
Ghosts of the Net!

IEEE Openarch 2001 – Short Paper Session
Anchorage, Alaska, April 28, 2001

http://www.openarch.org/



Call for Papers

Show us the new Ghosts of the Net: We want to
know what these code spirits do there, how they look,
how they behave, how you make them. Let the rays of
mobile code penetrate the deepest corner of the dark
network core and enlighten us with everything you
know about the future of active networking, open sig-
naling and programmable networks. Submit your ven-
turesome but sound idea to the short paper session of
Openarch’2001.

We are seeking short papers on novel concepts re-
lated to the Openarch’2001 themes. For additional
guidelines, consult the open list below on what we
would like and what we don’t want to see:

Yes, please No, thanks
Turing on the move Jacquard in the node

Automate the net Humans in the loop
Internet Deconstructivism Internet plus epsilon

The fury in the net Zero jitter architectures
Trust in code Darwinism Believe in design

Kolmogorov Lempel-Ziv
Code species Standards mammoths

Self–* Command and Control
Fragment, translate,

tunnel!
You shall have only
one address

Packet bartering Bandwidth plan economy
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Foreword

Depending on what your reference points are, re-
search in Active Networking is now more than 5, 10
or 20 years old. Did we do well in exploring this
new territory? I don’t think so! Classic networks are
the dominant concern of most active, programmable
networking and open signaling papers which grate-
fully produce fancy extentions and new features for the
mighty Internet. Aah – the Internet! How suffocating
it has become! Do we really need it as a target, as a
reason, to do active networking research? I think this
would be grossly underestimating thepower of mobile
codeand the newGhosts of the Net. The goal of this
Short Paper Session’s call for papers was to create a fo-
rum for concepts which reach beyond the existing net-
work mammoths; and to encourage young researchers
to go where the Internet cannot be.

The papers selected for this Short Paper Session
span a broad spectrum, from the conceptual & theoret-
ical to rather concrete engineering approaches. I hope
that you will enjoy these presentations and that they
encourage you to develop an even more radical active
networking point of view.

I would like to thank the authors, including those
whose papers we could not include in the program, for
their contributions. I should also like to thank Andrew
Campbell for his help in the selection of papers and the
setting up of this event.

Christian F. Tschudin, Uppsala, April 2001



Active Network Management and Kolmogorov Complexity

Amit B. Kulkarni and Stephen F. Bush, GE Corporate R&D, Niskayuna, NY, USA
kulkarni@crd.ge.com , bushsf@crd.ge.com

This paper seeks to describe new and better ways to represent network
health and thus attempts to explore concepts other than those based on

network topology-based representations of network management. It
examines the manner in which active network management can benefit

from Algorithmic Information Theory. Due to the new paradigm and
enhanced capabilities of active networks, this work proceeds along the
lines that a new perspective that incorporates Algorithmic Information

Theory can provide superior, innovative solutions for network
management.
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1.1 Introduction

Actives Networks [2, 5] enable the propagation of active packets, that is, network
packets that carry executable code in addition to data. The executable code should
be designed in a more compact form than transmission of the equivalent static, non-
executable data in a piecemeal fashion. Clearly, the algorithmic nature of the active
packet allows for more compression. As a simple example, a million digits of� can
be transmitted, or more compactly and simply, the description of a circle and the com-
mand to divide the circumference by the diameter. This paper seeks to describe new
and better ways to represent network health and thus attempts to explore concepts
other than those based on network topology-based representations of network man-
agement. It examines the manner in which active network management can benefit
from Algorithmic Information Theory. Due to the new paradigm and enhanced capa-
bilities of active networks, this work proceeds along the lines that a new perspective
that incorporates Algorithmic Information Theory [3] can provide superior, innovative
solutions for network management.

The proposed approach uses Kolmogorov Complexity and the science of Algorith-
mic Information Theory (sometimes called Complexity Theory) to build self-managed
networks and vulnerability analysis techniques that draw on fundamental properties of
information to identify, analyze, and correct faults as well as security vulnerabilities
in an information system. Bush [1] introduced the use of Streptichrons in the form
of algorithmic information transfer in an active network. This paper proposes an ap-
proach for network management that uses complexity measures to detect and analyze
problems in the network before applying self-composition techniques to remedy the
problem. From an implementation perspective, these approaches will be deployed in
an active network environment.

1.2 Proactive Network Management

The primary resources in a network are computing (CPU), memory, bandwidth and
storage. Other critical elements of the network that contribute to the health of the
network are the hardware interfaces (the network interface cards), the links between
the network nodes, and the control software. Our premise for analyzing faults in the
network is based on the notion that the shared resources have an “operating range”
of behavior within which the network functions normally. Whenever one or more of
these shared resources exceeds its normal range, the health of the network is said to
be compromised. The irrational behavior of one of the resources can have a cascad-
ing effect on other resources, creating a ripple effect of problems that may mask the
original problem. To quickly isolate and identify a problem, one has to understand the

overall behavior of the network given different root causes. Observing the effects of
root causes on the operating ranges of the shared resources enables rapid identification
of a problem. Understanding emergent behavior induced by root causes enables us to
design and implement remedies that recognize emergent behavior and understand the
root cause and implement solutions to alleviate the problem. In fact, if sufficiently dis-
tinguishing emergent behavior exists, problems can be identified in very early stages
of their manifestation.

The objective of this work is a step towards communication networks whose inher-
ent state, or natural tendency, is optimum performance. Faults should naturally attract
the entities required to eliminate faults. The proposed mechanism to accomplish the
attraction of solution entities can be summarized in three steps. The first step is de-
tecting the problem. Current approaches use reactive methods in which devices in the
network notify a management station of its current status. Specialized software at the
management station sifts through all the data and determines if a fault has occurred.
If a fault has indeed occurred or if certain Management Information Base (MIB) [4]
values appear out-of-range, an alarm is raised and the network manager is notified.
This approach is reactive and cannot respond quickly to faults. On the other hand,
we utilize a proactive approach in which the fault must identify itself to the entities
capable of eliminating it. Notice that this does not necessarily require a human to
identify or understand the fault, only that the solution components of the management
application are capable of recognizing it. Once the fault is identified, the next step
requires that the information be efficiently and accurately propagated to the solution
entities with minimal overhead to the network. Once a fault occurs, the network may
already be impaired; adding additional overhead in trying to solve the problem would
only exacerbate the problem. To re-state this step from another viewpoint, the nec-
essary and sufficient solution entities should be attracted to the proper locations to
solve the problem. The final step in this vision is that only the necessary and sufficient
entities required to correct the fault arrive, and that these solution entities act in a co-
operative manner to correct the fault quickly and accurately. In this paper, we describe
techniques and means to achieve automated fault identification.

1.3 Complexity and Network Health

According to Complexity Theory, the complexity of a piece of information is the size
of the smallest program capable of producing that piece of information. There are
strong ties between Algorithmic Information Theory and Complexity. A truly random
piece of information cannot be compressed, and its length is its complexity. Com-
plexity is, in general, uncomputable. However, bounds on complexity can be derived,
unfortunately page limitations do not allow us to discuss this aspect in more detail.
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Figure 1.1: Complexity-Based View of Network Health.

Complexity-based approach to network management provides certain advantages
over a topology-based representation. A complexity-based paradigm can exploit re-
lationships between MIB variables on different branches of the MIB tree and those
that are spatially scattered in the network. These relationships can be used to com-
pute complexities of the network in different dimensions. These different dimensions
could relate to availability of network services, health of devices, components and
sub-components in the network, performance of user applications, vulnerability anal-
ysis, and other relevant network services and applications. Applying results from
Algorithmic Information Theory, one can compute the complexities of the various di-
mensions. We use the assumption that greater complexity implies more randomness,
which in turn implies that the system is healthy. Regions of low complexity indicate
a problem that has occurred or may occur. The measure of complexity indicates the
severity of the problem. Linking problem severity to complexity measures has further
advantages. This enables mechanical quantification of problems occurring in the net-
work, enabling development of sophisticated management applications that can enable
self-healing within the network. Furthermore, the slope of the complexity curve can
be monitored to indicate future problem occurrences. When a region of complexity in
a certain dimension changes its measure from high to low, it indicates that the related
network component is likely to develop a fault as illustrated in Figure 1.1.

1.4 Complexity Model and Experimental Validation

To visualize the concept of complexity-based representation of network health, imag-
ine a space filled with entities that represent the values of various monitored objects
from the managed system. For instance, each entity could be an SNMP MIB Object
and its corresponding value. Initially, all entities are randomly located in that space.
Furthermore, each entity can move in a random fashion in an area around its initial
location. By complexity theory, a truly random sequence is incompressible; therefore,
the sequence representing the location of these entities cannot be compressed.

Figure 1.2: Nebulae of MIB Objects Formed from Fault (Heat).

Each entity has a normal operating range within which its value should fall during
”normal” operation. As the operating range is exceeded, heat is generated as shown in
Figure 1.2. We use the characteristics of heat diffusion provided by the Swarm library
package to represent dissemination of the information about the network service or
component in the network. As heat diffuses into space its energy is dissipated. Simi-
larly, information dissipates upon the passage of time finally making it obsolete. Other
entities are attracted to the heat, forming circular patterns, or clusters. This represents
the formation of relationships between the different entities that are affected by the
problem.

Figures 1.3 and 1.4 show the entities and the heat generated from the entities after
one hundred simulated time units. The pattern formation results in a loss of ran-
domness and enables a compressed representation of the problem. As the magnitude
and number of heat clusters increases, randomness decreases and compressibility in-
creases. The result is that more severe faults can be represented in smaller and more
efficient forms for transmission. Thus, a relationship between network health and
complexity is established. Figures 1.3 and 1.4 show the cluster rate for a simulation
with a specified probability of fault occurrence, duration, and severity.
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In other words, when a fault occurs or can potentially occur, relationships between
the various components are exposed due to the information transfer (causing the clus-
ters to coagulate and become dense). This in turn enables information to be transmit-
ted algorithmically (that is, as relationships and data) instead of long sequences of raw
data.

Figure 1.3: Healthy Network.

Figure 1.4: Multiple Faults.

One of the goals of this work is to pursue better complexity metrics. Measuring
clustering is an attempt to measure complexity. We define the cluster measure to be
one minus the proportion of the entity that is surrounded by adjacent entities. Note in
Figure 1.4 that clustering clearly occurs. Each entity in this experiment had the same
probability of fault occurrence and severity.

1.5 Summary

Proactive network management is an area that has not received much attention in net-
working research circles. The ideas described in this paper outline a novel approach
for an active network that inherently attracts solutions to network problems, even be-
fore such problems occur. Proactive management will allow the creation of networks
that are robust, as well as resistant to security threats such as intrusion and denial of
service. This paper takes the first step in applying algorithmic information theory and
techniques to network management to create the next generation of networks that are
self-diagnosing, self-managing, and self-healing.
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Self-Organizing Route Aggregation for Active Ad-Hoc Networks

Richard Gold, GMD FOKUS
gold@fokus.gmd.de

We describe a self-organizing approach for providing route
aggregation for Active Ad-Hoc Networks. Ad-Hoc networks are

defined as ‘infrastructure-less networks’. This extreme approach to
decentralization leads to many problems in scalability. In order to

combat this problem we propose a solution which introduces the notion
of hierarchy and route aggregation for Ad-Hoc networks, in a similar

way that BGP did for the Internet. Our solution uses application-layer
Active Networking as a base technology so that the overlay network

we create can then tune itself to current networking conditions.
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2.1 Introduction

We describe a self-organizing approach for providing route aggregation for Active Ad-
Hoc Networks. Ad-Hoc networks are defined as ’infrastructure-less networks’ and
are the topic of discussion of various groups, including the IETF’s MANET work-
ing group [1]. The MANET group mainly deals with wireless Ad-Hoc networks,
however, the principles behind these Ad-Hoc networks are also used by peer-to-peer
systems such as Gnutella [2] and FreeNet [3]. These peer-to-peer systems take a radi-
cally decentralized approach to the network infrastructure and remove the distinction
between dedicated client and server devices. In an Ad-Hoc network all nodes func-
tion as clients and as servers. Also in an Ad-Hoc network, all nodes must function
as routers, as some nodes are only reachable by multi-hop paths due to the lack of
complete network reachability or route knowledge by all nodes.

It is the problem of routing in Ad-Hoc networks as typified by peer-to-peer systems
that we deal with in this paper. Gnutella, for example, is a completely decentralized
system where, in order for a user to locate a particular file, it must perform a broadcast
search to all other Gnutella nodes. This “brute-force” approach to decentralization
leads to many problems in scalability, as reported in ZDNet [4]. In order to combat
this problem we propose a solution which introduces the notion of hierarchy and route
aggregation for Ad-Hoc networks, in a similar way that BGP did for the Internet [5].
Our solution uses application-layer Active Networking as a base technology as we
would like our peer-to-peer application’s routing policy base to be programmable, so
that the application-layer overlay network can then tune itself to current networking
conditions, thus improving the robustness of the system. This is similar to work done
in the ARRCANE project at Uppsala University [6], but they focus on the deployment
of active routing protocols at layer 2.5, whereas our approach is concerned with the
aggregation of routes provided by the protocols at the application layer.

2.2 Ad-Hoc Overlay Network Design

2.2.1 Definitions

We imagine the nodes of our network to be capable of performing some or all of the
following functions, depending on their capabilities:

Normal operation : This function constitutes packet forwarding on behalf of other
nodes in the overlay network. This is the default behaviour for nodes in the
network.

Helper node function : If a node performs this function then when a new node

wishes to join the overlay network, the helper node can provide information
about other nodes in the network.

Aggregation point : This function is equivalent to the role of a BGP speaker in the
traditional Internet. That is to say that the aggregation point advertises reacha-
bility information to other aggregation points in the overlay network.

We also define the nodes of the network to be running an Active Network platform
on top of which the application of our system is implemented on. The routing tables
of our application are thereby programmable by the Active Network. Our network is
an application layer overlay network; the nodes in the network form their own overlay
network which is application specific.

2.2.2 Nodes joining & leaving the Ad-Hoc Overlay Network

In the beginning when a node comes online it can register with a helper node. The
names of the helper nodes are obtainable through out-of-band communication chan-
nels such as websites, magazine publications etc., much in the same way that Gnutella
or Napigator addresses are distributed. Note that the helper node is not a single point
of failure as it is merely one of the many nodes of the network which are performing
this function. The helper node (e.g.,gnutellahosts.com:6346 ) then transfers
a history list of all other known aggregation points to the new node. This is performed
by using the Active Network to transfer code to program the new node’s routing ta-
bles to the reflect the new configuration. The new node then makes a measurement
to the aggregation points in the history list using metrics like hop count, delay etc.
- this is similar to the techniques used by the SOAR architecture [7]. This is per-
formed by Active Network measurement code so we can perform computation on the
overlay network nodes on the path to the destination aggregation point. The decision
could also be made by a policy-decision as a node may have routes that it prefers due
to some routing analysis code executed by the user, for example a Detour route [8].
Based upon this decision the new node joins one of the aggregation groups. Group
assignment involves two steps:

Firstly, the attribution of an application number to the node (these are addresses
allocated solely for the overlay network, similar to the way the ABONE [9] allocates
addresses for its overlay network). Their structure is shared with the IPv4 address
format (IPv6 could also be a possible candidate), although these application-layer ad-
dresses have no relation to the network layer. The numbers allocated by the system
are suitable for aggregation, as each Autonomous System (AS) in the network has its
own block of addresses to allocated to new nodes. An AS in our system is defined as
a group of nodes whose application numbers can be aggregated.
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Secondly, the transferal of the tuple<application number & IP ad-
dress> of all the aggregation points in the network to the new node. This is similar
to the history list used in the WormNet from the Samhain project [10].

When a node then quits gracefully from the network it informs its aggregation
point by means of an active packet, which can then re-adjust its routing table ad-
vertisements. When an aggregation point suddenly disappears from the network, the
members of its group call an election for a new aggregation and broadcasts its routing
information to the other nodes in its former AS. Such an election could be performed
using the negotiation protocol described in [11]. A virtual currency system for Ad-
Hoc Networks like Nuglets [12] could be used to encourage nodes to occasionally to
become aggregation points, rather than just making it the default behaviour that one
randomly selected node gets elected. Such a virtual currency system could also be
used to ensure that there are always enough helper nodes and aggregation points in the
network by making the amount of currency a node gets for assuming a certain duty
inversely proportional to the amount of nodes performing that function in the network.
When an aggregation point disappears unexpectedly from the network, the nodes that
the aggregation point was responsible for can consult their history lists to discover
another aggregation point to connect to if the above election technique fails to work.

2.3 Hierarchy and Aggregation in the Ad-Hoc Overlay
Network

In order to achieve our goal of aggregation in the network, there must be a notion
of hierarchy so that nodes in one level of the hierarchy do not necessarily have to be
visible to nodes in a higher level of the hierarchy. The hierarchy in our system is
imposed through the naming service in the same way as BGP [5] enforces hierarchy
where networks are advertised through their backbone providers.

2.3.1 Naming Service & Routing

Each aggregation point in the network maintains a list of the tuples<application
number & IP address> of its AS. The aggregation points then dispatch active
packets which, when executed, will update the routing tables on the destination ag-
gregation points to reflect which network numbers the source aggregation point is
advertising. The network numbers are the aggregation of the application numbers of
the ASes that they represent. This process is shown in Figure 2.1.

When a connection between two nodes in the network needs to be established,
then the application number is looked by a node querying its aggregation point. The

application number is then used to route the packet through the overlay network to the
destination aggregation point which then uses the actual IP address of the destination
node to internally route the packet.

2.3.2 Aggregation

The aggregation mechanism we propose works in the following manner: each AS in
the network has its own address range with which it allocates application numbers to
new nodes that join the network. E.g.AS-FOKUS could have the range 192.168.1.x
wherex is a number between 1 and 255. Thus, in the inter-AS routing tables (akin
to BGP), each group can be represented by one entry e.g.,AS-FOKUS is represented
as 192.168.1. When a new node joinsAS-FOKUS it is assigned an application num-
ber. A node could also have application name associated with it, for example the
username from the application that is being used (E.g., Napster username) to assist
with information location in a content-based routing environment such as the TRIAD
project [13].

Internet

Route

Aggregation

Route
Aggregation

Query
Join
Aggregation

Figure 2.1: Route Aggregation exchange between ASes

The aggregation points in the network evaluate the amount of nodes in the rout-
ing tables they exchange. When the amount of nodes in an AS falls below a certain
threshold (configurable at runtime, although a default could be included), then the
aggregation point can ask its parent if its group can be coalesced with the group of
its parent. In order for the groups to be coalesced, the requesting aggregation point
transfers its routing information with active packets to the new aggregation point and
can then unload its Active Network routing code.

When an aggregation point’s address space exceeds a certain threshold of nodes, it
will try subnet its current application number and spawn a new instance of the aggre-
gation point Active Network code onto an elected node, using the negotiation protocol
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described earlier, which will then also assume aggregation point responsibilities. See
Figure 2.2. The new instance is then allocated an address space range by the node
which spawned that instance. Another option is that the node can coalesce with its
parent and ask its parent to subnet on its behalf in the case when its own address space
threshold is reached. This way the child merges its address space range with its par-
ent. The rationale behind this on-demand technique is that we wish to keep the node
software as lean as possible, and only have the aggregation point code on-demand.
This may lead to problems with bootstrapping in situations where no reachable nodes
have the aggregation point code - this is an area of future work.

Other 
Nodes

Code Migration

AS List

AS

Other
Nodes

New
Aggregation
Point

AS

Figure 2.2: Spawning of a new aggregation point

2.4 Usage of the Active Network

In our implementation scenario, the application would be a peer-to-peer file sharing
application, such as Gnutella [2] or FreeNet [3], implemented on top of an application-
layer Active Network platform. When an application accesses a helper node for the
first time, it receives an active packet containing the current routing and policy infor-
mation for the AS that the node is participating in. This code then executes on the
Active Network platform in order to set up and manage the overlay network.

When a new aggregation point needs to be created, the code running on the Active
Network platform actually implements this functionality by spawning itself onto the
newly elected node. This on-demand approach allows for the flexibly and dynamic
upgrading and modification of the application-layer routing infrastructure. For exam-
ple, if a user would like to introduce a new policy decision mechanism for deciding a
Detour route, then this code just has to be injected into node in order to immediately
start assisting with the routing decisions. Another advantage is that we only run the
aggregation point code on nodes that actually are aggregation points.

The speculative future of such an approach is to isolate the various networking
components of applications and to allow the mixing and matching of the genetic code

of, for example, a peer-to-peer file-sharing application and various application-layer
routing protocol efforts. Thus when a peer-to-peer file-sharing application needs a de-
centralized, self-organizing routing infrastructure it can just access various alternatives
from the Active Network which are able just to plug in to an existing application.

2.5 Conclusions

Whilst there are systems that provide self-organizing routing in overlay networks [7]
and systems that provide hierarchical routing in an Ad-Hoc wireless network [14],
there are none as yet that actually provide self-organizing route aggregation for Ad-
Hoc overlay networks. Route aggregation is crucial in the current Internet for scal-
ability reasons, but for an Ad-Hoc network the current scheme is too fixed as it re-
lies on the static definition of an AS’ boundaries. The explicit introduction of self-
organization as a method for maintaining a functioning route aggregation infrastruc-
ture is important in order to deal with the unpredictable nature of Ad-Hoc networks.
It enables the system to autonomously scale the size and layers of its hierarchy up and
down. We propose an implementation based on application-layer overlay networks
and Active Networks. We use an overlay network to allow scalability through route
aggregation on the application-layer. The Active Network is used to allow the dynamic
changing of the application-layer routing infrastructure and the runtime deployment
of infrastructure code onto nodes

Such a system would be useful for peer-to-peer networks [3], Ad-Hoc wireless
networks [15] and Active Network testbeds such as [9] as it allows the introduction of
route aggregation for systems which would typically otherwise suffer from scalability
problems.

The current status of the work is that the architecture is finished and implementa-
tion work will commence in the first quarter of 2001.
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ALM and ProgNets for v4-to-v6 Multicast Transition

Paul Smith, Laurent Mathy, Lancaster University, UK
p.smith@comp.lancs.ac.uk, laurent@comp.lancs.ac.uk

Roberto Canonico, Università di Napoli, Italy
roberto.canonico@unina.it

David Hutchison, Lancaster University, UK
d.hutchison@lancaster.ac.uk

Current efforts in the area of IP transitioning have largely considered
unicast communications. A number of challenges that are associated

with the IP multicast transition make the problem distinct from the
unicast scenario. Application Level Multicast (ALM) is a technique

that can be used to enable the operation of multicast services in
non-native multicast environments. In this short paper we propose a

combined use of ALM and programmable networking technologies to
speed up the IP multicast deployment in an IPv4 to IPv6 transitioning

Internet.
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3.1 Introduction

The introduction of IPv6 in the Internet requires a change in the routing components of
the network infrastructure. Since an instantaneous upgrade from IPv4 to IPv6 is nei-
ther possible nor desirable, viable transitioning mechanisms are essential to the evolu-
tion of the Internet. These mechanisms must be efficient, so the two protocols can co-
exist in the Internet for an interim period. Current efforts in the area of IP transitioning
have largely considered unicast communications. A number of challenges that are as-
sociated with the IP multicast transition make the problem distinct from the unicast
scenario. A classical technique for incremental deployment of network-layer protocols
is based on gradual deployment of the new protocol in isolated network “islands” and
subsequent interconnection of islands by means of tunneling. However, since tunnel
end-points are manually and statically established, such an approach leads to ineffi-
cient overlaid networks. Application Level Multicast (ALM) is a means of enabling
service provision in non-native multicast environments. ALM enables multicast-style
communication to be conducted using only unicast messaging between parties in an
ALM spanning tree. Programmable networking technologies [1], promise to enable
flexible and arbitrary service provision, by providing open programmable interfaces.
In this paper, we suggest to combine the classical tunneling mechanism with an ef-
ficient and scalable Tree Building Control Protocol running in programmable edge
devices for automatic establishment of tunnels. This approach can speed up multicast
deployment in an IPv4 to IPv6 transitioning Internet.

3.2 Application Level Multicast

Application Level Multicast (ALM) is a means of providing multicast-style commu-
nication using only unicast infrastructure. This is achieved by building a spanning tree
between the hosts which aim to perform this multicast-style of communication. The
spanning tree is then used to tunnel data between the nodes on the tree.

3.2.1 Constructing ALM spanning trees

At Lancaster University, an approach to building ALM spanning trees is under devel-
opment [2]. Such an approach is based on a distributed algorithm which requires only
partial knowledge of group membership and relies on local decisions to build a span-
ning tree among the members of a multicast group. The algorithm for constructing the
tree can be summarised as the following:

1. Nominate an appropriate node as the root. The choice of root node will be

largely dictated by the specific application of the spanning tree. For example, if
only a single source exists, the obvious choice of root node would be the source.

2. Nodes wishing to join the ALM spanning tree, contact the root node in order to
determine their place in the tree. The nodes place in the tree is determined by
the result of a score function. The application of the spanning tree will dictate
the parameters to the score function. For example, if the tree is to be used for
control purposes (signaling), obvious parameters to the score function would
be the round-trip-time between nodes and a measure of packet loss. It makes
no sense to consider bandwidth as a score function parameter for example, as
control traffic does not have significant bandwidth requirements.

3. Based upon the result of the score function, the node can either then become
one of the root’s children, or can be sent to one of the root node’s current chil-
dren, where the score function is calculated again. This process is performed
recursively until the spanning tree falls into a stable state. Each node in the tree
has local knowledge regarding the number of children it may wish to support.
If it is appropriate for the new node to become a child of a given parent, and
that parent would then exceed their child limit by accepting this new child, the
position of a current child must be reassessed. In this case, the child node to be
moved is then sent to one of the parents current children (or the new one) where
its new position is determined based on the score function.

To realise the above distributed algorithm a suitable Tree Building Control Protocol
has been designed and is being implemented at Lancaster University. Other notable
approaches to building ALM spanning trees include [3] [4].

3.2.2 Algorithm properties

Adopting the approach outlined in section 3.2.1 to building ALM spanning trees has
a number of beneficial properties. Using this approach, only partial knowledge of the
tree is required. This partial knowledge consists of the root and your children. This
has the property of making the algorithms for constructing the tree relatively simple
and therefore the nodes less complex. Furthermore, as only partial knowledge is re-
quired for constructing the spanning tree in this manner, the algorithm should scale
significantly better than if global knowledge is required.

Additionally, algorithms have been developed to enable the tree to be reshaped
dynamically. For example, people can leave and join the tree arbitrarily during the
spanning tree’s lifecycle. This property also enables the tree to be optimised. ALM
being used to repair partitioned network level multicast trees, is an example where
such optimisation may take place. In this scenario, the primary object would be to
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construct the ALM tree between the partitioned regions rapidly, thus enabling the
continuation of the multicast session. This initial spanning tree may well be subop-
timal, if so, the tree could then be reshaped and optimised for the application using
appropriate parameters to the score function.

No specialised infrastructure is required for the spanning tree construction ap-
proach outlined in section 3.2.1 for ALM to operate. The construction is conducted
between nodes that are party to the ALM communication, typically end-systems, and
therefore existing protocols can be used to transmit any traffic necessary between
them.

3.3 Multicast in an IPv4 to IPv6 Transitioning Internet

There are efforts being made in the Internet community toward the migration from
the current ubiquitous IP version (IPv4), to the proposed next large-scale deployed
version of IP (IPv6). Migration from IPv4 to IPv6 should take place over a period of
time, during which the two protocol versions must co-exist in the Internet. Several ap-
proaches to undertaking this transition have been proposed [5]. These approaches have
largely considered point-to-point communication, using statically configured tunnels
between nodes or routers. In a multicast environment, providing transitional mecha-
nisms is more problematic for several reasons. In particular, the classical mechanism
based on static tunnels is challenged by the fact that, in the case of multicast, the
source of the multicast traffic is unaware of the location of receivers. The problem is
even more difficult in the case of multiple sources transmitting to the same multicast
group. Constructing tunnels between an arbitrary number of dynamically available
sources and destinations is inefficient and unscalable, as demonstrated by the MBone.

3.3.1 Our approach to multicast migration

Consider a scenario, in which a number of users in different IPv6 multicast island,
wish to conduct a multicast session over an IPv4 backbone, as depicted in figure 3.1a.
This session would fail to operate as the islands are disconnected by the IPv4 back-
bone. An approach to solving this problem should have the property of being transpar-
ent to the nodes in the multicast islands, resulting in no changes in the end-systems.
Additionally, nodes should be able to dynamically join and leave the multicast session,
as is normally the case. An approach should also scale sufficiently and not introduce
exponential levels of complexity into devices.

University
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(IPv6)

Lancaster
University

(IPv6)

University
College of London

(IPv6)

IPv4
ALM

Spanning
Tree

IPv4

University
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(IPv6)
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College of London
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(a) (b)

Figure 3.1: a) IPv6 islands that wish to conduct a multicast session, however
an IPv4 backbone inhibits traffic from reaching the disconnected islands; b)
by constructing an ALM spanning tree using programmable devices, the IPv6
multicast islands can communicate.

We propose an approach to resolving this issue based upon ALM that leverages
programmable networking technologies. Programmable devices in their first gener-
ation are anticipated to reside at network edges [6], as shown in figure 3.1b. Such
a programmable network infrastructure can be used by ALM to deploy on-demand,
dynamic tunnels, resulting in highly efficient overlay multicast services.

The solution we propose involves constructing an ALM spanning tree between
programmable devices interconnecting the IPv6 multicast islands, as well as possibly
individual hosts, taking part in a multicast session. These devices can then encapsulate
the IPv6 multicast packets being sent in IPv4 unicast packets and disseminate them
to appropriate nodes on the ALM spanning tree. Likewise, the programmable devices
can de-encapsulate the IPv6 multicast traffic and forward it toward local nodes that
have registered for the traffic. It should be noted that an IPv6 multicast island without
a programmable edge device can always be connected to the programmable network
infrastructure via a pre-configured tunnel.

In using the approach to constructing ALM trees developed at Lancaster Univer-
sity based on programmable devices, IPv6 nodes can dynamically join and leave the
multicast group. With the use of programmable devices taking the role of a local mul-
ticast router, the operation of this solution is transparent to end-stations. Connecting
the multicast islands using ALM also simplifies the operation of the programmable
devices as they interact using a generic protocol (ALM) between potentially heteroge-
neous multicast routing protocol domains. This approach should scale well, with the
use of our technique for constructing ALM trees, which requires only partial knowl-
edge of the tree, and therefore programmable devices will not have to maintain large
amounts of state irrelevant to their operation.
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3.4 Conclusion and Further Work

The Internet is evolving constantly: one such evolution is that of the Internet Protocol.
Current approaches to providing the transition from IPv4 to IPv6 largely only consider
unicast communication. We have presented an approach to providing IP multicast
transition using ALM and programmable networking technologies. This approach en-
ables the transparent connection of IPv6 multicast islands that are disconnected by
IPv4 network regions. This approach enables the dynamic reconfiguration of the mul-
ticast session, by inheriting properties from an approach to building ALM spanning
trees based on programmable networks. Furthermore this approach will scale to a
potentially large number of disconnected multicast islands.

Finally, future work will also study the use of ALM over a programmable network
infrastructure to enable the interoperability of mixed IPv4 and IPv6 multicast sessions,
possibly interconnecting islands using different multicast routing protocols.
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EdgeMeter: Distributed Network Metering
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In this short paper we give an overview of work in progress to propose
a distributed metering model using Active Network concepts. The

business model which motivates this work poses accounting
requirements between different kind of providers and customers.

However, security issues also need to be addressed. We briefly describe
the problems being investigated which relate to the business model

used. We have split the problem mainly into four subtopics. They are
concerned with questions of how to control the system through high

level policies, how to translate from such policies (Tariff/SLA) to a low
level device dependent configuration. Other questions are concerned
with what threats a system like this may be exposed to and what the

limitations are in terms of system performance when measuring
network traffic for QoS monitoring, billing and network planning.
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4.1 Introduction

Our intention is to provide a means for building a safe distributed meter system for
QoS monitoring in IP networks. The model is dynamically controlled by high level
policies such as charging tariffs and service level agreements (SLAs). The Meter sys-
tem has the intelligence for deciding the data needed, when should be forwarded and
for whom.

In [1] the author describes another approach for IP accounting using Active Net-
works with accounting functions performed by the Provider’s system only. Unlike
in [1], our model not only allows accounting processes to be performed at provider’s
system but also at customer’s premises. Furthermore, as stated before we are very
concerned with the security and performance issues imposed by the creation and op-
eration of the system.

4.2 Business Model

Legend:

A BA sells service to B Service may be metered

Bulk Network Provider

Network Wholesaler

Network Retailer

CUSTOMER

Application-Level
Service 
Provider

Network Management Service Provider

Figure 4.1: Business Model

According to the legend in Fig. 4.1, some interfaces between the roles may be metered.
Therefore, the Meter system may be physically placed between Providers boundaries
for bulk measurements. On the other hand, meters can be installed between Providers
(Network Retailers or Application-Level Service Provider) and Customers for fine-

grained measurements.

4.3 Distributed Meter Model Proposal

Phase1:
Initialization

Phase 2:
Operation

Meter system
Creation Meter system

UpdateStart

Figure 4.2: Distributed Meter Model

Our model proposal is composed by two phases (states) and two events. The event
of Meter Creationmoves the system from initialization to operation. AMeter sys-
tem Updateevent occurs when the system demands any software/hardware update.
Basically, there is a process of cutting over to the new code associated to this latter
event.

We have modeled the system using some of Active Network (AN) concepts. In the
paper [2], the authors propose an architecture for AN at application layer. Addition-
ally, some implementation of such a model is described in [3]. We have concentrated
much more on Application Level Active Networking (ALAN) model described in
those references.

4.3.1 Definitions

� Proxylet: third parties’ mobile code to be executed into a Generic Active Node
(GAN). Proxylets are loaded by reference to Proxylet Repository Servers (PS)
[2].

� Generic Active Node (GAN): it receives proxylets for execution on behalf of
third parties. In fact, any type of proxylet is allowed to execute into a GAN.

� Specialized Active Node (SAN):in certain cases might be useful to specialize
a GAN through filters which accepts specific group of proxylets to be executed.

� Meter System:a Meter system consists of a set of Meters plus a set of Dynamic
Accounting Controllers (DAC). One of the features of the Meter system is the
capability of QoS measurements.

� Meter: specialized active node created when a GAN receives a MeterCode
proxylet. Thus, the resulted node is called only Meter. In general, the Provider
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should control the Meter through specific configuration (policies). A Meter cap-
tures packets from the network and apply policies in order to create a table of
measurements.

� Dynamic Accounting Controller (DAC): another specialized active node cre-
ated upon a GAN has received a Dynamic Accounting Controller (DAC) prox-
ylet. This SAN forms the second part of a Meter system. Its main responsibili-
ties include coordinating set of Meters, collecting meter data and transforming
it into accounting data.

� Tariff/SLA Translator (TT): proxylet responsible for compiling the Tar-
iff/SLA specification into Meter and Accounting policies used to instruct the
Meter system.

4.3.2 Model Phase 1: Initialization

In this phase, the main components of the Meter system (Meter + DAC) are sent as
mobile code over the network (Fig. 4.3)

Mobile Code: Proxylet

Provider Premises

Customer  Premises

Control Channel

Legend:

PS

Generic Active Node (GAN)

PS

Meter Manufacturer Premises

Meter_code_v1
MM:1

DAC_v1
MM:1

Meter_code_v1
MM:1

(1)

(2)

(3)

(4) DAC:    Dynamic Accounting Controller

(...):    Event  sequence

Proxylet Repository Server (PS)

PS

Tariff/SLA
Translator(5)

DAC_v1
MM:1

DAC
GAN

Meter
GAN

Meter
GAN

Meter
GAN

DAC
GAN

Meter
GAN

Figure 4.3: Phase 1 (Initialization)

Initially, the DAC proxylet version 1 is delivered to the Provider premises (1). The
Meter Code version 1 is transmitted to the Provider’s Generic Active Nodes. A copy
is stored at local Proxylet Server at Provider’s premises (2). In steps 3, 4 and 5 the

Meter, DAC and Tariff/SLA Translator proxylets are shipped to Customer’s premises.
They carry version numbers and Meter Manufacturer (MM) identifiers. Those are
useful for the correct management of such proxylets.

4.3.3 Model Phase 2: Operation

In step (1), Tariff and Tariff Translator proxylets are loaded into Dynamic Account-
ing Controller (DAC). The Provider sends Tariff proxylets to his Customers, either
through multicast or unicast communication (2). Once a Customer’s DAC has re-
ceived it, a Tariff/SLA Translator proxylet is loaded in order to perform the translation
into appropriate Meter/Accounting policies (3). They specify explicitly requirements
in a way that the Customer’s Meter system can cope with. The DAC collects meter
data either using push or pull modes(4). The Customer’s DAC sends accounting data
(detailed or summarized) to Provider’s DAC. Finally, such collected data may be used
for Billing, Network planning, QoS monitoring applications.

Accounting
Data

Provider Customer

Proxylet
Server (PS)

Dynamic
Accounting

Controller(DAC)

Tariff
Translator

Dynamic
Accounting

Controller(DAC)

Tariff

(1)

(2)

(1)

Network Meter

(3)(4)(5)

Billing

QoS
 Monitoring

Network
Planning

(6)

Tariff Tariff
Translator

Proxylet
Server (PS)

Meter
Data

Meter
Policies

Accounting
Data

Figure 4.4: Phase 2 (Operation)

4.4 Security Requirements

We have so far identified the requirements below for the model explained in the pre-
vious section. Some of them are also discussed in [4] [5] [6].
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� (A) Execution of Safe Code(Meter Code,DAC,Tariff)

This would assure the integrity of the system where the proxylet is executed.
Common problems to prevent are the installation of any malicious code which
may compromise the role’s system. This requirement is even strong when the
Meter system is located at Customer’s premises.

� (B) Metering and Accounting Policies Soundness

This would make guarantees for Customers of the soundness property of me-
ter and accounting policies (meter system configuration). The meter may not
be tampered with by any of the roles in the model. When the meter system
configuration is proved to measure safely what the actual tariff/SLA says, this
requirement will be matched.

� (C) Mutual Authentication

Mutual authentication between roles is essential. A role needs to know pre-
cisely who the other end of the communication is. Thus, they should identify
themselves with some unique credentials.

� (D) Confidentiality/Privacy

Any data (in the form of policies or accounting) must be readable for authorized
roles only. Thus, the transmission channel between them must be secured. The
requirement prevents eavesdropping by malicious users in the communication
path.

� (E) Integrity

Any data or control in the form of policies must be modified only by authorized
roles. This requirement brings the need for authorization schemes in our model.
A role might be authorized to perform specific operations. Hence, levels of
authorization are desirable.

� (F) Non-Repudiation

Any role must not deny full or partial participation in a communication with
other role in the model.

� (G) Denial of Service (Prevention and Recovery)

Denial of Service (DoS) attacks interfere with the normal use or management of
the communication resources. Metering and charging applications measure the
usage of resources and deals with money. As a result, the Meter system should
be considered a possible target of such attacks.

� (H) Audit

Basically, Providers and Customers should be able to audit the Meter systems
in order to check for theft.

4.5 Tariff-related Control of the Model

In this section we look at a mechanism to perform a translation from a tariff (high-
level) to appropriate Metering/Accounting policies (low-level). This is a work in
progress with basis on rule-based languages from active database research [7].

4.5.1 Tariff Translation

A tariff/SLA expresses a set of charging and QoS monitoring policies in a declarative
way.

However, there exists a binding mechanism between tariff/SLA (high-level) and
Meter configuration (low-level). Such relation may be achieved through metrics spec-
ification which includes: (a) type; (b) constraints; (c) implementation scheme; (d)
associated event; (e) pattern matching filters.

The language that we have designed is able to express metrics such as (a) traffic-
related (e.g. session duration, volume, loss, throughput, delay, jitter); (b) environment-
related (e.g. congestion indication); (c) classification-based such as DiffServ DSCode-
Point, protocol-related, address and time attributes.

4.5.2 Simple Example

Here we present a simple arbitrary congestion-based tariff with event-condition-action
(ECA) rules. It relies on the ECN (Explicit Congestion Notification) proposal [8] as a
means for getting congestion feedback from the network.

price_byte_unit = 0.4;
ecn_marks: counter;
bytes_sent: counter in bytes;
on ecn_marks.congestion

if (price < 1000)
do {

price = ecn_price + price_byte_unit*bytes_sent;
}

The above tariff is translated to the following Metering/Accounting policies:
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on initialization
do {

create counter name ecn_marks bound to
packet_arrival.pkt[NETWORK_ECN_BITS] = 11;

create counter name bytes_sent bound to
packet_arrival.pkt.length;

}
on packet_arrival

do {
update bytes_sent;
update ecn_marks;
prepare output;

}

In this example, both ecnmarks and bytessent variables are counter types. The
tariff translator uses this in order to generate the low-level policies.

4.6 Meter System Performance

We have performed initial experiments to assess meter calibration metrics such as Me-
ter Error Rate (MER) and traffic-related metrics such as Volume(V) and Packet Rate
(PR). We also have used a tariff based on the IETF DiffServ architecture [9].

RT1:
whale 

(FreeBSD)

RT2:
dolphin

(FreeBSD)

RT3:
shark

(FreeBSD)
Server:
Source

Customer:
Destination

Ingress Router
DiffServ
Marker

Core
Router

Core
Router

Provider DiffServ Domain

Ethernet
100 Mbps

Ethernet
100 Mbps

Ethernet
10 Mbps

MeterMeter

Congestion
Source

Figure 4.5: DiffServ Testbed

4.6.1 Tariff Description

An arbitrary tariff was delineated with basis on six classes as described in [10]. We
have done the mapping from that model to IETF DiffServ classes (Table 4.1). It had
considered the traffic characteristics of each class (interactive realtime, non-interactive
realtime and non-realtime).

4.6.2 Methodology

We have generated traffic for six distinct application categories shown in Table 4.1.
When alternating the meter position throughout the testbed we can assess the Volume
(V) and Packet Rate (PR) metrics.

The testbed used in the experiment is shown in Figure 4.5. The server (source) and
the customer machine (destination) run Linux. Router RT1 marks ingress packets with
DSCodePoint in respect of categories in Table 4.1. A multi field (MF) classifier op-
erates at RT1 mapping applications into the desired DSCodePoint. Three experiment
scenarios were used, mainly varying two variables: meter position (source or cus-
tomer) and network state (congested or not). The scenarios are: (1) Meter at Customer
and Network without Congestion; (2) Meter at Customer and Network Congested and
(3) Meter at Source.

4.7 Results

Some interesting results might be deduced from the data collected. There is relative
discrepancy in the actual metered volume. Although is true to say that, we do not
know whether this holds or not regardless of meter positions. Thus, more experiments
switching meter places over the Provider network (IETF DiffServ domain in Figure
4.5) need to be be performed. We want to work out an association between the vol-
ume metered, generated and charged in congestion periods. At present, we define the
volume relation being the following equation:

Vmet = (1� x):Vgen = (y):Vchg (4.1)

where:

Vmet: Volume metered,Vgen: Volume generated,Vchg : Volume charged,x: Meter
error rate,y: Volume charged coefficient

It should be pointed out that those volumes are semantically distinct. The param-
eterx in the equation 4.1 was determined by the experiment data (meter error rate).
It has floated around 5% on average according to Fig. 4.6. The possible cause may
be linked to the FreeBSD Kernel (meter machine) difficulties for handling all packets
seen.

The ambition of assessing DiffServ classification-based metrics has been reached
successful. This may prove that we can meter and charge for such metrics.
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Application Category DSCodePoint Examples
1: (Gold, Interactive Realtime) EF=0x46 IP-Telephony (high QoS)
2: (Gold, Non-Interactive Realtime) AF11=0x10 Audio/Video streaming (high QoS)
3: (Silver, Non-Interactive Realtime) AF12=0x12 Audio/Video streaming (low Qos)
4: (Gold, Non-Realtime) AF13=0x14 Web browsing
5: (Silver, Interactive Realtime) AF21=0x18 IP-Telephony (low QoS)
6: (Silver, Non-Realtime) AF22=0x20 E-mail

Table 4.1: Classes used in the tariff
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The design, deployment and architecting of new routing protocols is
time–consuming and costly. Routing protocols are complex systems

that are characterized by the way they manage distributed network
state in order to formulate forwarding tables. Existing routing protocol
implementations are monolithic, bundling together a database with an

optimal path calculation algorithm and a network state distribution
mechanism. In this paper, we present a binding model and middleware

that decomposes routing protocols into fundamental building blocks
called Sphere. We identify the role of each component and show how
new routing protocols can be dynamically composed from a hierarchy

of base classes.
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5.1 Introduction

Existing routing protocols are implemented in a monolithic manner and are highly
integrated into each vendor’s equipment. This practice makes the introduction of new
routing protocols or the modification of existing ones difficult. The dynamic intro-
duction of new routing services into the Internet represents a difficult problem. First,
routing programming interfaces need to be flexible enough to allow for the introduc-
tion of new services. Second, programmers need to understand when and where new
services should be introduced. In this paper we argue that routing services can be
realized as collections of distributed objects that create associations with each other
at run-time. We introduce a binding model that decomposes routing protocols into
fundamental building blocks, define programmable objects for routing protocols and
use these objects to construct well known (i.e., distance vector, link state, path vector)
as well as new routing services.

To formulate our binding model we have studied the design and implementation
of existing Internet routing protocols [4-6]. We have found a set of attributes that
are common to routing protocols and identified the role of each attribute in the pro-
cess of formulating forwarding tables. We observe that routing protocols use some
type of database. This can be a link state database (e.g., as in the case of OSPF), a
distance vector database (e.g., as in the case of RIP), or a path vector database (e.g.,
as in the case of BGP). In addition, routing protocols use some mechanism for an-
nouncing routing information inside the network. This mechanism can be link state
flooding such as in the case of OSPF or periodic announcements to neighbor routers
as in the case of RIP. Finally, routing protocols use different algorithms and metrics
for calculating optimal paths to various destinations. We believe that routing protocol
implementations should separate the routing database from the routing information
announcement and the optimal path calculation introducing standard interfaces be-
tween these components. This technique allows protocol developers to create routing
architectures in a modular fashion, and Internet Service Providers (ISPs) to introduce
new routing services into their networks more dynamically. Such a separation could
provide a foundation for the programmability of routing protocols for the Internet.

Programmable [7-9] and active [10-13] networks represent an emerging area of re-
search. In [7-9] programmable network testbeds and toolkits are described that model
the telecommunications hardware using a set of open programmable interfaces. Here
there is an emphasis on service creation with quality of service (QOS), and a clear
distinction between information transport, network control and network management.
Active networks [10-13] allow for the modification of the behavior of network nodes
at run-time and offer a higher degree of programmability at the cost of increased com-
plexity of the programming model. A system that supports programmable routing
logic for wireless ad hoc networks is discussed in [14]. In [15] a programmable rout-

ing protocol scheme is presented that allows extensible link-state routing. Routing
protocol extensibility in [15] is restricted to the confines of the link state protocol
framework used.

While the community has investigated service creation with QoS and code mo-
bility in programmable and active networks, little work has been done on the pro-
grammability of routing protocols. In our work, we have identified similarities be-
tween a number of routing protocols and designed a routing Software Development
Kit (SDK) and middleware for programming routing protocols called Sphere. We
are currently implementing three different routing protocols using Sphere and plan to
use the Genesis Kernel [16] to dynamically introduce these routing protocols into our
testbed [17]. The Genesis Kernel is a programming system that automates the pro-
cess of creating deploying and managing network architectures. Sphere is a binding
model and middleware programming system designed specifically for the develop-
ment of new routing protocols, and can be viewed as a kernel plugin or subsystem in
the context of the Genesis Kernel – a form of ‘routeware’.

The paper is structured as follows. In Section 5.2, we provide an overview of rout-
ing protocols that are used in the Internet today. Furthermore we describe the Sphere
binding model and the way routing protocols can be decomposed into fundamental
building blocks. In section 5.3, we discuss how routing protocols can be programmed
using this binding model and building blocks. In Section 5.4, we provide some con-
cluding remarks.

5.2 Sphere

5.2.1 Routing Protocol Overview

Routing protocols found in the literature differ significantly. For example, consider
two well-known intra-domain routing protocols: RIP and OSPF. Although these pro-
tocols both operate on the same type of networks and their task is similar (i.e., to route
packets based on the optimal path between a pair of nodes) each protocol takes a dis-
tinct approach to the formulation of forwarding tables. RIP performs the computation
of the optimal routes in a distributed fashion between autonomous system (AS) routers
using the Bellman-Ford algorithm [17]. OSPF floods information about adjacencies
to all routers in the network where each router locally computes the shortest paths by
running the Dijkstra’s algorithm. BGP, the inter-domain routing protocol, is based on
a different design approach, where backbone routers exchange routing information in
terms of path vectors [6]. Path vectors are used for loop prevention and policy-based
routing and include the complete list of autonomous systems to each destination.
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5.2.2 Binding Model

A binding model characterizing each routing protocol is illustrated in Figure 5.1. The
binding model reflects the structure of routing protocol implementations in a single
network node. The components of the Sphere binding model include:

� a database object, which is used for maintaining distributed routing state. It can
represent a distance vector, link state or path vector database;

� an update object, which updates the database when new routing information
is received. The manner in which the database is updated is dependent on the
routing protocol being programmed;

� a set of optimal path algorithms, which operate on the contents of the database
to calculate forwarding tables. Each algorithm may use a different metric and
operate over a different timescale;

� an event generator, which initiates the transmission of routing information, up-
dating of the database or the calculation of optimal paths. The event generator
is programmable and can be triggered by timer objects;

� distributors, which disseminate routing information in the network. Distribution
systems can simply send updates periodically as in the case of RIP or implement
complex protocols such as the ‘hello’ and ‘flooding’ protocols as in the case of
OSPF; and

� packet processors, which process routing packets before they are transmitted to
the network or after they are received from the network.

By introducing standard interfaces between these routing components we enable code
reuse and ease the process of developing new routing protocols. Component inter-
faces are independent of the specific routing protocols being programmed. By allow-
ing components to create bindings at run-time we enable the dynamic introduction of
new routing services into networks.

5.2.3 Routeware: An SDK for Building Routing Protocols

To realize our binding model we have designed a routing SDK called routeware con-
sisting of a hierarchy of base classes, as illustrated in Figure 5.2. Routeware classes
can be implemented using object oriented programming languages and environments
such as C++, CORBA and Java. We are currently implementing routeware using Java.

Generic Classes

Routeware consists of three groups of classes. At the lowest level, a set of generic
classes offers basic functionality to the layers above. A database class supports generic
methods for creating new databases and for adding, removing or searching entries. An
authentication algorithm class implements a set of authentication algorithms used by
routing protocols (e.g., the MD5 algorithm), while a timer management class supports
a simple start/stop/reset timer. The network connection class is more complex since
it provides the mechanisms used by the protocol at the lowest level for transmitting
routing messages to the network. A range of diverse communication mechanisms are
supported including TCP and UDP socket management and remote method invoca-
tions. Because many routing protocols are multithreaded, a thread management class
wraps operating system specific methods for creating and managing threads.

Routing Component Classes

The next layer of abstraction contains routing component classes. Routing compo-
nent classes represent building blocks that can be used to construct different routing
architectures. Routing component classes are either new classes or extend the generic
classes described above. A routing database extends the generic database class encap-
sulating all the route entries available at a network node. The routing database class
provides information about network nodes and their associated paths, which can be
used for performing route entry lookups. We use a generic data structure to represent
a routing database entry. An update class performs the steps necessary for a generic
type of routing update. A distributor class retrieves all the route entries that have to be
transmitted, sets up the necessary network connections, and finally sends the update
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information. This is a generic class that can be further extended or used as part of
more complex protocol-specific distributor classes.
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Figure 5.2: Routeware

A metric class defines different types of metrics and a set of fuzzy comparison
methods for these metrics. Different types of metrics can be combined to support
customized routing policies. A protocol timer class extends the generic timer class
to support a range of timer events used by routing algorithms. Timer objects bind to
routing protocol specific routines that handle events generated by timers. An optimal
path algorithm class provides abstractions used for configuring algorithms that calcu-
late forwarding tables. Programmers can use this class to specify families of protocols
associated with optimal path algorithms, types of metrics or database fields. Optimal
path algorithm class is an abstract class. Each routing protocol is expected to extend
this class in order to define the core of the algorithm.

Routing Protocol Classes

Routing protocol classes use other routeware classes to implement specific routing
protocols. Routing protocol classes fully describe the objects that participate in a
routing protocol implementation. Examples of these classes, specific to the RIP and
OSPF protocols, are illustrated in Figure 5.2. A RIP protocol update class implements
routing updates that are specific to RIP. Another class could implement link state up-
dates specific to OSPF. Each protocol is associated with a protocol entry processing

class. For example the RIP entry processing class supports methods for processing
RIP route entries received from the network. The operations implemented here con-
cern route entry processing only. The reception of packets containing these entries
and the extraction of entries is handled by other generic classes described above.

Protocol-specific event generator classes (e.g., the RIP event generator class) in-
teract with timers to generate events when needed. Timer-related constants can be set
and the distribution of the interval between two subsequent events specified in case
this interval is stochastic. Event generator objects can be configured with information
about the actions taken in the case of various events. For example, a RIP event genera-
tor can be programmed to call a regular update when the corresponding timer expires.
Finally, route comparison classes provide methods for comparing route entries. Route
comparison classes make use of metric classes to produce results. Optimal path algo-
rithm classes (e.g., the OSPF Dijkstra algorithm class) make use of metric classes.

The classes described above can be used by many well-known routing protocols.
Some routing protocols require additional components. In the case of link-state proto-
cols for example, a set of classes describing flooding mechanisms are needed. Flood-
ing protocol classes extend a generic distributor class (shown in Figure 5.2) using
functionality provided by the lower layers. For example, a flooding protocol class can
make use of a database class in order to retrieve entries for transmission. Similarly, a
flooding protocol class can make use of a network connection class in order to create
the necessary end-to-end connections to transmit routing entries.

5.3 Routing Protocol Composition

In what follows, we show how the building blocks discussed in the previous sec-
tion can be used to construct routing protocols. We begin by examining intra-domain
routing protocols focusing on RIP as an example. In Section 5.3.2, we discuss inter-
domain routing protocols focusing on BGP.

5.3.1 Intra-domain Routing

The part of a programmable RIP implementation (shown in Figure 5.3) that directly
communicates with the network is the network connection object. The network con-
nection object uses UDP sockets to send or receive data to and from other routers.
Another variation of RIP could use remote method invocations (e.g., CORBA IIOP,
Java RMI). In the case of sockets, a RIP packet processing object is involved which
reads routing protocol specific headers from received packets and applies appropriate
incoming filters in order to verify the origin and the validity of the received packets.
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In the case of remote method invocations, content processing is not applied to head-
ers but on the arguments of remote method invocations. An authentication password
is passed to the object that implements authentication algorithms in order to perform
validity checks and notify the RIP packet processing object. The algorithms imple-
mented can be simple password or MD5 cryptographic checksum. These algorithms
are used by many routing protocols including EIGRP, OSPF and RIPv2.
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Figure 5.3: Programmable RIP

Once a packet has been examined and verified a route entry is extracted and sent
to the RIP entry processing object. The RIP protocol update object is then invoked,
which in turn exchanges information with the metric object and the routing database.
The routing database replies with the route entry for the same node (if one exists).
Following this, the metric object inputs the two entries and produces the comparison
result based on a specified set of metrics. If the received entry is better than the ex-
isting one the routing database object is used to replace the existing entry. Following
this, the RIP event generator initiates a RIP triggered update. Updated entries are
finally transmitted to the neighboring routers via the network connection object.

Regular RIP updates are periodically initiated using a distributor object, as shown
in Figure 5.3. The distributor object enforces the ‘split horizon’ [18] principle to the
way routing entries are announced in the network. The split horizon principle suggests
that announcements concerning destinations should not be sent to routers that are in
the shortest paths to these destinations. This feature makes RIP more robust against
routing loops and link failures.

Link state routing architectures can be realized using the same binding model and
base classes as in the case of RIP. The mechanisms for distributing and processing
route entries are different, however. For example, an incoming OSPF packet needs to
traverse a packet processing object specific to OSPF. State advertisements need to be
extracted and entered in a link-state database. A shortest path algorithm object can ap-
ply Dijkstra’s algorithm to the contents of the link state database in order to calculate
forwarding tables. If there is a need for an update, a flooding protocol can make use
of the network connection object to communicate with other routers in the network.
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Figure 5.4: Programmable BGP

5.3.2 Inter-domain Routing

Inter-domain routing protocols can be implemented by combining objects from route-
ware, as shown in Figure 5.4. In the case of BGP, a transport control object extends the
network connection class, providing the reliable data transfer mechanisms required by
BGP messages. The transport control object receives path entries from the network
in the form of BGP update messages. Path entries are processed in a manner similar
to the way RIP processes route entries. Each entry is compared with the correspond-
ing entry for the same destination at the local AS routing database. The AS routing
database maintains information about destination autonomous systems, their associ-
ated paths and their path attributes. The shortest path to a destination is selected by
default. Alternatively, the network administrator can program customized policies for
selecting the best path. Policies can be implemented as routeware objects that dynam-
ically bind to the BGP protocol as shown in Figure 5.4. A BGP protocol update object
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compares path entries selecting the best path to an autonomous system.
Other features of the BGP protocol are supported as separate routeware objects.

Open, update, keep alive and notification messages are sent by their associated route-
ware objects, as shown in Figure 5.4. Protocol enhancements can take place with sim-
ple software upgrades. For example, one can add support for classless inter-domain
routing (CIDR) into BGP by replacing the BGP update and entry processing objects
shown in Figure 5.4. These objects can be replaced by other objects that exchange
network layer reachability information (NLRI) [6] in addition to the path entries con-
tained in the update messages. Network layer reachability is a feature introduced in
the fourth version of BGP for route aggregation.

5.4 Conclusion

We have argued for the construction of routing protocols by extending and combin-
ing a set of components. This leads to an open programmable design that can greatly
facilitate the design and deployment of new routing architectures. We have proposed
a set of components and outline their interaction in order to construct a number of
routing protocols. The proposed scheme can be used for both interior and exterior
gateway protocols and for different types of routing algorithm. By being able to dy-
namically program routing protocols we can evaluate and change their structure as
needed. Moreover, by doing this on the fly, we can dynamically change the routing
policies associated with flows at a router or differentiate their service by loading dif-
ferent modules for each flow, thus applying different routing procedures. We are in
the early stages of our work on routeware. Currently we are prototyping the Sphere
binding model as part of a routeware plugging to the Genesis Kernel [17].

References

[1] Merit GateD Consortium,http://www.gated.net

[2] GNU Zebra – routing software,http://www.zebra.org

[3] Cisco IOS Rel.12.1,http://www.cisco.com

[4] G. Malkin, ”RIP version 2”,IETF Network Working Group RFC 1723, November 1994.

[5] J. Moy, ”OSPF version 2”,IETF Network Working Group RFC 2328, April 1998

[6] Y. Rekhter, and T. Li, ”A Border Gateway Protocol 4 (BGP-4)”,IETF Network Working
Group RFC 1771, March 1995.

[7] Lazar, A.A., ”Programming Telecommunication Networks”, IEEE Network, vol.11, no.5,
September/October 1997.

[8] A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, ”Programmable Mobile Networks”,
Computer Networks, Vol. 31, No. 7, pg. 741-765, April 1999.

[9] J. van der Merwe et al., ”The Tempest – A Practical Framework for Network Programma-
bility”, IEEE Network Magazine, 12(3), May/June 1998.

[10] Tennenhouse, D., and Wetherall, D., ”Towards an Active Network Architecture”, Pro-
ceedingsMultimedia Computing and Networking, San Jose, CA, 1996.

[11] D. Wetherall, J. Guttag, and D. Tennenhouse, ”ANTS: A Toolkit for Building and Dynam-
ically Deploying Network Protocols”,IEEE OPENARCH’98, San Francisco, CA, April
1998.

[12] J. Smith et al., ”SwitchWare: Towards a 21st century Network Infrastracture”,http:
//www.cis.upenn.edu/˜switchware/

[13] Yemini, Y., and Da Silva, S, ”Towards Programmable Networks”,IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management, L’Aquila, Italy,
October, 1996.

[14] C. Tschudin, H. Lundgren and H. Gulbrandsen, ”Active Routing for Ad Hoc Networks”,
IEEE Communications Magazine, April 2000.

[15] C. Partridge, A. Snoeren, T. Strayer, B. Schwartz, M. Condell, I. Castineira, ”FIRE: flex-
ible intra-AS routing environment”,ACM SIGCOMM, Stockholm, August 2000

[16] M. E. Kounavis, A. T. Campbell, S. Chou, F. Modoux, J. Vicente and H. Zhuang, ”The
Genesis Kernel: A Programming System For Spawning Network Architectures”,IEEE
Journal on Selected Areas in Communications, to be published, 2001.

[17] The Genesis Project,http://comet.columbia.edu/genesis/

[18] C. Huitema, ”Routing in the Internet”,Prentice Hall, pp. 529-551, March 1995.

26 PAPER 5. SPHERE: A BINDING MODEL AND MIDDLEWARE FOR ROUTING PROTOCOLS



The Short Paper Session is part of OPENARCH 2001,
the 4th IEEE Conference on Open Architectures and Network Programming,

April 27-28, 2001, Hilton Anchorage Hotel, Anchorage, Alaska. Previous conferences were held in
Tel-Aviv 2000, New York 1999 and San Francisco in 1998.

OPENARCH 2001 is sponsored by the IEEE Communications Society
and with support from Intel Corporation and Nortel Networks.

Editor’s address:
Christian F. Tschudin

Dept of Computer Systems, Uppsala University
Box 325, SE-75105 Uppsala, Sweden

<tschudin@docs.uu.se>



Deep active networking!

http://www.openarch.org/


