waiting for TCP
requests from clients on a well known port (port
554/TCP). Once an incoming request is accepted, the
frontend object creates an instance of the sfe_session
class. In turn, the sfe_session object creates an
instance of the RTSP_session class. The
RTSP_session object is responsible of handling the
RTSP messages issued by clients for the entire
duration of an RTSP session. Each time the user
sends an RTSP command, the RTSP_session object
maps it into a proper sequence of CORBA
sfe_command interface methods. The RTSP_proxy
component is connected to the MuSA server by
means of the ORB (Object Request Broker). Once an
RTSP command is recognized, the frontend object
invokes the correspondent method on a remote
sfe_command object, located on the cluster where
MuSA resides. For this reason we created a local
proxy (stub) on the RTSP_proxy which delivers
requests to the remote object. The sfe_command
skeleton object executes the method, by translating it
in a number of MuSA-specific internal operations.
sfe_command stub and skeleton objects are generated
from the SFE IDL interface, which provides a subset
of services defined in the standard document issued
by the OMG Telecommunication Workgroup [3]. The
scheme presented in Figure 3 has been implemented
in C++ and integrated in MuSA using Orbix, a
commercial CORBA-compliant ORB developed by
IONA Technologies.

The object interaction in a setup scenario is

described in the sequence diagram depicted in Fig. 6.

Figure 6. Sequence diagram in the SETUP scenario.

As Figure 6 shows, once the client has

transmitted the RTSP SETUP command, the
RTSP_session object handles the setup request
(handle_setup_request method), by extracting from
the message, all the information it needs for the
instantiation of a new sfe_stream object. It is worth
noting that Session_IDs are not generated by the
RTSP_frontend object, but they are returned from the

sfe_stream

stream_id : u_long
docID[] : char
fileID[] : char
client_port : u_short

setstreamID()

sf e_stream_LIST

Insert()

1..*1..*

RTSP_session

session_id : u_long
cur_state : int
f lags : int
RTSP_last_request : u_short
RTSP_send_seq_num : u_short
RTSP_recv_seq_num : u_short
RTSP_send_timestamp : u_long

handle_describe_request()
handle_setup_request()
handle_play_request()
handle_pause_request()
handle_close_request()

1..11..1

streams

URL_t

doc_path[] : char
media_type[] : char
sdpfile[] : char
docID[] : char
fileID[] : char

sfe_session

in_size : u_short
out_size : u_short
rtsp_fd : int
in_buf fer : char *
out_buffer : char *

RTSP_server()
set_sessionID()

1..1

1..1

1..1

1..1

rtsp

URL_t_LIST

Insert()
SearchDoc()
SearchMedia()

1..*1..*

sfe_command

setup()
play()
pause()
close()

frontend

shutdown : Boolean
fd : int
port : u_short
conf igfile[] : char
BasePath[] : char
SdpBasePath[] : char

sfe_Init()

0..*1..1 0..*1..1

sessions

1..11..1

Documents

1..1 1..11..1 1..1

musa_cmd

Figure 5. Class diagram of the RTSP_proxy. component.

MuSA SFE, since they are to be unique for the entire
system, and the RTSP_proxy is not aware of the whole
MuSA server status. Finally, Figure 6 indicates that
two SETUP commands are needed to establish an
audio and video presentation.

Figure 7 depicts the sequence diagram in the
PLAY scenario, with regard to the same presentation
considered in Figure 6. Notice that, the RTSP PLAY
command involves two distinct play() invocations,
one for the audio stream and the other for the video
stream.

Figure 7. Sequence diagram in the PLAY scenario.

The interface depicted in Figure 3 refers only

to VCR-like control services, since the RTSP protocol
is intended to provide only this kind of interaction
with the server. However, the MuSA SFE module
also implements management services (such as
document uploading and internal resource
configuration). For these services, we believe that a
CORBA interface is more suitable.

We claim that the proxy-based architecture
presented is general enough to be adopted in different
scenarios, to allow the integration between standard
“Command and Control” protocols and CORBA-
based servers.

4 INTEROPERABILITY ISSUES

The large number of non-CORBA
commercial client applications justifies the
introduction of an RTSP proxy in the MuSA
architecture. This choice has a further positive aspect
in that it leads to lightweight applications at the client
side that do not require a CORBA middleware
infrastructure. In some operational scenarios, this
choice has a crucial impact on the application
performance. This is particularly the case for
applications running on mobile computing devices.

Despite the fact that standard protocols had
been designed in order to build interoperable

applications, interoperability between client and
server products from different vendors is still far from
being achieved, due to the fact that commercial
applications usually extend the protocol mechanisms
to implement their own functionalities. The
architecture presented in this paper, which is based on
a neutral CORBA-based inner Service Interface,
integrated with a proxy element, allows the server to
achieve multi-personality capabilities.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a proxy-
based architecture, which enhances CORBA-based
multimedia servers in order to support standard
streaming-protocols. In particular, we have presented
an implementation of this scheme which allows
commercial client applications interact with a
CORBA Multimedia Storage Server through the
standard RTSP protocol. We believe that our scheme
is sufficiently general to be adopted in different
scenarios, where other communication protocols (e.g.
DSM/CC) and/or other service interfaces are used.
Hence, our scheme can be extended into a general
architecture, which enables the communication
between a protocol-centric scheme and service-centric
software architectures. Our approach recognizes the
usefulness of implementing CORBA services in
modern distributed servers, in order to achieve
reusability, portability, high flexibility, platform and
location independence and web-based accessibility.

REFERENCES

[1] Object Management Group. "The Common

Object Request Broker: Architecture and
Specification. 2nd edition", OMG, July1995.

[2] Object Management Group. "CORBA Services:
Common Services Specification. 95-3-31
Edition", OMG, March 1995.

[3] OMG, Object Management Group.
"CORBAtelecoms: Telecommunications
Domain Specifications - Control and
Management of Audio/Video Streams - Version
1.0", June 1998.
Document available at: http://www.omg.org

[4] R. Canonico. "A Cluster-Based Architecture for
Scalable Multimedia Storage Servers", Ph.D.
Thesis. University of Napoli Federico II, Italy,
November 1999.

[5] R. Canonico, G. Capuozzo, G. Iannello, and G.
Ventre. "MuSA: a scalable multimedia server
based on clusters of SMPs", Proc. WCBC ’99,
Int. Workshop on Cluster-Based Computing,
Rhodes (Greece), ACM Press, June 1999.

[6] Message Passing Interface Forum. "Document
for standard message-passing interface", Tech.

Rep. CS-93-214, Univ. of Tennessee, Nov.
1993.
Project web site: http://www.mpi-forum.org

[7] N.J. Boden, D. Cohen, R.E. Felderman, A.K.
Kalawik, C.L. Seitz, J.N. Seizovic, and W.K.
Su. "Myrinet – a gigabit-per-second local-area
network", IEEE Micro, vol. 15 no. 1, pp. 29-36,
Feb. 1995.

[8] C.Severance. "Standardizing Real-Time
Streaming Protocols", IEEE Computer, July
1998.

[9] H. Schulzrinne, A. Rao, and R. Lanphier. "Real
Time Streaming Protocol (RTSP)", Internet
Engineering Task Force RFC 2326, April 1998.

[10] Digital Storage Media Command and Control
International Standard, ISO/IEC JTC 1.29.13.06
(14496-6).

[11] H. Schulzrinne, S. Casner, R. Frederick, and V.
Jacobson. "RTP: A Transport Protocol for Real-
Time Applications", Internet Engineering Task
Force RFC 1889, January 1996.

